Module Handbook
Information Engineering and Management (B.Sc.)

Summer term 2010
Long version
04.03.2010
Inhaltsverzeichnis

Table of Contents

1 Structure of the Bachelor Programme in Information Engineering and Management

2 Module Handbook - a helpful guide throughout the studies

3 Actual Changes

4 Modules of term 1-4

4.1 Informatics
- IW1INF1- Foundations in Informatics
- IW2INF2- Algorithms I
- IW2INF3- Theoretical Informatics
- IW2INF4- Computer Engineering
- IW1INF5- Applied Informatics

4.2 Business Administration
- IW1BWL1- Foundations in Business Administration
- IW1BWL2- Business Administration

4.3 Economics
- IW1VWL- Economics

4.4 Operations Research
- IW1OR- Introduction to Operations Research

4.5 Statistics
- IW1STAT- Statistics

4.6 Law
- IW1JURA1- Introduction to Civil Law
- IW1JURA2- Commercial Law
- IW1JURA3- Constitutional and Administrative Law

4.7 Mathematics
- IW1MATH1- Mathematics I
- IW1MATH2- Mathematics II

4.8 General Modules
- IW1EXPRAK- Internship

5 Modules of term 5-6

5.1 General Modules
- IW3SEMINFO- Seminar Module Informatics
- IW3SEMWWIWI- Seminar Module Economic Sciences
- IW3SEMJURA- Seminar Module Law
- IW3THEESIS- Bachelor Thesis

5.2 Business Administration
- IW3BWLISM1- eBusiness and Servicemanagement
- IW3BWLISM2- Supply Chain Management
- IW3BWLISM3- eFinance
- IW3BWLISM4- CRM and Service Management
- IW3BWLISM5- Specialization in Customer Relationship Management
- IW3BWLMAR- Foundations of Marketing
- IW3BWLUO1- Strategy and Organization
- IW3BWLIIP2- Energy Economics
- IW3BWLIIP1- Industrial Production I
- IW3BWLFBV1- Essentials of Finance
- IW3BWLFBV5- Topics in Finance I
- IW3BWLFBV2- Insurance: Calculation and Control
- IW3BWLFBV3- Risk and Insurance Management
5.6 Law

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IW3JURA-</td>
<td>Intellectual Property and Data Protection</td>
</tr>
</tbody>
</table>

6 Courses

6.1 Courses of term 1-4

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>24001</td>
<td>Basic Notions of Computer Science</td>
</tr>
<tr>
<td>24004</td>
<td>Programming</td>
</tr>
<tr>
<td>24500</td>
<td>Algorithms I</td>
</tr>
<tr>
<td>24005</td>
<td>Theoretical Foundation of Computer Science</td>
</tr>
<tr>
<td>24502</td>
<td>Computer Organization</td>
</tr>
<tr>
<td>25070</td>
<td>Applied Informatics I - Modelling</td>
</tr>
<tr>
<td>25033</td>
<td>Applied Informatics II - IT Systems for e-Commerce</td>
</tr>
<tr>
<td>25002/25003</td>
<td>Financial Accounting and Cost Accounting</td>
</tr>
<tr>
<td>26490</td>
<td>Introduction to Information Engineering and Management</td>
</tr>
<tr>
<td>25024/25025</td>
<td>Business Administration and Management Science B</td>
</tr>
<tr>
<td>25026/25027</td>
<td>Business Administration and Management Science C</td>
</tr>
<tr>
<td>25040</td>
<td>Introduction to Operations Research I</td>
</tr>
<tr>
<td>25043</td>
<td>Introduction to Operations Research II</td>
</tr>
<tr>
<td>25512</td>
<td>Economics I: Microeconomics</td>
</tr>
<tr>
<td>25008/25009</td>
<td>Statistics I</td>
</tr>
<tr>
<td>25020/25021</td>
<td>Statistics II</td>
</tr>
<tr>
<td>24012</td>
<td>Civil Law for Beginners</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>24504</td>
<td>Advanced Civil Law</td>
</tr>
<tr>
<td>24011</td>
<td>Commercial and Corporate Law</td>
</tr>
<tr>
<td>24506/24017</td>
<td>Exercises in Civil Law</td>
</tr>
<tr>
<td>24016</td>
<td>Public Law I - Basic Principles</td>
</tr>
<tr>
<td>24520</td>
<td>Public Law II - Public Economic Law</td>
</tr>
<tr>
<td>01360</td>
<td>Mathematics I for Information Engineering and Management</td>
</tr>
<tr>
<td>01877</td>
<td>Mathematics II for Information Engineering and Management</td>
</tr>
<tr>
<td>25293</td>
<td>Seminar in Finance</td>
</tr>
<tr>
<td>25232</td>
<td>Financial Intermediation</td>
</tr>
<tr>
<td>25210</td>
<td>Management Accounting</td>
</tr>
<tr>
<td>25191</td>
<td>Bachelor Seminar in Foundations of Marketing</td>
</tr>
<tr>
<td>25177</td>
<td>Brand Management</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research</td>
</tr>
<tr>
<td>25154</td>
<td>Modern Market Research</td>
</tr>
<tr>
<td>25136</td>
<td>Global Optimization II</td>
</tr>
<tr>
<td>25134</td>
<td>Global Optimization I</td>
</tr>
<tr>
<td>25131</td>
<td>Seminar in Continuous Optimization</td>
</tr>
<tr>
<td>25113</td>
<td>Nonlinear Optimization II</td>
</tr>
<tr>
<td>25111</td>
<td>Nonlinear Optimization I</td>
</tr>
<tr>
<td>25055</td>
<td>Principles of Insurance Management</td>
</tr>
<tr>
<td>25070s</td>
<td>Seminar in Applied Informatics</td>
</tr>
<tr>
<td>24070</td>
<td>Industrial Property and Copyright Law</td>
</tr>
<tr>
<td>24074</td>
<td>Networked IT-Infrastructures</td>
</tr>
<tr>
<td>24074s</td>
<td>Seminar in Telematics</td>
</tr>
<tr>
<td>24079</td>
<td>Algorithm Design</td>
</tr>
<tr>
<td>24079p</td>
<td>Practical Course in Algorithm Design</td>
</tr>
<tr>
<td>24079s</td>
<td>Seminar in Algorithm Design</td>
</tr>
<tr>
<td>24109</td>
<td>Parallel Algorithms</td>
</tr>
<tr>
<td>24111</td>
<td>Workflowmanagement-Systems</td>
</tr>
<tr>
<td>24118</td>
<td>Data Warehousing and Mining</td>
</tr>
<tr>
<td>24124</td>
<td>Web Engineering</td>
</tr>
<tr>
<td>24127</td>
<td>Power Management</td>
</tr>
<tr>
<td>24128</td>
<td>Telematics</td>
</tr>
<tr>
<td>24132</td>
<td>Multimedia Communications</td>
</tr>
<tr>
<td>24147</td>
<td>Consulting in Practice</td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management</td>
</tr>
<tr>
<td>24171</td>
<td>Randomized Algorithms</td>
</tr>
<tr>
<td>24181</td>
<td>Power Management Praktikum</td>
</tr>
<tr>
<td>24357/24860</td>
<td>Programming Paradigms</td>
</tr>
<tr>
<td>24443</td>
<td>Applied Telematics</td>
</tr>
<tr>
<td>24516</td>
<td>Database Systems</td>
</tr>
<tr>
<td>24518</td>
<td>Software Engineering I</td>
</tr>
<tr>
<td>24519</td>
<td>Introduction in Computer Networks</td>
</tr>
<tr>
<td>24570</td>
<td>Rechnerstrukturen</td>
</tr>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols</td>
</tr>
<tr>
<td>24605</td>
<td>Data Privacy Protection in Interconnected Information Systems</td>
</tr>
<tr>
<td>24614</td>
<td>Algorithms for Planar Graphs</td>
</tr>
<tr>
<td>24643</td>
<td>Mobile Communications</td>
</tr>
<tr>
<td>24781</td>
<td>Aktuelle Fragen des Datenschutzrechts</td>
</tr>
<tr>
<td>24941</td>
<td>Security</td>
</tr>
<tr>
<td>25016</td>
<td>Economics III: Introduction in Econometrics</td>
</tr>
<tr>
<td>25050</td>
<td>Private and Social Insurance</td>
</tr>
<tr>
<td>25055</td>
<td>Principles of Insurance Management</td>
</tr>
<tr>
<td>25070s</td>
<td>Seminar in Applied Informatics</td>
</tr>
<tr>
<td>24518</td>
<td>Economics III: Introduction in Econometrics</td>
</tr>
<tr>
<td>24124</td>
<td>Web Engineering</td>
</tr>
<tr>
<td>24128</td>
<td>Telematics</td>
</tr>
</tbody>
</table>
INHALTSVERZEICHNIS

25299- Business Strategies of Banks .. 162
25325- Statistics and Econometrics in Business and Economics 163
25365- Economics of Uncertainty ... 165
25369- Game Theory II .. 166
25371- Industrial Organization ... 167
25373- Experimental Economics .. 168
25375- Data Mining .. 169
25486- Facility Location and Strategic Supply Chain Management 170
25488- Tactical and Operational Supply Chain Management 171
25490- Software Laboratory: OR Models I .. 172
25491- Seminar in Discrete Optimization ... 173
25517- Welfare Economics .. 174
25525- Game Theory I .. 175
25527- Advanced Topics in Economic Theory .. 176
25543- Theory of Economic Growth .. 177
25549- Theory of Business Cycles ... 178
25662- Simulation I ... 179
25665- Simulation II .. 180
25679- Markov Decision Models I ... 181
25700- Efficient Algorithms ... 182
25700sp- Special Topics of Efficient Algorithms .. 183
25702- Algorithms for Internet Applications .. 184
25704- Organic Computing .. 185
25706- Nature-inspired Optimisation .. 187
25726- Workflow-Management ... 188
25730- Software Technology: Quality Management ... 189
25736- Business Process Modelling ... 190
25740- Knowledge Management ... 191
25748- Semantic Web Technologies I ... 192
25762- Intelligent Systems in Finance ... 193
25770 - Service Oriented Computing 1 .. 195
25776- Cloud Computing .. 196
25786- Enterprise Architecture Management ... 197
25790- Capability maturity models for software and systems engineering 198
25860sem- Special Topics of Knowledge Management 199
25900- Management and Strategy ... 200
25902- Managing Organizations .. 201
25907- Special Topics in Management: Management and IT 202
25915/25916- Seminar: Management and Organization 203
25950- Fundamentals of Production Management .. 204
25959- Energy Policy .. 205
25960- Material and Energy Flows in the Economy ... 206
25996- Logistics and Supply Chain Management .. 207
26010- Introduction to Energy Economics ... 208
26012- Renewable Energy Sources - Technologies and Potentials 209
26240- Competition in Networks ... 210
26300- Insurance Models ... 211
26323- Insurance Marketing ... 212
26326- Enterprise Risk Management ... 213
26350- Current Issues in the Insurance Industry ... 214
26353- International Risk Transfer ... 215
26360- Insurance Contract Law .. 216
26372- Insurance Game .. 217
26400- Real Estate Management II ... 218
26400w- Real Estate Management I ... 219
26404- Sustainability Assessment of Construction Works 220
26404w- Design, Construction and Assessment of Green Buildings I 221
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>26420</td>
<td>Topics of Sustainable Management of Housing and Real Estate</td>
<td>222</td>
</tr>
<tr>
<td>26452</td>
<td>Management of Business Networks</td>
<td>223</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>224</td>
</tr>
<tr>
<td>26466</td>
<td>eServices</td>
<td>225</td>
</tr>
<tr>
<td>26478</td>
<td>Special Topics in Information Engineering & Management</td>
<td>226</td>
</tr>
<tr>
<td>26496</td>
<td>Management of Business Networks (Introduction)</td>
<td>227</td>
</tr>
<tr>
<td>26508</td>
<td>Customer Relationship Management</td>
<td>228</td>
</tr>
<tr>
<td>26520</td>
<td>Operative CRM</td>
<td>229</td>
</tr>
<tr>
<td>26522</td>
<td>Analytical CRM</td>
<td>231</td>
</tr>
<tr>
<td>26524</td>
<td>Bachelor Seminar in Information Engineering and Management</td>
<td>232</td>
</tr>
<tr>
<td>26550</td>
<td>Derivatives</td>
<td>233</td>
</tr>
<tr>
<td>26570</td>
<td>International Finance</td>
<td>234</td>
</tr>
<tr>
<td>26575</td>
<td>Investments</td>
<td>235</td>
</tr>
<tr>
<td>2118078</td>
<td>Logistics - Organisation, Design, and Control of Logistic Systems</td>
<td>236</td>
</tr>
<tr>
<td>2118090</td>
<td>Quantitative Methods for Supply Chain Risk Management</td>
<td>238</td>
</tr>
<tr>
<td>AlgVG</td>
<td>Algorithms for Visualization of Graphs</td>
<td>239</td>
</tr>
<tr>
<td>AlgoMO</td>
<td>Algorithmic Methods for Hard Optimization Problems</td>
<td>240</td>
</tr>
<tr>
<td>FOO</td>
<td>Fortgeschrittene Objektorientierung</td>
<td>241</td>
</tr>
<tr>
<td>PLV</td>
<td>Selling IT-Solutions Professionally</td>
<td>242</td>
</tr>
<tr>
<td>PMP</td>
<td>Project Management in Practice</td>
<td>243</td>
</tr>
<tr>
<td>PraBI</td>
<td>Computing Lab Information Systems</td>
<td>244</td>
</tr>
<tr>
<td>SBI</td>
<td>Special Topics of Enterprise Information Systems</td>
<td>245</td>
</tr>
<tr>
<td>SWSSem</td>
<td>Seminar Software Systems</td>
<td>246</td>
</tr>
<tr>
<td>SWT2</td>
<td>Software Engineering II</td>
<td>247</td>
</tr>
<tr>
<td>SWTSem</td>
<td>Seminar Software Engineering</td>
<td>248</td>
</tr>
<tr>
<td>SemAlFB1</td>
<td>Seminar in Enterprise Information Systems</td>
<td>249</td>
</tr>
<tr>
<td>SemAlFB4</td>
<td>Seminar Knowledge Management</td>
<td>250</td>
</tr>
<tr>
<td>SemFBV1</td>
<td>Seminar in Insurance Management</td>
<td>251</td>
</tr>
<tr>
<td>SemFBV2</td>
<td>Seminar in Operational Risk Management</td>
<td>252</td>
</tr>
<tr>
<td>SemFBV3</td>
<td>Seminar in Risk Theory and Actuarial Science</td>
<td>253</td>
</tr>
<tr>
<td>SemIIP2</td>
<td>Seminar in Industrial Production</td>
<td>254</td>
</tr>
<tr>
<td>SemIW</td>
<td>Seminar Information Engineering and Management</td>
<td>255</td>
</tr>
<tr>
<td>SemInfo</td>
<td>Informatics Seminar</td>
<td>256</td>
</tr>
<tr>
<td>SemSich</td>
<td>Seminar in Security</td>
<td>257</td>
</tr>
<tr>
<td>SemWIOR1</td>
<td>Seminar Stochastic Models</td>
<td>258</td>
</tr>
<tr>
<td>SemWIOR2</td>
<td>Seminar Economic Theory</td>
<td>259</td>
</tr>
<tr>
<td>SemWIOR3</td>
<td>Seminar in Experimental Economics</td>
<td>260</td>
</tr>
<tr>
<td>SemWIOR4</td>
<td>Seminar in Game and Decision Theory</td>
<td>261</td>
</tr>
<tr>
<td>SemiKryp3</td>
<td>Seminar in Cryptography</td>
<td>262</td>
</tr>
<tr>
<td>dbe</td>
<td>Deployment of Database Systems</td>
<td>263</td>
</tr>
<tr>
<td>rechtsem</td>
<td>Seminar in Law</td>
<td>264</td>
</tr>
<tr>
<td>xAlgoEng</td>
<td>Algorithm Engineering</td>
<td>265</td>
</tr>
<tr>
<td>xIDLp</td>
<td>Practical Course Information Services in Networks</td>
<td>266</td>
</tr>
<tr>
<td>xIDLs</td>
<td>Seminar Information Services in Networks</td>
<td>267</td>
</tr>
</tbody>
</table>

7 Appendix: Study- and Examination Regulation (15/04/2009, in German) 269

Index 285
Structure of the Bachelor Programme in Information Engineering and Management

The Bachelor programme in *Information Engineering and Management* has 6 terms. The first four terms have a methodological orientation and provides the student with the foundations of informatics, business administration, economics and law. Terms 5 and 6 aim at the specialization and application of this knowledge. Figure 1 shows the structure of the subjects and the credits (CP) allocated to the subjects. According to the European Credit Transfer System, one credit corresponds to a workload of 30 hours.

Information Engineering and Management (B.Sc.)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Core Programme</th>
<th>Specialization Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subject</td>
<td>INFO</td>
</tr>
<tr>
<td>1</td>
<td>INFO</td>
<td>10 CP</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>8 CP</td>
</tr>
<tr>
<td></td>
<td>EC</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td>9 CP</td>
</tr>
<tr>
<td></td>
<td>STAT</td>
<td>10 CP</td>
</tr>
<tr>
<td></td>
<td>MATH</td>
<td>8 CP</td>
</tr>
<tr>
<td></td>
<td>LAW</td>
<td>4 CP</td>
</tr>
<tr>
<td>2</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAW</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAW</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>INFO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internship</td>
<td>8 CP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Module</th>
<th>Seminar*</th>
<th>BA-Module</th>
<th>Module</th>
<th>Seminar*</th>
<th>Module</th>
<th>Seminar*</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>18 CP</td>
<td>3 CP</td>
<td>9 CP</td>
<td>3 CP</td>
<td>3 CP</td>
<td>6 CP</td>
<td>3 CP</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

180 CP (Core programme + specialization programme + Bachelor thesis)

Seminar*: 2 out of 3 Seminars have to be chosen.

![Abbildung 1: Structure of Bachelor Programme in Information Engineering and Management](image)

Based on a solid mathematical education, the modules of the first four terms of the Bachelor programme in information engineering and management are allocated in the proportion 40/40/20 to informatics (informatics, applied informatics, and computer engineering), economic sciences (business administration, economics, operations research, and statistics), and law. The internship prepares the student for his profession. Table 1 shows the allocation of courses to modules and the curriculum for the first four terms.
<table>
<thead>
<tr>
<th>Module ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IW1BWL1</td>
<td>Financial and Management Accounting</td>
<td>2/2</td>
<td>4.0</td>
</tr>
<tr>
<td>IW1VWL</td>
<td>Economics I</td>
<td>3/0/2</td>
<td>5.0</td>
</tr>
<tr>
<td>IW1MATH1</td>
<td>Mathematics I</td>
<td>4/2/2</td>
<td>8.0</td>
</tr>
<tr>
<td>IW1INF1</td>
<td>Basic Notions of Computer Science</td>
<td>2/1/2</td>
<td>5.0</td>
</tr>
<tr>
<td>IW1INF1</td>
<td>Programming</td>
<td>2/0/2</td>
<td>5.0</td>
</tr>
<tr>
<td>IW1JURA1</td>
<td>Civil Law for Beginners</td>
<td>4/0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31.0</td>
</tr>
<tr>
<td>2nd Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IW1BWL1</td>
<td>Introduction to Information Engineering and Management</td>
<td>2/2</td>
<td>4.0</td>
</tr>
<tr>
<td>IW1STAT</td>
<td>Statistics I</td>
<td>4/0/2</td>
<td>5.0</td>
</tr>
<tr>
<td>IW1OR</td>
<td>Introduction to Operations Research I</td>
<td>2/2/2</td>
<td>4.5</td>
</tr>
<tr>
<td>IW1MATH2</td>
<td>Mathematics II</td>
<td>4/2/2</td>
<td>8.0</td>
</tr>
<tr>
<td>IW2INF2</td>
<td>Algorithms I</td>
<td>3/1/2</td>
<td>6.0</td>
</tr>
<tr>
<td>IW1JURA2</td>
<td>Advanced Civil Law</td>
<td>2/0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30.5</td>
</tr>
<tr>
<td>3rd Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IW1BWL2</td>
<td>Business Administration and Management Science C</td>
<td>2/0/2</td>
<td>4.0</td>
</tr>
<tr>
<td>IW1STAT</td>
<td>Statistics II</td>
<td>4/0/2</td>
<td>5.0</td>
</tr>
<tr>
<td>IW1OR</td>
<td>Introduction to Operations Research II</td>
<td>2/2/2</td>
<td>4.5</td>
</tr>
<tr>
<td>IW2INF3</td>
<td>Theoretical Foundation of Computer Science</td>
<td>3/1</td>
<td>7.0</td>
</tr>
<tr>
<td>IW1INF5</td>
<td>Applied Informatics I</td>
<td>2/1</td>
<td>4.0</td>
</tr>
<tr>
<td>IW1JURA2</td>
<td>Commercial and Corporate Law</td>
<td>2/0</td>
<td>3.0</td>
</tr>
<tr>
<td>IW1JURA3</td>
<td>Public Law I</td>
<td>2/0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30.5</td>
</tr>
<tr>
<td>4th Term</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IW1BWL2</td>
<td>Business Administration and Management Science B</td>
<td>2/0/2</td>
<td>4.0</td>
</tr>
<tr>
<td>IW1INF5</td>
<td>Applied Informatics II</td>
<td>2/2/2</td>
<td>4.0</td>
</tr>
<tr>
<td>IW2INF4</td>
<td>Computer Engineering</td>
<td>3/1/2</td>
<td>6.0</td>
</tr>
<tr>
<td>IW1JURA3</td>
<td>Public Law II</td>
<td>2/0</td>
<td>3.0</td>
</tr>
<tr>
<td>IW1JURA2</td>
<td>Exercises in Civil Law</td>
<td>2/0</td>
<td>3.0</td>
</tr>
<tr>
<td>IW1PRAK</td>
<td>Internship</td>
<td></td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120.0</td>
</tr>
</tbody>
</table>

Tabelle 1: Curriculum in the terms 1-4
In the 3rd year (5th and 6th term) of the Bachelor programme the student must pass
1. module(s) with 18 credits in informatics
2. a module with 9 credits in the subject Business Administration
3. a module with 9 credits in the subject BA/OR/EC,
4. a module with 6 credits in law,
5. two out of the three seminar modules with 3 credits each,
6. and the bachelor thesis with 12 credits.
2 Module Handbook - a helpful guide throughout the studies

The programme exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself exists of one or more interrelated courses. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the programme, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the programme according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the programme. It describes:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalogue, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

Begin and completion of a module

Every module and every course is allowed to be credited only once. The decision whether the course is assigned to one module or the other (e.g. if a course is selectable in two or more modules) is made by the student at the time of signing in for the corresponding exam. The module is succeeded, if the general exam of the module and/or if all of its relevant partial exams have been passed (grade min 4.0). In order to that the minimum requirement of credits of this module have been met.

General exams and partial exams

The module exam can be taken in a general exam or several partial exams. If the module exam is offered as a general exam, the entire content of the module will be reviewed in a single exam. If the module exam exists of partial exams, the content of each course will be reviewed in corresponding partial exams. The registration for the examinations takes place online via the self-service function for students. The following functions can be accessed on https://studium.kit.edu/meinsemester/Seiten/pruefungsanmeldung.aspx:

- Sign in and sign off exams
- Retrieve examination results
- Print transcript of records

For further and more detailed information also see https://zvwgate.zvw.uni-karlsruhe.de/download/leitfaden_studierende.pdf

Repeating exams

Principally, a failed exam can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. Requests for a second repetition of an exam require the approval of the examination committee. A request for a second repetition has to be made without delay after loosing the examination claim. A counseling interview is mandatory. For further information see http://www.wiwi.kit.edu/serviceHinweise.php.

Bonus accomplishments and additional accomplishments

Bonus accomplishments can be achieved on the basis of entire modules or within modules, if there are alternatives at choice. Bonus accomplishments can improve the module grade and overall grade by taking into account only the best possible combination of all courses when calculating the grades. The student has to declare a Bonus accomplishment as such at the time of registration for the exams. Exams, which have been registered as Bonus accomplishments, are subject to examination regulations. Therefore, a failed exam has to be repeated. Failing the repeat examination implies the loss of the examination claim.

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student.
and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Up to 2 modules with a minimum of 9 CP may appear additionally in the certificate. After the approval of the examination committee, it is also possible to include modules in the certificate, which are not defined in the module handbook. Single additional courses will be recorded in the transcript of records. Courses and modules, which have been declared as bonus accomplishments, can be changed to additional accomplishments.

Further information

More detailed information about the legal and general conditions of the programme can be found in the examination regulation of the programme (in the appendix).

Used abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP/CP</td>
<td>Credit Points/ECTS</td>
</tr>
<tr>
<td>LV</td>
<td>course</td>
</tr>
<tr>
<td>RÜ</td>
<td>computing lab</td>
</tr>
<tr>
<td>S</td>
<td>summer term</td>
</tr>
<tr>
<td>Sem.</td>
<td>semester/term</td>
</tr>
<tr>
<td>ER/SPO</td>
<td>examination regulations</td>
</tr>
<tr>
<td>KS/SQ</td>
<td>key skills</td>
</tr>
<tr>
<td>SWS</td>
<td>contact hour</td>
</tr>
<tr>
<td>Ü</td>
<td>exercise course</td>
</tr>
<tr>
<td>V</td>
<td>lecture</td>
</tr>
<tr>
<td>W</td>
<td>winter term</td>
</tr>
</tbody>
</table>

Leistungspunkte/ECTS

Lehrveranstaltung

Rechnerübung

Somersemester

Semester

Studien- und Prüfungsordnung

Schlüsselqualifikationen

Semesterwochenstunde

Übung

Vorlesung

Wintersemester
3 Actual Changes

Important changes are pointed out in this section in order to provide a better orientation. Although this process was done with great care, other/minor changes may exist.

Supply Chain Management [IW3BWLISM2] (S. 38)
Anmerkungen
The current seminar courses for this semester, which are complementary to this module, are listed on following webpage: the http://www.im.uni-karlsruhe.de/lehre
The course Management of Business Networks (Introduction) was added to the module.
The course Quantitative Methods for Supply Chain Risk Management was added to the module.
The course Tactical and Operational Supply Chain Management [25488] was added to the module.
The course Logistics - Organisation, Design, and Control of Logistic Systems was formerly named Logistics.

Strategy and Organization [IW3BWLUO1] (S. 43)
Anmerkungen

Insurance Markets and Management [IW3BWLFBV4] (S. 50)
Anmerkungen
The course Insurance Marketing [26323] is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
The course Insurance Contract Law [26360] will not be held any more after winter term 2009/10. There will be no more exams for this course after the exam period of summer term 2010.
The courses International Risk Transfer and Current Issues in the Insurance Industry have been added to the module.
This module was formerly named Insurance Management.

Microeconomic Theory [IW3VWL6] (S. 55)
Anmerkungen
The lecture Advanced Topics in Economic Theory [25527] was formerly named Advanced Microeconomic Theory.

Semantic Knowledge Management [IW3INAIFB2] (S. 62)
Anmerkungen
The lecture Special Topics of Knowledge Management was added to the module.

Advanced Topics in Economic Theory [25527] (S. 176)
Anmerkungen
The lecture will be offered in the summer term 2010 for the first time.
Up to now, the lecture was named Advanced Microeconomic Theory.

Insurance Contract Law [26360] (S. 216)
Anmerkungen
Block course. To attend the course please register at the secretariat of the chair of insurance science.
The course will not be held any more after winter term 2009/10, the exam will not be offered after the exam period of summer term 2010.

Algorithms for Visualization of Graphs [AlgVG] (S. 239)
Anmerkungen
The course is not lectured in the summer term 2010.

[FOO] (S. 241)
Anmerkungen
The course is not lectured in the summer term 2010.
4 Modules of term 1-4

4.1 Informatics

Module: Foundations in Informatics

Module key: [IW1INF1]

Subject: Informatics
Module coordination: Gregor Snelting
Credit points (CP): 10

Learning Control / Examinations
The assessment of this module consists of
1. Completion of Grundbegriffe der Informatik [24001]
2. Completion of Programming [24004]

Assessment is described in the courses of this module. The overall grade is determined by weighting the grades from each course according to the number of credits.

Attention: This module is part of the so-called “orientation” examination according to §8 (1) of the examination regulation 2009. The examination for this module (including repetitions if necessary) must be passed until the end of the examination period of the third term in order not to be forced to drop out of the degree programme.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Foundations in Informatics [IW1INF1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24001</td>
<td>Basic Notions of Computer Science (S. 85)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
</tr>
<tr>
<td>24004</td>
<td>Programming (S. 86)</td>
<td>2/0/2</td>
<td>W</td>
<td>5</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s)

- T. Worsch
- G. Snelting
Module: Algorithms I

Subject: Informatics
Module coordination: Peter Sanders
Credit points (CP): 6

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student is supposed to

• know and understand basic, frequently used algorithms, their conception, analysis of their correctness and efficiency, implementation, documentation and application
• be able to use their comprehension to work on new algorithmic problems
• apply the knowledge acquired in the module Grundlagen der Informatik (B.Sc. Information Engineering and Management) to non-trivial algorithms
• apply the knowledge acquired in the module Grundbegriffe der Informatik (Bachelor Informatics) or in Grundlagen der Informatik (B.Sc. Information Engineering and Management) and the mathematical methodologies learned in the mathematics lectures to solve problems, the focus being on both formal correctness arguments and mathematical efficiency analysis

Content
The module contains the „basic toolbox for algorithmics“. The following topics are covered in particular:

• result analysis (checkers) and certification
• asymptotic algorithm analysis: worst case, average case, probabilistic, amortised
• basic terms of algorithm engineering
• efficient application of linked lists
• unlimited arrays, batches and queues
• hash tables: with linking, linear probing, universal hashing
• sorting: efficient algorithms (mergesort, quicksort), lower border, radix sort
• selection: quickselect
• sorted sequences/search trees: How to support all important operations within logarithmic time?
• graphs (representation, traversing: breadth search, deep search, applications (topological sorting,...), shortest path: Dijkstra’s algorithm, Bellman-Ford algorithm, minimum spanning trees: Kruskals algorithm, Jarnik-Prim algorithm)
• generic optimisation algorithms (greedy, dynamic programming, systematic search, local search)

Courses in module Algorithms I [IW2INF2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24500</td>
<td>Algorithms I (S. 87)</td>
<td>3/1/2</td>
<td>S</td>
<td>6</td>
<td>P. Sanders</td>
</tr>
</tbody>
</table>
Module: Theoretical Informatics
Module key: [IW2INF3]

Subject: Informatics
Module coordination: Jörn Müller-Quade
Credit points (CP): 7

Learning Control / Examinations
The assessment of the module consists of a grade certificate for the exercise according to §4(2), 3 of the examination regulation and of a written examination according to §4(2), 1 of the examination regulation. The grade of the module corresponds to the grade of the written examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• has a deeper insight into the fundamentals of theoretical computer science and knows the computation models and proof techniques,
• understands the limits and possibilities of computer science in relation to the solution of definable but only partially predictable problems
• knows basic aspects of computer science in contrast to specific circumstances, such as specific computers or programming languages and also can phrase general statements about the solvability of problems
• is able to apply the proof techniques learned for the specification of systems of computer science and for the systematic design of programs and algorithms

Content
There are important problems whose solutions can clearly be defined but one will never be able to calculate such a solution systematically. Other problems are "likely" to be solved only through trial and error. Other topics of the module provide the basis for circuit design, design of compilers, and many others. Most results are rigorously proved. The proof techniques learned by the way are important for the specification of systems of computer science and for the systematic design of programs and algorithms.

The module provides a deep insight into the principles and methods of theoretical computer science. In particular, this will be discussed on the basic properties of Formal Languages as foundations of programming languages and communication protocols (regular, context-free Chomsky hierarchy), machine models (finite automata, pushdown automata, Turing machines, non determinism, and relations to families of formal languages), equivalence of sufficiently powerful computation models (Church's thesis), non computable important functions (halting problem,...), Gödel's incompleteness theorem and introduction to complexity theory, NP-complete problems and polynomial reductions.

Courses in module Theoretical Informatics [IW2INF3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24005</td>
<td>Theoretical Foundation of Computer Science (S. 89)</td>
<td>3/1</td>
<td>W</td>
<td>7</td>
<td>J. Müller-Quade</td>
</tr>
</tbody>
</table>
Module: Computer Engineering

Subject: Informatics
Module coordination: Wolfgang Karl
Credit points (CP): 6

Learning Control / Examinations
The assessment is a written examination (60 minutes) according to §4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Computer Engineering [IW2INF4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24502</td>
<td>Computer Organization (S. 90)</td>
<td>3/1/2</td>
<td>S</td>
<td>6</td>
<td>T. Asfour, R. Dillmann, J. Henkel, W. Karl</td>
</tr>
</tbody>
</table>
Module: Applied Informatics

Subject: Informatics
Module coordination: Andreas Oberweis, Stefan Tai
Credit points (CP): 8

Learning Control / Examinations
The assessments of the Applied Informatics I [25070] and Applied Informatics II [25033] are written examinations (60 min each) according to §4(2), 1 SPO.
The grade of the module is the average of the grade of the assessment of the course 25070 and of the grade of 25033.

Prerequisites
Knowledge of the module Foundations in Informatics [IW1INF1] as well as Algorithms I [IW2INF2] is expected.

Conditions
None.

Learning Outcomes
The student should:
- Becomes familiar with relevant modelling languages for describing application domains and aspects of early software system design.
- Gains insight into methods and systems of computer science for the design and development of distributed information systems (supporting electronic business),
- is able to select, design, and apply these methods and systems in a way that is appropriate for the application context.

Content
The course Applied Informatics I [25070] mainly addresses the early phases of the development of database-supported information systems, distributed systems for information services, intelligent systems and software systems in general. Main topics are modelling concepts and languages for describing application domains as well as static and dynamic aspects of early software system design. The course addresses in detail the following approaches: Entity-Relationship model, advanced aspects of UML, description logic, relational model, Petri nets, and event-driven process chains.
The consecutive course Applied Informatics II [25033] covers various facets of electronic commerce which have to be supported by adequate and efficient distributed information and communication systems. After a brief introduction into e-commerce the following topics are covered: application architectures (incl. client server architectures), document description and exchange (incl. XML), enterprise middleware (incl. CORBA, Java EE), enterprise SOA (incl. Web services).

Courses in module Applied Informatics [IW1INF5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25070</td>
<td>Applied Informatics I - Modelling (S. 91)</td>
<td>2/1 W</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>25033</td>
<td>Applied Informatics II - IT Systems for E-Commerce (S. 92)</td>
<td>2/1 S</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s)
A. Oberweis, R. Studer, S. Agarwal
S. Tai
4.2 Business Administration

Module: Foundations in Business Administration

Module key: [IW1BWL1]

Subject: Business Administration

Module coordination: Christof Weinhardt, Marliese Uhlig-Homburg

Credit points (CP): 8

Learning Control / Examinations

The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module. The examinations take place at the beginning of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures of each course of this module is defined for each course separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None.

Conditions

None.

Learning Outcomes

The institutional framework and the modelling and formal description of a company’s decisions play an essential role in this module. The basic idea and the foundations of static and dynamic investment rules are presented and applied to problems in procurement and materials management as well as in logistics. Modern production processes for goods and services are systematically presented. Marketing research and knowledge of the range of marketing instruments are fundamental for decisions in a competitive market environment. The foundations of corporate finance are treated with a strong emphasis of the links to the capital market. Investment rules and corporate finance are instrumental for answering questions of source and application of funds, comparable to the lending and deposit business in banking. The organisation of company and the problems of management and control constitute an other important aspect of business administration and management science. Finally, the process of value creation and distribution as well as the principles of the taxation of a company are treated with an emphasis on the analysis of the profit and loss statement.

Two case studies, namely the foundation of an innovative information service company and the process chain of a B2B direct marketing company from the customer to the producer, focus on the interdisciplinary links between legal framework, advanced information technology, and the resulting design options for business processes.

Content

The institutional framework and the modelling and formal description of a company’s decisions play an essential role in this module. The basic idea and the foundations of static and dynamic investment rules are presented and applied to problems in procurement and materials management as well as in logistics. Modern production processes for goods and services are systematically presented. Marketing research and knowledge of the range of marketing instruments are fundamental for decisions in a competitive market environment. The foundations of corporate finance are treated with a strong emphasis of the links to the capital market. Investment rules and corporate finance are instrumental for answering questions of source and application of funds, comparable to the lending and deposit business in banking. The organisation of company and the problems of management and control constitute an other important aspect of business administration and management science. Finally, the process of value creation and distribution as well as the principles of the taxation of a company are treated with an emphasis on the analysis of the profit and loss statement.

Two case studies, namely the foundation of an innovative information service company and the process chain of a B2B direct marketing company from the customer to the producer, focus on the interdisciplinary links between legal framework, advanced information technology, and the resulting design options for business processes.

Courses in module Foundations in Business Administration [IW1BWL1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25002</td>
<td>Financial Accounting and Cost Accounting (S. 93)</td>
<td>2/2</td>
<td>W</td>
<td>4</td>
<td>T. Burdelski</td>
</tr>
<tr>
<td>25003</td>
<td>Introduction to Information Engineering and Management (S. 94)</td>
<td>2/2</td>
<td>S</td>
<td>4</td>
<td>C. Weinhardt, A. Geyer-Schulz</td>
</tr>
</tbody>
</table>
Module: Business Administration

Subject: Business Administration
Module coordination: Christof Weinhardt, Marliese Uhrig-Homburg
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
It is highly recommended to fulfil this module only after completing the module Foundations in Business Administration [IW1BWL1].

Conditions
None.

Learning Outcomes
The student should be able to
- formulate, assess and choose strategies, and is in control of the terminology, the goals and the requirements of organisational management
- know three kinds of information asymmetry in organisations and their implications on the design of contracts
- know the notions, functions, areas and tools of controlling
- describe the impacts and features of marketing instruments
- knows the problem formulation and theories of production management, including the areas of energy, construction, real estate and ergonomics.
- evaluate information as a competitive factor and is in control of the terminology and the methods to assess information

Content
The institutional framework and the modelling and formal description of a company’s decisions play an essential role in this module. This module contains problems in procurement and materials management as well as in logistics. Modern production processes for goods and services are systematically presented. Marketing research and knowledge of the range of marketing instruments are fundamental for decisions in a competitive market environment. The foundations of corporate finance are treated with a strong emphasis on the links to the capital market. Investment rules and corporate finance are instrumental for answering questions of source and application of funds, comparable to the lending and deposit business in banking. The organisation of company and the problems of management and control constitute an other important aspect of business administration and management science. Finally, the process of value creation and distribution as well as the principles of the taxation of a company are treated with an emphasis on the analysis of the profit and loss statement.

Courses in module Business Administration [IW1BWL2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25026/25027</td>
<td>Business Administration and Management Science C (S. 97)</td>
<td>2/0/2</td>
<td>W</td>
<td>4</td>
</tr>
<tr>
<td>25024/25025</td>
<td>Business Administration and Management Science B (S. 96)</td>
<td>2/0/2</td>
<td>S</td>
<td>4</td>
</tr>
</tbody>
</table>

Responsibility
- H. Lindstädt, M. Ruckes, M. Uhrig-Homburg, T. Burdelski
- W. Gaul, T. Lützkendorf, A. Geyer-Schulz, C. Weinhardt, T. Burdelski

Module Handbook: Version 04.03.2010
Information Engineering and Management (B.Sc.)
Module: Economics

Module key: [IW1VWL]

Subject: Economics
Module coordination: Siegfried Berninghaus, Clemens Puppe
Credit points (CP): 5

Learning Control / Examinations
The assessment of the module is a written examination according to §4(2), 1 of the examination regulation.
The grade of the module corresponds to the grade of this examination.
Additionally, there can be a midterm written examen where students can improve their grades in the final examen.
Attention: This module is part of the Orientierungsprüfung according to §10 (1), SPO 2009 resp. §8 (1) SPO 2005. The examen needs to be passed until the end of the examination period of the second semester or in case of repetition until the the end of the examination period of the third semester.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the main aim of this module to provide basic knowledge in economic modelling. Particularly, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative but more effective policy measures.
In particular, the student should learn
• to apply simple microeconomic concepts,
• to analyze the structure of real world economic phenomena,
• to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
• to possibly suggest alternative policy measures,
• to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
• to become familiar with the basic literature on microeconomics.
The student should gain basic knowledge in order to help in practical problems
• to analyze the structure of microeconomics relationships and possibly to present own problem solutions,
• solve simple economic decision problems.

Content
In the two main parts of the course problems of microeconomic decision making (household behavior, firm behavior) and problems of commodity allocation on markets (market equilibria and efficiency of markets) as well are discussed. In the final part of the course basics of imperfect competition (oligopolistic markets) and of game theory are presented.

Courses in module Economics [IW1VWL]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25512</td>
<td>Economics I: Microeconomics (S. 101)</td>
<td>3/0/2</td>
<td>W</td>
<td>5</td>
<td>S. Berninghaus</td>
</tr>
</tbody>
</table>

Remarks
When personal resources are available students’ tutorials will be established.
4.4 Operations Research

Module: Introduction to Operations Research

Module key: [IW1OR]

Subject: Operations Research

Module coordination: Stefan Nickel, Oliver Stein, Karl-Heinz Waldmann

Credit points (CP): 9

Learning Control / Examinations

The assessment of the module is carried out by a written examination (120 minutes) according to Section 4(2), 1 of the examination regulation.

In each term (usually in March and July), one examination is held for both courses. The overall grade of the module is the grade of the written examination.

Prerequisites

Mathematics I und II. Programming knowledge for computing exercises.

Conditions

It is strongly recommended to attend the course *Introduction to Operations Research I* [25040] before attending the course *Introduction to Operations Research II* [25043].

Learning Outcomes

The student

- names and describes basic notions of the essential topics in Operations Research (Linear programming, graphs and networks, integer and combinatorial optimization, nonlinear programming, dynamic programming and stochastic models),
- knows the indispensable methods and models for quantitative analysis,
- models and classifies optimization problems and chooses the appropriate solution methods to solve optimization problems independently,
- validates, illustrates and interprets the obtained solutions.

Content

This module treats the following topics: linear programming, network models, integer programming, nonlinear programming, dynamic programming, queuing theory, heuristic models.

This module forms the basis of a series of advanced lectures with a focus on both theoretical and practical aspects of Operations Research.

Courses in module *Introduction to Operations Research* [IW1OR]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25040</td>
<td>Introduction to Operations Research I (S. 99)</td>
<td>2/2/2</td>
<td>S</td>
<td>4.5</td>
</tr>
<tr>
<td>25043</td>
<td>Introduction to Operations Research II (S. 100)</td>
<td>2/2/2</td>
<td>W</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s):

S. Nickel, O. Stein, K. Waldmann
S. Nickel, O. Stein, K. Waldmann
4.5 Statistics

Module: Statistics

Module key: [IW1STAT]

Subject: Statistics
Module coordination: Svetlozar Rachev, Markus Höchstötter
Credit points (CP): 10

Learning Control / Examinations
The assessment of this module consists of two written examinations according to Section 4(2), 1 of the examination regulation (one for each of the courses Statistics I and II).
The overall grade of the module is the average of the grades of these two written examinations.

Prerequisites
None.

Conditions
It is recommended to attend the course Statistics I [25008/25009] before the course Statistics II [25020/25021].
Each course is complemented by an exercise, a tutorium and a computing laboratory. It highly recommended to attend these too.

Learning Outcomes

Content
The module contains the fundamental methods and scopes of Statistics.
A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities, transformation of probabilities, parameters of location and dispersion, most important discrete and continuous distributions, covariance and correlation, convolution and limit distributions
C. Theory of estimation and testing: sufficiency of statistics, point estimation (optimality, ML-method), internal estimations, theory of tests (optimality, most important examples of tests)

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25008/25009</td>
<td>Statistics I (S. 102)</td>
<td>4/0/2</td>
<td>S</td>
<td>5</td>
<td>M. Höchstötter</td>
</tr>
<tr>
<td>25020/25021</td>
<td>Statistics II (S. 103)</td>
<td>4/0/2</td>
<td>W</td>
<td>5</td>
<td>M. Höchstötter</td>
</tr>
</tbody>
</table>
4.6 Law

Module: Introduction to Civil Law

Module key: [IW1JURA1]

Subject: Law
Module coordination: Thomas Dreier
Credit points (CP): 4

Learning Control / Examinations
The assessment of this module consists of a written examination (90 min) according to § 4(2), 1 of the examination regulation. The grade of the module is the grade of the written examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

Content
The module generally introduces into law. What is law, why are legal rules valid, and what is the role of law in conjunction with social behaviour, technological and market developments? What is the relationship between law and justice? Moreover, the distinction between civil law, public law and criminal law will be highlighted. The basics of jurisdiction, international conflicts and alternative dispute settlement will be discussed. The main focus of the course is on the fundamental notions of civil law as defined and regulated in the German Civil Code (Bürgerliches Gesetzbuch, BGB), such as subjects and objects of law, legally binding declarations, agency, the formation of contracts, standard terms and conditions, consumer protection, performance of contractual promises. The course ends with an outlook to the law of contracts and property law.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24012</td>
<td>Civil Law for Beginners (S. 104)</td>
<td>4/0</td>
<td>W</td>
<td>4</td>
<td>T. Dreier, P. Sester</td>
</tr>
</tbody>
</table>
Module: Commercial Law

Subject: Law
Module coordination: Peter Sester
Credit points (CP): 9

Learning Control / Examinations
The assessment of this module consists of a written examination according to § 4(2), 1 of the examination regulation for the courses Civil Law for Beginners, Advanced Civil Law, and Commercial and Corporation Law.

The grade of the module is the grade for the written examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- possesses in-depth knowledge of the general and specific law of obligations and of property law;
- is able to penetrate the interaction of the statutory provisions of the German Civil Code (different types of contracts and the respective rules on liability; performance; impairment of performance; the different ways by which property may be transferred and the in rem security rights) and of commercial and company law (especially in respect of the peculiarities of commercial transactions, commercial agency, the law of merchants as well as German law of business organizations);
- in the Private Law Exercises ("Privatrechtliche Übung") gains the skill to solve legal problems using legal methods.

Content
The focus is on special types of contract as well as on complex legal set-ups in the area of company law.

Courses in module Commercial Law [IW1JURA2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24504</td>
<td>Advanced Civil Law (S. 105)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>T. Dreier, P. Sester</td>
</tr>
<tr>
<td>24011</td>
<td>Commercial and Corporate Law (S. 106)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>P. Sester</td>
</tr>
<tr>
<td>24506/24017</td>
<td>Exercises in Civil Law (S. 107)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>P. Sester, T. Dreier</td>
</tr>
</tbody>
</table>
Module: Constitutional and Administrative Law

Subject: Law
Module coordination: Indra Spiecker genannt Döhmann
Credit points (CP): 6

Learning Control / Examinations
The assessment of this module consists of a written examination (90 min) according to § 4(2), 1 of the examination regulation for the courses Public Law I and II. The grade of the module is the grade for the written examination.

Prerequisites
None.

Conditions
The course Public Law I [24016] has to be attend before the course Public Law II [24520].

Learning Outcomes
The lecture covers the core principles of public law. Students shall become acquainted with the basics of constitutional law, the fundamental rights which route governmental actions and the entire legal system, as well as possibilities of actions and instruments (especially law, administrative act, public-private contract) of the public authority. Furthermore, the distinction between public and private law will be clarified. Moreover, possibilities of legal protection regarding administrative behavior will be addressed. Students shall learn to classify problems in public law and to solve (simple) administrative and constitutional cases.

Content
The course covers core material of constitutional and administrative law. It begins with the differentiation between public and private law. In the constitutional law part, the course will concentrate on the rule of law and individual rights, especially those protecting communication and entrepreneurship. The administrative law part will explain the different legal instruments of the administration how to act (rule, order, contract, etc.) and their propositions. Also, court proceedings to sue the administrative will be discussed. Students will learn the technique how to solve (simple) administrative and constitutional cases.

Courses in module Constitutional and Administrative Law [IW1JURA3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24016</td>
<td>Public Law I - Basic Principles (S. 108)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24520</td>
<td>Public Law II - Public Economic Law (S. 109)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
</tbody>
</table>
4.7 Mathematics

Module: Mathematics I

Module key: [IW1MATH1]

Subject: Mathematics

Module coordination: Christian Wieners

Credit points (CP): 8

Learning Control / Examinations

The assessment in this module consists of

1. a graded certificate of exercise following §4(2), 3 of the examination regulation from the exercises to mathematics I and
2. a written examination of 60 minutes on the lectures mathematics I following §4(2), 1 of the examination regulations.

The grade of the module is computed as a weighted sum, where the grade of the written examination has a weight of 80% and the certificate a weight of 20%.

Prerequisites

None.

Conditions

None.

Learning Outcomes

Mathematical models are an important part in economical sciences. Therefore, the students need a basic knowledge in mathematics. The aim is the instruction in a comprehension of basic methods in analysis and linear algebra.

The students learn

- to use simple concepts and structures in mathematics;
- to recognize the mathematical structure of practical applications and to solve in simple cases mathematical problems;
- to comprehend the mathematical structure of more complex applications;
- to understand the mathematical basics to develop mathematical models for applications in cooperation with experts;
- to explain as a group member in the tutorial elementary mathematical structures and to stimulate in the discussion of examples the success of the group;
- to be in time for the tutorial group and for the preparation of homeworks;
- to work with basic mathematical literature.

The provides the foundations for

- comprehending the mathematical structure of more complex applications;
- developing mathematical models for applications in cooperation with experts;
- constructing algorithmical solutions of mathematical models for applications in cooperation with experts.

Content

The lectures mathematics I and II give an overview in basic mathematical knowledge which is required to understand modern computer science and economical sciences. Part I consist of linear algebra including the basic algebraic structures, vector spaces and linear mappings. Many algebraic concepts are important for computer science. Part II consists of analysis including an introduction into the calculus of functions of one or several variables.

Courses in module Mathematics I [IW1MATH1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01360</td>
<td>Mathematics I for Information Engineering and Management (S. 110)</td>
<td>4/2/2</td>
<td>W</td>
<td>8</td>
<td>A. Rieder, C. Wieners, N. Neuss</td>
</tr>
</tbody>
</table>

Remarks

None.
Module: Mathematics II

Subject: Mathematics
Module coordination: Christian Wieners
Credit points (CP): 8

Learning Control / Examinations
The assessment in this module consists of

1. a graded certificate of exercise following §4(2), 3 of the examination regulation from the exercises to mathematics II and
2. a written examination of 60 minutes on the lectures mathematics II following §4(2), 1 of the examination regulations.

The grade of the module is computed as a weighted sum, where the grade of the written examination has a weight of 80% and the certificate a weight of 20%.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Mathematical models are an important part in economical sciences. Therefore, the students need a basic knowledge in mathematics. The aim is the instruction in a comprehension of basic methods in analysis and linear algebra.

The students learn

- to use simple concepts and structures in mathematics;
- to recognize the mathematical structure of practical applications and to solve in simple cases mathematical problems;
- to comprehend the mathematical structure of more complex applications;
- to understand the mathematical basics to develop mathematical models for applications in cooperation with experts;
- to explain as a group member in the tutorial elementary mathematical structures and to stimulate in the discussion of examples the success of the group;
- to be in time for the tutorial group and for the preparation of homeworks;
- to work with basic mathematical literature.

The provides the foundations for

- comprehending the mathematical structure of more complex applications;
- developing mathematical models for applications in cooperation with experts;
- constructing algorithmical solutions of mathematical models for applications in cooperation with experts.

Content
The lectures mathematics I and II give an overview in basic mathematical knowledge which is required to understand modern computer science and economical sciences. Part I consist of linear algebra including the basic algebraic structures, vector spaces and linear mappings. Many algebraic concepts are important for computer science. Part II consists of analysis including an introduction into the calculus of functions of one or several variables.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01877</td>
<td>Mathematics II for Information Engineering and Management (S. 111)</td>
<td>4/2/2</td>
<td>S</td>
<td>8</td>
<td>A. Rieder, C. Wieners, N. Neuss</td>
</tr>
</tbody>
</table>
4.8 General Modules

Module: Internship

Module key: [IW1EXPRAK]

Subject: nicht kategorisiert
Module coordination: Martina Zitterbart, Studiendekan (Fak. f. Wirtschaftswissenschaften)
Credit points (CP): 8

Learning Control / Examinations
The assessment is in the form of a certificate of employment about at least 6 weeks, a written report (typewritten, not handwritten) and a short presentation.

Prerequisites
None.

Conditions
The internship is regulated in §12 of the examination regulation. Examiners are all lecturers of the degree programme. It is recommended that the internship is taken between the 4th and the 5th term of the Bachelor programme Information Engineering and Management.

Learning Outcomes
This module serves to impart interdisciplinary key qualifications:

The student
• carries out professional tasks in the context of Information Engineering and Management to learn about the requirements on the engineer,
• describes in a short report the executed activities precisely and coherent, and judges about them critically,
• presents effectively is experiences gained during the internship using appropriate media support and gets involved professionaly in the subsequent discussion, and
• trains via concrete and constructive criticism his/her competence for problem solving.

The presentation primarily serves for the communication between student, company, and examiner with the goal of initiating further cooperation in the context of the Bachelor thesis and/or a project

Content
It is the responsibility of the students to apply for an internship in a suitable company or public organization at which the internship can be fulfilled.

The process for the internship has the following (sequential) steps:

1. Choice of the examiner and of the company or organization by the student.
 During the internship each student is attended by an examiner of the degree programme and by an advisor of the company. In case a student does not succeed in finding an examiner for the internship, he can request the assignment of an examiner from the examination board of the Bachelor programme in Information Engineering and Management. When enrolling for the internship, the student fills the form for the internship and he hands the form over to the examiner and the students’ secretary. If required, the students’ secretary certifies the compulsory character of the internship as part of the Bachelor programme in Information Engineering and Management.

2. Internship
 The student passes the internship in the chosen company or organization.

3. Preparation of a short report and presentation:
 At the end of the internship, the employment is proven by a certificate of employment. The examiner receives a report (maximal 2 A4 pages) and the student gives feedback on the internship with a short presentation (approx. 15 minutes) followed by a short discussion (approx. 5 minutes).

4. Presentation and proof of performance.
 The short presentation may be given in the form of a talk with the examiner, in a colloquium or in a seminar. The form is fixed at the registration of the internship with the examiner. The certificate of employment of the company and the short report must be delivered at the examiner before the presentation. Based on these, a certificate of performance if produced and transferred to the office of study ("Studienbüro").

Remarks
The form for the internship is available at the examination offices of the two faculties participating in the programme.
5 Modules of term 5-6

5.1 General Modules

Module: Seminar Module Informatics
Module key: [IW3SEMINFO]

Subject: Informatics (Specialization)
Module coordination: Martina Zitterbart
Credit points (CP): 3

Learning Control / Examinations
The assessment is done by a seminar with at least 3 CP.
The assessment of the seminar (following §4(2), 3 ER) is described at the course description.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
see german version

Learning Outcomes
The student

• deals with a well-defined problem in the Informatics domain in detail,
• analyses and discusses the given problems as part of the courses and in the final seminar papers,
• discusses, presents, and defends technical arguments within the given task specifications,
• organises the drafting of the final seminar paper mostly independently.

The competences gained as part of this seminar module serve as a preparation for the Bachelor thesis. Guided by the respective examiner, the student exercises independent scientific work in drafting and presenting the final seminar paper.

Content
The module consists of a seminar, that is related to the research field of informatics. A complete list of available seminars is published in the internet.

Courses in module Seminar Module Informatics [IW3SEMINFO]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24079s</td>
<td>Seminar in Algorithm Design (S. 118)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>D. Wagner</td>
</tr>
<tr>
<td>24074s</td>
<td>Seminar in Telematics (S. 115)</td>
<td>2 W/S</td>
<td>4</td>
<td></td>
<td>M. Zitterbart, H. Hartenstein</td>
</tr>
<tr>
<td>SemAIFB1</td>
<td>Seminar in Enterprise Information Systems (S. 249)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>R. Studer, A. Oberweis, W. Stucky, T. Wolf, R. Kneuper</td>
</tr>
<tr>
<td>xILDs</td>
<td>Seminar Information Services in Networks (S. 267)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>H. Schmeck, S. Tai, W. Juling, R. Studer, H. Hartenstein, W. Tichy</td>
</tr>
<tr>
<td>SemAIFB4</td>
<td>Seminar Knowledge Management (S. 250)</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>R. Studer</td>
</tr>
<tr>
<td>SWSSem</td>
<td>Seminar Software Systems (S. 246)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>R. Reussner</td>
</tr>
<tr>
<td>SWTSem</td>
<td>Seminar Software Engineering (S. 248)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>W. Tichy, R. Reussner, G. Snelting</td>
</tr>
<tr>
<td>SemSich</td>
<td>Seminar in Security (S. 257)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>J. Müller-Quade, M. Zitterbart</td>
</tr>
<tr>
<td>SemiKryp3</td>
<td>Seminar in Cryptography (S. 262)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>SemiInfo</td>
<td>Informatics Seminar (S. 256)</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>M. Zitterbart</td>
</tr>
</tbody>
</table>

Remarks
The mentioned seminars in this module handbook are place holders. For each semester, a complete list of seminars are published in the Vorlesungsverzeichnis or at the web pages of the participating institutes. Often, the seminar topics for a given semester are published at the end of the preceding semester. Some seminars require an early sign-in deadline at the end of the of the preceding semester.
Module: Seminar Module Economic Sciences

Module key: [IW3SEMWIWI]

Subject: Business Administration (Specialization), Economics (Specialization), OR (Specialization)
Module coordination: Studiendekan (Fak. f. Wirtschaftswissenschaften)
Credit points (CP): 3

Learning Control / Examinations
The assessment is done by a seminar with at least 3 CP.
The assessment of the seminar (following §4(2), 3 ER) is described at the course description.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
See German version.

Learning Outcomes

Content
The module consists of a seminar, that is related to the research field of economic sciences. A complete list of available seminars is published in the internet.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26524</td>
<td>Bachelor Seminar in Information Engineering and Management (S. 232)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td></td>
<td>Seminar Information Engineering and Management (S. 255)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seminar in Industrial Production (S. 254)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>F. Schultmann, M. Fröhling, M. Hiete</td>
</tr>
<tr>
<td>25191</td>
<td>Bachelor Seminar in Foundations of Marketing (S. 156)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25915</td>
<td>Seminar: Management and Organization (S. 203)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25916</td>
<td>Seminar in Finance (S. 160)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
</tr>
<tr>
<td>25923</td>
<td>Seminar in Insurance Management (S. 251)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>U. Werner</td>
</tr>
<tr>
<td></td>
<td>Seminar in Operational Risk Management (S. 252)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>U. Werner</td>
</tr>
<tr>
<td></td>
<td>Seminar in Risk Theory and Actuarial Science (S. 253)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>C. Hipp, N.N.</td>
</tr>
<tr>
<td>26420</td>
<td>Topics of Sustainable Management of Housing and Real Estate (S. 222)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>T. Lützkendorf</td>
</tr>
<tr>
<td></td>
<td>Seminar in Experimental Economics (S. 260)</td>
<td></td>
<td></td>
<td></td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td></td>
<td>Seminar in Game and Decision Theory (S. 261)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td></td>
<td>Seminar Economic Theory (S. 259)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>25131</td>
<td>Seminar in Continuous Optimization (S. 148)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>O. Stein</td>
</tr>
<tr>
<td></td>
<td>Seminar Stochastic Models (S. 258)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25491</td>
<td>Seminar in Discrete Optimization (S. 173)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>S. Nickel</td>
</tr>
</tbody>
</table>

Remarks
The mentioned seminars in this module handbook are place holders. For each semester, a complete list of seminars are published in the Vorlesungsverzeichnis or at the web pages of the participating institutes. Often, the seminar topics for a given semester are published at the end of the preceding semester. Some seminars require an early sign-in deadline at the end of the of the preceding semester.
Module: Seminar Module Law

Subject: Law (Specialization)
Module coordination: Thomas Dreier
Credit points (CP): 3

Learning Control / Examinations
The assessment is done by a seminar with at least 3 CP. The assessment of the seminar (following §4(2), 3 ER) is described at the course description.

Prerequisites
From the law modules in the core programme, *Introduction to Civil Law* [IW1INJURA1], *Commercial Law* [IW1INJURA2], and *Constitutional and Administrative Law* [IW1INJURA2], 2 out of 3 have to be completed successfully.

Conditions
None.

Learning Outcomes

Content
The module consists of a seminar, that is related to the research field of law. A complete list of available seminars is published in the internet.

Courses in module Seminar Module Law [IW3SEMJURA]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>rechtsem</td>
<td>Seminar in Law (S. 264)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>T. Dreier, P. Sester, I. Spiecker</td>
</tr>
<tr>
<td>24781</td>
<td>Aktuelle Fragen des Datenschutzrechts (S. 140)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
</tbody>
</table>

Remarks
The mentioned seminars in this module handbook are place holders. For each semester, a complete list of seminars are published in the Vorlesungsverzeichnis or at the web pages of the participating institutes. Often, the seminar topics for a given semester are published at the end of the preceding semester. Some seminars require an early sign-in deadline at the end of the of the preceding semester.
Module: Bachelor Thesis

Module key: [IW3THESIS]

Module coordination: Martina Zitterbart, Studiendekan (Fak. f. Wirtschaftswissenschaften), Der Vorsitzende des Prüfungsausschusses

Credit points (CP): 12

Learning Control / Examinations
The Bachelor thesis is examined by an examiner following the examination regulation. The examiner has to be involved in the degree programme. Involved in the degree programme are the persons that coordinate a module or a lecture of the degree programme.

Prerequisites
Students may start with the Bachelor thesis if they fulfill the following preconditions: They are in the 3rd year of the Bachelor programme and have passed all examinations necessary for the first two years as defined in §17 paragraph 2 of the examination regulation of the Bachelor degree programme Information Engineering and Management.

Conditions
The regulations for the Bachelor thesis can be found in §11 of the examination regulation.

Learning Outcomes
The student
• investigates a problem in information engineering and management autonomously and scientifically,
• searches for scientific literature for his problem,
• chooses and applies suitable scientific methods or develops and improves such methods,
• critically compare and evaluate his findings with the state of the art,
• communicates his results clearly and in a scientific form in his bachelor thesis.

Content
The Bachelor thesis is a written report which shows that the student can autonomously investigate a scientific problem in Information Engineering and Management. The work load for the Bachelor thesis should be 360h. The recommended project time is 6 months, the maximal project time is 9 months. The Bachelor thesis may also be written in English.

Remarks
None.
5.2 Business Administration

Module: eBusiness and Servicemanagement

Module key: [IW3BWLISM1]

Subject: Business Administration (Specialization)

Module coordination: Christof Weinhardt

Credit points (CP): 9

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

Successful completion of the modules in semester 1–4 except for up to two modules. The module *Internship* [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions

Keine.

Learning Outcomes

The students

- understand the strategic and operative design of information and information products,
- analyze the role of information on markets,
- evaluate case studies regarding information products,
- develop solutions in teams.

Content

This module gives an overview of the mutual dependencies of strategic management and information systems. The central role of information is exemplified by the structuring concept of the information life cycle. The single phases of this life cycle from generation over allocation until dissemination and use of the information are analyzed from a business and microeconomic perspective, applying classical and new theories. The state of the art of economic theory on aspects of the information life cycle are presented.

The lecture is complemented by exercise courses.

The courses “Management of Business Networks“, “eFinance: Information engineering and management in finance“ and “eServices“ constitute three different application domains in which the basic principles of the Internet Economy are deepened. In the course “Management of Business Networks“ the focus is set on the strategic aspects of management and information systems. It is held in English and teaches parts of the syllabus with the support of a case study elaborated with Prof Kersten from Concordia University, Montreal, Canada. If it is possible to organize, depending on the start of term in Canada, the case study will be worked on by the students via internet in collaboration with Canadian students. The results will jointly be presented in a telephone conference.

The course “eFinance: information engineering and management for securities trading“ provides theoretically profound and also practical-oriented background about the functioning of international financial markets. The focus is placed on the economic and technical design of markets as information processing systems.

In “eServices“ the increasing impact of electronic services compared to the traditional services is outlined. The Information- und Communication Technologies enable the provision of services, which are mainly characterized by interactivity and individuality. This course provides basic knowledge about the development and management of ICT-based services.

The theoretic fundamentals of Information Engineering and Management can be enriched by a practical experience in Special Topics in Information Engineering and Management. Any practical Seminar at the IM can be chosen for the course Special Topics in Information Engineering and Management.

Courses in module eBusiness and Servicemanagement [IW3BWLISM1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26466</td>
<td>eServices (S. 225)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Weinhardt, G. Satzger</td>
</tr>
<tr>
<td>26452</td>
<td>Management of Business Networks (S. 223)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>C. Weinhardt, J. Kraemer</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (S. 224)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>C. Weinhardt, R. Riordan</td>
</tr>
<tr>
<td>26478</td>
<td>Special Topics in Information Engineering & Management (S. 226)</td>
<td>3</td>
<td>W/S</td>
<td>4.5</td>
<td>C. Weinhardt</td>
</tr>
</tbody>
</table>
Module: Supply Chain Management

Module key: [IW3BWLISM2]

Subject: Business Administration (Specialization)

Module coordination: Christof Weinhardt

Credit points (CP): 9

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions

It is recommended that exactly one out of the lectures

- Management of Business Networks
- Management of Business Networks (Introduction)

is taken.

Learning Outcomes

The module “Supply Chain Management” imparts knowledge for strategic and operative designing and control of supply chains spanning several enterprises. The students shall be able to analyze the coordination problems within supply chains, to judge them and to support them providing appropriate information systems. In order to be able to do this it is necessary to understand the coordination and planning mechanisms from the field of Operations Research and, on the other hand, to be familiar with methods from information management. Thus, the module gives an overview of methods and instruments of Supply Chain Management for the strategical, organizational and technical design of integrated supply chains.

Content

The module “Supply Chain Management” gives an overview of the mutual dependencies of information systems and of supply chains spanning several enterprises. The specifics of supply chains and their information needs set new requirements for the operational information management. In the core lecture “Management of Business Networks” the focus is set on the strategic aspects of management and information systems. The course is held in English and teaches parts of the syllabus with the support of a case study elaborated with Prof Kersten from Concordia University, Montreal, Canada. The course MBN introduction is consisting out of the first part of the regular MBN lecture, but as it has less credits will not include the analysis of the case study. The module is completed by an elective course addressing appropriate optimization methods for the Supply Chain Management and for modern logistic approaches.

Courses in module Supply Chain Management [IW3BWLISM2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26452</td>
<td>Management of Business Networks (S. 223)</td>
<td>2/1 W</td>
<td>4.5</td>
<td></td>
<td>C. Weinhardt, J. Kraemer</td>
</tr>
<tr>
<td>26496</td>
<td>Management of Business Networks (Introduction) (S. 227)</td>
<td>2/1 W</td>
<td>3</td>
<td></td>
<td>C. Weinhardt, J. Kraemer</td>
</tr>
<tr>
<td>25486</td>
<td>Facility Location and Strategic Supply Chain Management (S. 170)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>S. Nickel</td>
</tr>
<tr>
<td>2118078</td>
<td>Logistics - Organisation, Design, and Control of Logistic Systems (S. 236)</td>
<td>3/1 S</td>
<td>6</td>
<td></td>
<td>K. Furmans</td>
</tr>
<tr>
<td>2118090</td>
<td>Quantitative Methods for Supply Chain Risk Management (S. 238)</td>
<td>3/1 S</td>
<td>6</td>
<td></td>
<td>Cardeneo</td>
</tr>
<tr>
<td>25488</td>
<td>Tactical and Operational Supply Chain Management (S. 171)</td>
<td>2/1 W</td>
<td>4.5</td>
<td></td>
<td>S. Nickel</td>
</tr>
</tbody>
</table>

Remarks

The current seminar courses for this semester, which are complementary to this module, are listed on following webpage: the http://www.im.uni-karlsruhe.de/lehre

The course Management of Business Networks (Introduction) was added to the module.

The course Quantitative Methods for Supply Chain Risk Management was added to the module.

The course Tactical and Operational Supply Chain Management [25488] was added to the module.

The course Logistics - Organisation, Design, and Control of Logistic Systems was formerly named Logistics.
Module: eFinance

Subject: Business Administration (Specialization)
Module coordination: Christof Weinhardt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
The course eFinance: Information Engineering and Management for Securities Trading [26454] has to be attended.

Learning Outcomes
In the module “eFinance: Information engineering and management in finance” the students get an overview of modern approaches of information management in the finance sector. They learn to analyze specific financial problems from the point of view of information management and also to solve these problems by using the tools provided by information management. By doing so, they get to know finance products as information products and learn the state of the art of modern information processing in the finance sector.

Content
The module “eFinance: Information engineering and management in finance” addresses current problems in the finance sector. It is investigated the role of information and knowledge in the finance sector and how information systems can solve or extenuate them. Speakers from practice will contribute to lectures with their broad knowledge. Core courses of the module deal with the background of banks and insurance companies and the electronic commerce of stocks in global finance markets. In addition the course Derivatives offers an insight into future and forward contracts as well as the assessment of options. Exchanges and International Finance are also alternatives which provide a supplementary understanding for capital markets.
Information management topics are in the focus of the lecture “eFinance: information engineering and management for securities trading”. For the functioning of the international finance markets, it is necessary that there is an efficient information flow. Also, the regulatory frameworks play an important role. In this context, the role and the functioning of (electronic) stock markets, online brokers and other finance intermediaries and their platforms are presented. Not only IT concepts of German finance intermediaries are presented, but also international system approaches will be compared. The lecture is supplemented by speakers from the practice (and excursions, if possible) coming from the Deutsche Börse and the Stuttgart Stock Exchange.

Courses in module eFinance [IW3BWLISM3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (S. 224)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>C. Weinhardt, R. Riordan</td>
</tr>
<tr>
<td>25762</td>
<td>Intelligent Systems in Finance (S. 193)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>D. Seese</td>
</tr>
<tr>
<td>26550</td>
<td>Derivatives (S. 233)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>25296</td>
<td>Exchanges (S. 161)</td>
<td>1</td>
<td>S</td>
<td>1.5</td>
<td>J. Franke</td>
</tr>
<tr>
<td>26570</td>
<td>International Finance (S. 234)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Uhrig-Homburg, Walter</td>
</tr>
</tbody>
</table>

Remarks
The current seminar courses for this semester, which are complementary to this module, are listed on following webpage: the http://www.im.uni-karlsruhe.de/lehre
Module: CRM and Service Management

Subject: Business Administration (Specialization)

Module coordination: Andreas Geyer-Schulz

Credit points (CP): 9

Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. Therby every lecture is examined by a written exam (according to Section 4(2), 1 of the examination regulation) and by successful completion of exercises (according to Section 4 (2), 3 of the examination regulation).

The grades of the individual lectures consists of the grade of the written exam (approximately 90 percent resp. 100 of 112 points) and of the exercise performance (approximately 10 percent resp. 12 of 112 points). In the case of passing the written exam (50 points) the points of the exercise performance will be added to the points of the written exam. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions

None.

Learning Outcomes

The student

- understands service management as the managerial foundation of customer relationship management and the resulting implications for strategic management, the organisational structure, and the functional areas of the company,
- develops and designs service concepts and service systems on a conceptual level,
- works in teams on case studies and respects project dates, integrates international literature of the discipline,
- knows the current developments in CRM in science as well as in industry,
- knows the scientific methods (from business administration, statistics, informatics) which are most relevant for analytic CRM and he autonomously applies these methods to standard cases,
- designs, implements, and analyzes operative CRM processes in concrete application domains (e.g. campaign management, call center management, . . .).

Content

In the module CRM and Service Management [IW3BWLISM4] we teach the principles of modern customer-oriented management and its support by system architectures and CRM software packages. Choosing customer relationship management as a company’s strategy requires service management and a strict implementation of service management in all parts of the company. For operative CRM we present the design of customer-oriented, IT-supported business processes based on business process modelling and we explain these processes in concrete application scenarios (e.g. marketing campaign management, call center management, sales force management, field services, . . .). Analytic CRM is dedicated to improve the use of knowledge about customers in the broadest sense for decision-making (e.g. product-mix decisions, bonus programs based on customer loyalty, . . .) and for the improvement of services. A requirement for this is the tight integration of operative systems with a data warehouse, the development of customer-oriented and flexible reporting systems, and – last but not least – the application of statistical methods (clustering, regression, stochastic models, . . .).

Courses in module CRM and Service Management [IW3BWLISM4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26508</td>
<td>Customer Relationship Management (S. 228)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26522</td>
<td>Analytical CRM (S. 231)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26520</td>
<td>Operative CRM (S. 229)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
</tbody>
</table>

Remarks

The lecture Customer Relationship Management [26508] is given in English.
Module: Specialization in Customer Relationship Management

Module key: [IW3BWLISM5]

Subject: Business Administration (Specialization)
Module coordination: Andreas Geyer-Schulz
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
This module has to be taken together with the module Customer Relationship Management and Servicemanagement [WW3BWLCRM1].
Or the course Analytic CRM [26522] or the course Operative CRM [26520] has to be taken.

Learning Outcomes
The student
• knows the scientific methods (from business administration, statistics, informatics) which are most relevant for analytic CRM and he autonomously applies these methods to standard cases,
• gains an overview of the market for CRM software,
• designs, implements, and analyzes operative CRM processes in concrete application domains (e.g. campaign management, call center management, ...),
• is aware of the problems of protecting the privacy of customers and the implications of privacy law.

Content
In this module, analysis methods and techniques for the management and improvement of customer relations are presented. Furthermore, modelling, implementation, introduction, change, analysis and valuation of operative CRM processes are treated.

Regarding the first part, we teach analysis methods and techniques suitable for the management and improvement of customer relations. For this goal we treat the principles of customer- and service-oriented management as the foundation of successful customer relationship management. In addition, we show how knowledge of the customer can be used for decision-making at an aggregate level (e.g. planning of sortiments, analysis of customer loyalty, ...). A basic requirement for this is the integration and collection of data from operative processes in a suitably defined data-warehouse in which all relevant data is kept for future analysis. The process of transferring data from the operative systems into the data warehouse is known as the ETL process (Extraction / Translation / Loading). The process of modelling a data-warehouse as well as the so-called extraction, translation, and loading process for building and maintaining a data-warehouse are discussed in-depth. The data-warehouse serves as a base for flexible management reporting. In addition, various statistic methods (e.g. cluster analysis, regression analysis, stochastic models, ...) are presented which help in computing suitable key performance indicators or which support decision-making.

Regarding the operative part, we emphasize the design of operative CRM processes. This includes the modelling, implementation, introduction and change, as well as the analysis and evaluation of operative CRM processes. Petri nets and their extensions are the scientific foundation of process modelling. The link of Petri nets to process models used in industry as e.g. UML activity diagrams is presented. In addition, a framework for process innovation which aims at a radical improvement of key business processes is introduced. The following application areas of operative CRM processes are presented and discussed:
• Strategic marketing processes
• Operative marketing processes (campaign management, permission marketing, ...)
• Customer service processes (sales force management, field services, call center management, ...)

Courses in module Specialization in Customer Relationship Management [IW3BWLISM5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26522</td>
<td>Analytical CRM (S. 231)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26520</td>
<td>Operative CRM (S. 229)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research (S. 154)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>26240</td>
<td>Competition in Networks (S. 210)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Mitusch</td>
</tr>
<tr>
<td>26466</td>
<td>eServices (S. 225)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Weinhardt, G. Satzger</td>
</tr>
</tbody>
</table>
Module: Foundations of Marketing

Module key: [IW3BWLMAR]

Subject: Business Administration (Specialization)
Module coordination: Wolfgang Gaul, Bruno Neibecker
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 120 min. and contains topics from the main lecture [25150] as well as from the chosen lectures [25154], [25156], [25177]. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absolved within one year.

The overall grade for the module is the average of the grades for each course weighted by the credits of the course. It is recommended, to attend more lectures than required to fulfill 9 CP as it is possible to examine in these additional lectures and influence the final grade positively.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
The course Marketing and Consumer Behavior [25150] has to be attended.

Learning Outcomes

Content

Courses in module Foundations of Marketing [IW3BWLMAR]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25150</td>
<td>Marketing and Consumer Behavior (S. 151)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 152)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research (S. 153)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25177</td>
<td>Brand Management (S. 155)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>B. Neibecker</td>
</tr>
</tbody>
</table>
Module: Strategy and Organization

Module key: [IW3BWLUO1]

Subject: Business Administration (Specialization)
Module coordination: Hagen Lindstädt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes

Content

Courses in module Strategy and Organization [IW3BWLUO1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25900</td>
<td>Management and Strategy (S. 200)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
</tr>
<tr>
<td>25902</td>
<td>Managing Organizations (S. 201)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
</tr>
<tr>
<td>25907</td>
<td>Special Topics in Management: Management and IT (S. 202)</td>
<td>1/0</td>
<td>W/S</td>
<td>2</td>
</tr>
</tbody>
</table>

Remarks
Module: Energy Economics

Subject: Business Administration (Specialization)
Module coordination: Wolf Fichtner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) about the lecture Introduction in to Energy Economics [26010] and one optional lecture of the module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes

Content
Introduction to Energy Economics
Renewable Energies
Energy Policy

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26010</td>
<td>Introduction to Energy Economics (S. 208)</td>
<td>2/2 S</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26012</td>
<td>Renewable Energy Sources - Technologies and</td>
<td>2/0 W</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potentials (S. 209)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25959</td>
<td>Energy Policy (S. 205)</td>
<td>2/0 S</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Handbook: Version 04.03.2010 Information Engineering and Management (B.Sc.)
Module: Industrial Production I
Module key: [IW3BWLIIP1]

Subject: Business Administration (Specialization)
Module coordination: Frank Schultmann
Credit points (CP): 9

Learning Control / Examinations
The module contains of “Fundamentals of Production Management” [25950] and one optional course. The examination will be in form of individual written exams acc. to §4(2), 1 ER. Exams are offered in every semester and can be re-examined at every ordinary examination date.
The overall modular grade is calculated by weighing the individual grades with the according credit points. The grade will be truncated after the first decimal. Additional results may be considered on request. Assessment procedures are described separately for each course of the module.

Prerequisites
Specific precondition “Information Engineering and Management” (B.Sc.): Successful passing of all modules in semesters 1-4 (keys [IW1 ...]) with at maximum two modules left to complete, not considering the internship [IW1EXPRAK] and “Business and Public Law” [IW1INJURA] modules.

Conditions
The course “Fundamentals of Production Management” [25950] and one additional activity have to be chosen. All courses are specifically designed to be taken independently.
Bearing in mind the master programme, we recommend combining this module with “Industrial Production II” [WW4BWLIIP2] and/or “Industrial Production III” [WW4BWLIIP6].

Learning Outcomes
• Students shall be aware of the important role of industrial production and logistics for production management.
• Students shall use relevant concepts of production management and logistics in an adequate manner.
• Students shall be able to reflect on decision principles in firms and their circumstances in the light of the production management aspects studied.
• Students shall be proficient in describing essential tasks, difficulties and solutions to problems in production management and logistics.
• Students shall be able to describe relevant approaches of modeling production and logistic systems.
• Students shall be aware of the important role of material and energy-flows for an economy.
• Students shall be proficient in using exemplary methods for solving selected problems.

Content
This module is designed to introduce students into the wide area of industrial production and logistics management. It focuses on strategic production management under the aspect of sustainability. The courses use interdisciplinary approaches of systems theory to describe the central tasks of industrial production management and logistics. Herein, attention is drawn upon strategic corporate planning, research and development as well as site selection. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Courses in module Industrial Production I [IW3BWLIIP1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25950</td>
<td>Fundamentals of Production Management (S. 204)</td>
<td>2/2</td>
<td>S</td>
<td>5.5</td>
<td>F. Schultmann</td>
</tr>
<tr>
<td>25960</td>
<td>Material and Energy Flows in the Economy (S. 206)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>M. Hiete</td>
</tr>
<tr>
<td>25996</td>
<td>Logistics and Supply Chain Management (S. 207)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>F. Schultmann</td>
</tr>
</tbody>
</table>
Module: Essentials of Finance

Subject: Business Administration (Specialization)
Module coordination: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes
The student
- has fundamental skills in modern finance
- has fundamental skills to support investment decisions on stock, bond and derivative markets
- applies concrete models to assess investment decisions on financial markets as well as corporate investment and financing decisions.

Content
The module Essentials of Finance deals with fundamental issues in modern finance. The courses discuss fundamentals of the valuation of stocks. A further focus of this module is on modern portfolio theory and analytical methods of capital budgeting and corporate finance.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26575</td>
<td>Investments (S. 235)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>25216</td>
<td>Financial Management (S. 158)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Ruckes</td>
</tr>
</tbody>
</table>
Module: Topics in Finance I

Subject: Business Administration (Specialization)
Module coordination: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
It is only possible to choose this module in combination with the module Essentials in Finance [IW3BWLFBV1].

Learning Outcomes
The student
• has advanced skills in modern finance
• is able to apply these skills in practice in the fields of finance and accounting, financial markets and banking

Content
The module Topics in Finance I is based on the module Essentials of Finance. The courses deal with advanced issues concerning the fields of finance and accounting, financial markets and banking from a theoretical and practical point of view.

Courses in module Topics in Finance I [IW3BWLFBV5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25210</td>
<td>Management Accounting (S. 157)</td>
<td>2/1 S</td>
<td></td>
<td>4.5</td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>25232</td>
<td>Financial Intermediation (S. 159)</td>
<td>3 W</td>
<td></td>
<td>4.5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>26550</td>
<td>Derivatives (S. 233)</td>
<td>2/1 S</td>
<td></td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>25296</td>
<td>Exchanges (S. 161)</td>
<td>1 S</td>
<td></td>
<td>1.5</td>
<td>J. Franke</td>
</tr>
<tr>
<td>25299</td>
<td>Business Strategies of Banks (S. 162)</td>
<td>2 W</td>
<td></td>
<td>3</td>
<td>W. Müller</td>
</tr>
<tr>
<td>26570</td>
<td>International Finance (S. 234)</td>
<td>2 S</td>
<td></td>
<td>3</td>
<td>M. Uhrig-Homburg, Walter</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Manage-</td>
<td>2/1 W</td>
<td></td>
<td>4.5</td>
<td>C. Weinhardt, R. Riordan</td>
</tr>
<tr>
<td></td>
<td>ment for Securities Trading (S. 224)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module: Insurance: Calculation and Control

Subject: Business Administration (Specialization)
Module coordination: Christian Hipp
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as a general written exam (according to Section 4(2), 1 of the examination regulation). In the lecture Insurance Game [26372] there has to be hold an oral presentation by each student as well (according to Section 4(2), 3 of the examination regulation). The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade of the module consists of the grade of the written exam (80 percent) and the grade of the oral presentation (20 percent).

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26300</td>
<td>Insurance Models (S. 211)</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
<td>C. Hipp, N.N.</td>
</tr>
<tr>
<td>26372</td>
<td>Insurance Game (S. 217)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>C. Hipp, N.N.</td>
</tr>
</tbody>
</table>
Module: Risk and Insurance Management

Subject: Business Administration (Specialization)
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 2, 3 SPO) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The lectures are examined by oral presentations and related term papers in the context of the lectures. An oral examination takes place at the end of semester.

The grade of each examination consists of the oral presentation and the term paper (50 percent) and the oral examination (50 percent). The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
It is not possible to choose this module in combination with the module Insurance Markets and Management [IW3BWLFBV4].

Learning Outcomes
See German version.

Content
See German version.

Courses in module Risk and Insurance Management [IW3BWLFBV3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25055</td>
<td>Principles of Insurance Management (S. 144)</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26326</td>
<td>Enterprise Risk Management (S. 213)</td>
<td>3/0</td>
<td>W</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
</tbody>
</table>
Module: Insurance Markets and Management

Module key: [IW3BWLFBV4]

Subject: Business Administration (Specialization)
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4 (2), 2, 3 SPO) of the core course and further single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
The course Principles of Insurance Management [25055] has to be attended.
It is not possible to choose this module in combination with the module Risk and Insurance Management [IW3BWLFBV3].

Learning Outcomes
See German version.

Content
See German version.

Courses in module Insurance Markets and Management [IW3BWLFBV4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25055</td>
<td>Principles of Insurance Management (S. 144)</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26323</td>
<td>Insurance Marketing (S. 212)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>25050</td>
<td>Private and Social Insurance (S. 143)</td>
<td>2/0</td>
<td>W</td>
<td>2.5</td>
<td>W. Heilmann, Besserer</td>
</tr>
<tr>
<td>26350</td>
<td>Current Issues in the Insurance Industry (S. 214)</td>
<td>2/0</td>
<td>S</td>
<td>2.5</td>
<td>W. Heilmann</td>
</tr>
<tr>
<td>26353</td>
<td>International Risk Transfer (S. 215)</td>
<td>2/0</td>
<td>S</td>
<td>2.5</td>
<td>W. Schwehr</td>
</tr>
<tr>
<td>26360</td>
<td>Insurance Contract Law (S. 216)</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>H. Schwebler</td>
</tr>
</tbody>
</table>

Remarks
The course Insurance Marketing [26323] is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
The course Insurance Contract Law [26360] will not be held any more after winter term 2009/10. There will be no more exams for this course after the exam period of summer term 2010.
The courses International Risk Transfer and Current Issues in the Insurance Industry have been added to the module.
This module was formerly named Insurance Management.
Module: Sustainable Construction

Subject: Business Administration (Specialization)
Module coordination: Thomas Lützkendorf
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 o. 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The final grade of the module is the average of the grades of each course weighted by the credits and truncated after the first decimal.
It is possible to include the grade of a seminar paper, dealing with a topic from the area of sustainable construction, into the final grade of the module (according to Section 4(2), 3 of the examination regulation). The seminar has a weight of 20 percent.

Prerequisites
Successful completion of the module Business Administration [WW1BWL].

Conditions
The combination with the module Real Estate Management [IW3BWLOOW2] is recommended. Furthermore a combination with courses in the area of
• Industrial production (energy flow in the economy, energy politics, emissions)
• Civil engineering and architecture (building physics, building construction)
is recommended.

Learning Outcomes
The student
• knows the basics of sustainable design, construction and operation of buildings with an emphasis on building ecology
• has knowledge of building ecology assessment procedures and tools for design and assessment
• is capable of applying this knowledge to assessing the ecological advantageousness of buildings as well as their contribution to a sustainable development.

Content
Sustainable design, construction and operation of buildings currently are predominant topics of the real estate sector, as well as "green buildings". Not only designers and civil engineers, but also other actors who are concerned with project development, financing and insurance of buildings or portfolio management are interested in these topics.
On the one hand the courses included in this module cover the basics of energy-efficient, resource-saving and health-supporting design and construction of buildings. On the other hand fundamental assessment procedures for analysing and communicating the ecological advantageousness of technical solutions are discussed. With the basics of green building certification systems the lectures provide presently strongly demanded knowledge.
Additionally, videos and simulation tools are used for providing a better understanding of the content of teaching.

Courses in module Sustainable Construction [IW3BWLOOW1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26404w</td>
<td>Design, Construction and Assessment of Green Buildings I (S. 221)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>T. Lützkendorf</td>
</tr>
<tr>
<td>26404</td>
<td>Sustainability Assessment of Construction Works (S. 220)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>T. Lützkendorf</td>
</tr>
</tbody>
</table>
Module: Real Estate Management

Subject: Business Administration (Specialization)
Module coordination: Thomas Lützkendorf
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 o. 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades of each course weighted by the credits and truncated after the first decimal.
It is possible to include the grade of a seminar paper, dealing with a topic from the area of sustainable construction, into the final grade of the module (according to Section 4(2), 3 of the examination regulation). The seminar has a weight of 20 percent.

Prerequisites
Successful completion of the module Business Administration [WW1BWL].

Conditions
The combination with the module Design Constructions and Assessment of Green Buildings [IW3BWLOOW1] is recommended. Furthermore a combination with courses in the area of
- Finance
- Insurance
- Civil engineering and architecture (building physics, building construction, facility management)
is recommended.

Learning Outcomes
The student
- possesses an overview concerning the different facets and interrelationships within the real estate business, the important decision points in real estate lifecycle and the different views and interests of the actors concerned, and
- is capable of applying basic economic methods an procedures to problems within the real estate area.

Content
The real estate business offers graduates very interesting jobs and excellent work- and advancement possibilities. This module provides an insight into the macroeconomic importance of this industry, discusses problems concerned to the administration of real estate and housing companies and provides basic knowledge for making decisions both along the lifecycle of a single building and the management of real estate portfolios. Innovative operating and financing models are illustrated, as well as the current development when looking at real estate as an asset-class.
This module is also suitable for students who want to discuss macroeconomic, business-management or financial problems in a real estate context.

Courses in module Real Estate Management [IW3BWLOOW2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26400w</td>
<td>Real Estate Management I (S. 219)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>T. Lützkendorf</td>
</tr>
<tr>
<td>26400</td>
<td>Real Estate Management II (S. 218)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>T. Lützkendorf</td>
</tr>
</tbody>
</table>
5.3 Economics

Module: Applied Game Theory

Subject: Economics (Specialization)
Module coordination: Siegfried Berninghaus
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. Every singled lecture is examined within a 80 min. written exam at the end of the of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately. The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

In the lecture Experimental Economics [25373] there may be the possibility - depending on the lecturer - to improve the final mark of the passed exam by writing a term paper and presenting it in class.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
Good knowledge of mathematics and statistics is recommended.
One of the lectures Game Theory I [25525] or Game Theory II [25369] has to be completed. Overall there has to be absolved examinations at at least 9 Credits.

Learning Outcomes
The student
- analyzes economic interdependencies under use of experimental mehtods and evaluates theoremal concepts,
- applies theoretical algorithms to economic and managerial problems,
- is able to analyze complex strategic decision problems by means of game theoretical concepts,
- knows basic solutions concepts of simple strategic decisions and is able to apply them to concrete economic problems,
- understands economic and managerial decision problems and is able to solve them by applying suitable solution concepts,
- knows experimental methods in economics from experiment design to evaluation of data.

Content
Lectures discuss individual as well as group decisions under (un-)certainty. Tutorials apply theoretical concepts to case studies. Theoretical models are compared to empirical findings.

Courses in module Applied Game Theory [IW3VWL1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25525</td>
<td>Game Theory I (S. 175)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>25369</td>
<td>Game Theory II (S. 166)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>25371</td>
<td>Industrial Organization (S. 167)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>25373</td>
<td>Experimental Economics (S. 168)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>S. Berninghaus, Kroll</td>
</tr>
</tbody>
</table>
Module: Strategic Games

Subject: Economics (Specialization)
Module coordination: Siegfried Berninghaus
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. Every single lecture is examined within a 80 min. written exam at the end of the of the recess period. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade for the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
It is recommended to attend the courses in the following sequence:
1. Game Theory I [25525]
2. Game Theory II [25369]

Learning Outcomes
The student
- structurizes complex strategic decision problems and applies efficient solution algorithms,
- has a broad overview over game and decision theory,
- applies taught methods to problems of political and managerial consulting,
- knows basic solution concepts of simple strategic decision situations and is able to apply them to concrete economic problems,
- knows and analyzes strategic decisions, knows advanced solution concepts and applies them,
- knows basic elements of decision theory under (un-)certainty as well as more advanced models and is able to analyze and solve these problems, understands decision behavior by confronting it with experimental economics.

Content
The module consists of lectures in strategic decision making against other players or “nature”. Building on normal and extensive form games different strategic and non-strategic decision situations are laid out. Then more complex situations (e.g., repeated bargaining, reputation building) are discussed.

Courses in module Strategic Games [IW3VWL4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25525</td>
<td>Game Theory I (S. 175)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>25369</td>
<td>Game Theory II (S. 166)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>25365</td>
<td>Economics of Uncertainty (S. 165)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Ehrhart</td>
</tr>
</tbody>
</table>
Module: Microeconomic Theory

Subject: Economics (Specialization)
Module coordination: Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module, there might be taken optional term paper in the field of economics (ie, on the chairs Puppel, or at Berninghaus resp. at the IWW) within the module (according to Section 4(2), 3 of the examination regulation). The submission of the term paper is only admitted until the end of the following semester in which the last exam of the Economics-Module was absolved. It does not apply for term papers which are already taken in the Seminar Module. For more information, please visit the homepage of the Chair (http://vwl1.ets.kit.edu/).

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes

Content

Courses in module Microeconomic Theory [IW3VWL6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C/E/T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25527</td>
<td>Advanced Topics in Economic Theory (S. 176)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
<tr>
<td>25517</td>
<td>Welfare Economics (S. 174)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
<tr>
<td>25525</td>
<td>Game Theory I (S. 175)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Remarks
The lecture Advanced Topics in Economic Theory [25527] was formerly named Advanced Microeconomic Theory.
Module: Macroeconomic Theory

Module key: [IW3VWL8]

Subject: Economics (Specialization)
Module coordination: Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module, there might be taken optional term paper in the field of economics (ie, on the chairs Puppel, or at Berninghaus resp. at the IWW) within the module (according to Section 4(2), 3 of the examination regulation). The submission of the term paper is only admitted until the end of the following semester in which the last exam of the Economics-Module was absolved. It does not apply for term papers which are already taken in the Seminar Module. For more information, please visit the homepage of the Chair (http://vwl1.ets.kit.edu/).

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25543</td>
<td>Theory of Economic Growth (S. 177)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Hillebrand</td>
</tr>
<tr>
<td>25549</td>
<td>Theory of Business Cycles (S. 178)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Hillebrand</td>
</tr>
</tbody>
</table>
Module: Statistical Applications of Financial Risk Management Module key: [IW3VWL]

Subject: Economics (Specialization)
Module coordination: Svetlozar Rachev
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes
Content

Courses in module Statistical Applications of Financial Risk Management [IW3VWL]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25325</td>
<td>Statistics and Econometrics in Business and Economics (S. 163)</td>
<td>2/2 W</td>
<td>4.5</td>
<td></td>
<td>W. Heller</td>
</tr>
<tr>
<td>25016</td>
<td>Economics III: Introduction in Econometrics (S. 142)</td>
<td>2/2 S</td>
<td>5</td>
<td></td>
<td>M. Höchstötter</td>
</tr>
<tr>
<td>25375</td>
<td>Data Mining (S. 169)</td>
<td>2 W</td>
<td>5</td>
<td></td>
<td>G. Nakhaeizadeh</td>
</tr>
</tbody>
</table>
5.4 Operations Research

Module: Applications of Operations Research

Subject: OR (Specialization)
Module coordination: Stefan Nickel
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.
The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Successful completion of the modules from terms 1-4 except for at most two modules. The module internship [IW1EXPRAK] as well as modules of Law [IW1JURA1,2,3] are not considered.

Conditions
At least one of the courses Facility Location and strategic Supply Chain Management [25486] and Tactical and operational Supply Chain Management [25488] has to be taken.

Learning Outcomes
The student
• is familiar with basic concepts and terms of Supply Chain Management,
• knows the different areas of Supply Chain Management and their respective optimization problems,
• is acquainted with classical location problem models (in the plane, on networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
• is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.
This module considers several areas of Supply Chain Management. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities like production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of Supply Chain Management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints.
Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25486</td>
<td>Facility Location and Strategic Supply Chain Management (S. 170)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25488</td>
<td>Tactical and Operational Supply Chain Management (S. 171)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25490</td>
<td>Software Laboratory: OR Models I (S. 172)</td>
<td>1/2</td>
<td>W</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25134</td>
<td>Global Optimization I (S. 149)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I (S. 179)</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>

Remarks
The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu/).
Module: Methodical Foundations of OR

Subject: OR (Specialization)
Module coordination: Oliver Stein
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module seperately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
At least one of the lectures Nonlinear Optimization I [25111] and Global Optimization I [25134] has to be examined.
The lecture Stochastische Entscheidungsmodelle I [25679] cannot be examined.

Learning Outcomes
The student
• names and describes basic notions for optimization methods, in particular from nonlinear and from global optimization,
• knows the indispensable methods and models for quantitative analysis,
• models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
• validates, illustrates and interprets the obtained solutions.

Content
The modul focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous decision variables. The lectures on nonlinear programming deal with local solution concepts, whereas the lectures on global optimization treat possibilities for global solutions.

Courses in module Methodical Foundations of OR [IW3OR6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25111</td>
<td>Nonlinear Optimization I (S. 146)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25113</td>
<td>Nonlinear Optimization II (S. 147)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25134</td>
<td>Global Optimization I (S. 149)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25136</td>
<td>Global Optimization II (S. 150)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25486</td>
<td>Facility Location and Strategic Supply Chain Manage-</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td></td>
<td>ment (S. 170)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25679</td>
<td>Markov Decision Models I (S. 181)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>

Remarks
The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu)
Module: Stochastic Methods and Simulation

Subject: OR (Specialization)
Module coordination: Karl-Heinz Waldmann
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student knows and understands stochastic relationships and has a competent knowledge in modelling, analyzing and optimizing stochastic systems in economics and engineering.

Content
Topics overview:
Simulation I: Generation of random numbers, Monte Carlo integration, Discrete event simulation, Discrete and continuous random variables, Statistical analysis of simulated data.
Simulation II: Variance reduction techniques, Simulation of stochastic processes, Case studies.

Courses in module Stochastic Methods and Simulation [IW3OR7]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25679</td>
<td>Markov Decision Models I (S. 181)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I (S. 179)</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25665</td>
<td>Simulation II (S. 180)</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25111</td>
<td>Nonlinear Optimization I (S. 146)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25488</td>
<td>Tactical and Operational Supply Chain Management (S. 171)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
</tbody>
</table>

Remarks
The planned lectures and courses for the next three years are announced online (http://www.ior.kit.edu/)
5.5 Informatics

Module: Web Information Systems

Subject: Informatics (Specialization)
Module coordination: Stefan Tai
Credit points (CP): 10

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and rounded to the first decimal.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes
The student acquires up-to-date knowledge about the design, development, and evaluation of modern, service-oriented Web information systems.

Content
Fundamentals (basic concepts, methods, technologies, and techniques) of service-oriented computing and cloud computing.

Courses in module Web Information Systems [IW3INAIFB1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25770</td>
<td>Service Oriented Computing 1 (S. 195)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Tai</td>
</tr>
<tr>
<td>25776</td>
<td>Cloud Computing (S. 196)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Tai, Kunze</td>
</tr>
</tbody>
</table>
Module: Semantic Knowledge Management

Module key: [IW3INAIFB2]

Subject: Informatics (Specialization)

Module coordination: Rudi Studer

Credit points (CP): 10

Learning Control / Examinations

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites

Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions

Lecture Semantic Web Technologies I [25748] is mandatory.

Learning Outcomes

Students

• know the motives for the application of knowledge management in organizations
• know the basic design dimensions of holistic knowledge management (organization, human, information technology, corpo-
rate culture)
• know the main group of IT systems for knowledge management and are able to describe the relevant application scenarios
and basic operating modes of these systems
• know how to use the different IT systems for knowledge management in practice
• know the basic standards for the modeling of information and processes and are able to describe their formal structures
• know how to apply the different modeling languages
• know criteria to evaluate the success of knowledge management systems and are able to apply them to assess defined
knowledge management scenarios

Content

In modern companies the availability and usability of knowledge is an essential factor of success for central managerial tasks and
duties such as the improvement of business processes, product innovation and the amelioration of customer satisfaction.
This module illustrates the typical problems of knowledge management in organizations and presents IT methods to approach
these questions. The relevant groups of knowledge management systems are analyzed and expanded in the subject areas
knowledge representation/semantic modeling and document management/groupware systems.

Courses in module Semantic Knowledge Management [IW3INAIFB2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25740</td>
<td>Knowledge Management (S. 191)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>R. Studer</td>
</tr>
<tr>
<td>25736</td>
<td>Business Process Modelling (S. 190)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>A. Oberweis, M. Mevius</td>
</tr>
<tr>
<td>25748</td>
<td>Semantic Web Technologies I (S. 192)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>R. Studer, S. Rudolph</td>
</tr>
<tr>
<td>25860</td>
<td>Special Topics of Knowledge Management (S. 199)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>R. Studer</td>
</tr>
</tbody>
</table>

Remarks

The lecture Special Topics of Knowledge Management was added to the module.
Module: Semantic Web and Applications

Module key: [IW3INAIFB3]

Subject: Informatics (Specialization)

Module coordination: Rudi Studer

Credit points (CP): 8

Learning Control / Examinations

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites

Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions

None.

Learning Outcomes

Content

Courses in module Semantic Web and Applications [IW3INAIFB3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25748</td>
<td>Semantic Web Technologies I (S. 192)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>R. Studer, S. Rudolph</td>
</tr>
<tr>
<td>25070</td>
<td>Seminar in Applied Informatics (S. 145)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>A. Oberweis, H. Schmeck, D. Seese, W. Stucky, R. Studer, S. Tai</td>
</tr>
</tbody>
</table>

Module Handbook: Version 04.03.2010

Information Engineering and Management (B.Sc.)
Module: Information Services in Networks

Module key: [IW3INAIFB4]

Subject: Informatics (Specialization)
Module coordination: Hartmut Schmeck
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications (S. 184)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>24074</td>
<td>Networked IT-Infrastructures (S. 114)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>W. Juling</td>
</tr>
<tr>
<td>24124</td>
<td>Web Engineering (S. 122)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Nußbaumer</td>
</tr>
<tr>
<td>25776</td>
<td>Cloud Computing (S. 196)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Tai, Kunze</td>
</tr>
<tr>
<td>25748</td>
<td>Semantic Web Technologies I (S. 192)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>R. Studer, S. Rudolph</td>
</tr>
<tr>
<td>xIDlp</td>
<td>Practical Course Information Services in Networks (S. 266)</td>
<td>4</td>
<td>W/S</td>
<td>4</td>
<td>H. Schmeck, S. Tai, W. Juling, W. Tichy, R. Studer, H. Hartenstein</td>
</tr>
</tbody>
</table>
Module: Algorithms and Applications
Module key: [IW3INAIFB5]

Subject: Informatics (Specialization)
Module coordination: Hartmut Schmeck
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Algorithms and Applications [IW3INAIFB5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25700</td>
<td>Efficient Algorithms (S. 182)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications (S. 184)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>25706</td>
<td>Nature-inspired Optimisation (S. 187)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Mostaghim, P. Shukla</td>
</tr>
<tr>
<td>25704</td>
<td>Organic Computing (S. 185)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>H. Schmeck, S. Mostaghim</td>
</tr>
<tr>
<td>25700sp</td>
<td>Special Topics of Efficient Algorithms (S. 183)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
</tbody>
</table>
Module: Business Process Engineering

Module key: [IW3INAIFB6]

Subject: Informatics (Specialization)
Module coordination: Andreas Oberweis
Credit points (CP): 10

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Business Process Engineering [IW3INAIFB6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25726</td>
<td>Workflow-Management (S. 188)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>25736</td>
<td>Business Process Modelling (S. 190)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>A. Oberweis, M. Mevius</td>
</tr>
<tr>
<td>25770</td>
<td>Service Oriented Computing 1 (S. 195)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Tai</td>
</tr>
<tr>
<td>PraBl</td>
<td>Computing Lab Information Systems (S. 244)</td>
<td>2</td>
<td>W/S</td>
<td>5</td>
<td>A. Oberweis, D. Seese, W. Stucky, R. Studer</td>
</tr>
</tbody>
</table>
Module: Business Processes and Information Systems

Subject: Informatics (Specialization)
Module coordination: Andreas Oberweis
Credit points (CP): 8

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Business Processes and Information Systems [IW3INAIFB7]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25786</td>
<td>Enterprise Architecture Management (S. 197)</td>
<td>2/1 W 5</td>
<td></td>
<td></td>
<td>T. Wolf</td>
</tr>
<tr>
<td>25730</td>
<td>Software Technology: Quality Management (S. 189)</td>
<td>2/1 S 5</td>
<td></td>
<td></td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>25790</td>
<td>Capability maturity models for software and systems engineering (S. 198)</td>
<td>2 S 4</td>
<td></td>
<td></td>
<td>R. Kneuper</td>
</tr>
<tr>
<td>25740</td>
<td>Knowledge Management (S. 191)</td>
<td>2/1 W 5</td>
<td></td>
<td></td>
<td>R. Studer</td>
</tr>
<tr>
<td>SBI</td>
<td>Special Topics of Enterprise Information Systems (S. 245)</td>
<td>2/1 W/S 5</td>
<td></td>
<td></td>
<td>A. Oberweis, W. Stucky</td>
</tr>
<tr>
<td>SemAIFB1</td>
<td>Seminar in Enterprise Information Systems (S. 249)</td>
<td>2 W/S 3</td>
<td></td>
<td></td>
<td>R. Studer, A. Oberweis, W. Stucky, T. Wolf, R. Kneuper</td>
</tr>
</tbody>
</table>
Module: Foundations of Information Systems

Subject: Informatics (Specialization)
Module coordination: Klemens Böhm
Credit points (CP): 10

Learning Control / Examinations

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes
The students
- see the necessity of specialised systems for information management and are able to define and deploy decision criteria for purchasing such software,
- are aware of the fundamental approaches in information systems and are able to judge their potential applications,
- understand database applications and develop simple database applications on their own,
- are able to communicate at a professional level about technical aspects of information and knowledge management.

Content
This module aims at exposing students to modern information systems. Beyond fundamental theory and concepts, this module covers the deployment of such technology.

Courses in module Foundations of Information Systems [IW3INGIS]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24118</td>
<td>Data Warehousing and Mining (S. 121)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>dbc</td>
<td>Deployment of Database Systems (S. 263)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24111</td>
<td>Workflowmanagement-Systems (S. 120)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>J. Mülle</td>
</tr>
<tr>
<td>24605</td>
<td>Data Privacy Protection in Interconnected Informa-</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>Buchmann</td>
</tr>
<tr>
<td></td>
<td>tion Systems (S. 137)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLV</td>
<td>Selling IT-Solutions Professionally (S. 242)</td>
<td>2</td>
<td>S</td>
<td>1</td>
<td>K. Böhm, Hellriegel</td>
</tr>
<tr>
<td>24147</td>
<td>Consulting in Practice (S. 126)</td>
<td>2</td>
<td>W/S</td>
<td>1</td>
<td>K. Böhm, Dürr</td>
</tr>
<tr>
<td>PMP</td>
<td>Project Management in Practice (S. 243)</td>
<td>2</td>
<td>S</td>
<td>1</td>
<td>K. Böhm, W. Schnober</td>
</tr>
</tbody>
</table>
Module: Communication and Database Systems

Module key: [IW3INKD]

Subject: Informatics (Specialization)
Module coordination: Klemens Böhm, Martina Zitterbart
Credit points (CP): 8

Learning Control / Examinations
The assessment consists of a 90 minutes written exam following §4, Abs. 2, 1 of the Prüfungsordnung. The grade is the grade of the written exam.

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.
Knowledge about software techniques as in lecture Software Techniques I is recommended.

Conditions
None.

Learning Outcomes
The students will

- have learned fundamentals of data communication as well as the design of communication systems,
- be familiar with the composition of the different protocols and their mechanisms and be able to design simple protocols on their own,
- have understood the relationships between the different communication layers,
- be able to explain the benefits of database technology at the end of the course,
- have understood the development of database applications and be able to set up and access simple databases,
- be familiar with the terminology and the underlying database theory.

Content
Distributed information systems are worldwide information repositories which are accessible by everybody at any place of the world at any time. The physical distance is bridged by telecommunication systems, while database management technology manages and coordinates data for arbitrary periods of time. In order to understand globally running processes, one has to understand both data transmission techniques and database technology. Besides the telecommunication and database technologies on their own, an understanding of their cooperation is required, too.

Courses in module Communication and Database Systems [IW3INKD]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24516</td>
<td>Database Systems (S. 132)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24519</td>
<td>Introduction in Computer Networks (S. 134)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
</tbody>
</table>

Module Handbook: Version 04.03.2010
Information Engineering and Management (B.Sc.)
Module: Telematics

Module key: [IW3INTM]

Subject: Informatics (Specialization)
Module coordination: Martina Zitterbart
Credit points (CP): 10

Learning Control / Examinations

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes
The student will
• gain detailed knowledge about selected protocols, architectures, techniques, and algorithms introduced in the lecture “Communication and Database Systems”
• learn about problems and solutions in mobile wireless communications
• analyze or exercise concrete solutions in one of the following areas: mobile communications, network security, or multimedia communications.

Content
Selected protocols, architectures, techniques, and algorithms from the Telematics domain are examined and detailed in different areas, among which the student may choose. The student has the opportunity to learn about problems and solutions in mobile wireless communications, about basic principles for the design of secure communication protocols, or about techniques and protocols for multimedia communications.

Courses in module Telematics [IW3INTM]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24519</td>
<td>Introduction in Computer Networks (S. 134)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24128</td>
<td>Telematics (S. 124)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24443</td>
<td>Applied Telematics (S. 131)</td>
<td>1</td>
<td>W</td>
<td>2</td>
<td>M. Zitterbart</td>
</tr>
</tbody>
</table>
Module: Telematics II

Subject: Informatics (Specialization)
Module coordination: Martina Zitterbart
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24643</td>
<td>Mobile Communications (S. 139)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>O. Waldhorst</td>
</tr>
<tr>
<td>24132</td>
<td>Multimedia Communications (S. 125)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>R. Bless</td>
</tr>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols (S. 136)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>M. Schöller</td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management (S. 127)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Hartenstein</td>
</tr>
</tbody>
</table>
Module: Algorithm Design

Subject: Informatics (Specialization)

Module coordination: Dorothea Wagner

Credit points (CP): 6

Learning Control / Examinations

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes
The student
- identifies algorithmic problems from different areas and can formulate these formally,
- judges the computational complexity of algorithmic problems and recognizes suitable algorithmic techniques for solving these problems,
- knows the crucial methodical approaches for the design and analysis of algorithms,
- designs algorithms for specific applications,
- comments on methodical aspects of algorithmics in a qualified and well-structured manner.

Content
This module conveys profound knowledge concerning theoretical and practical aspects of algorithmics. Its theoretical focus is on algorithms for graphs and common algorithmical methods, particularly, on algorithmic methods concerning randomized algorithms, parallel algorithms and algorithms for NP-hard problems. Practical aspects involve methods from the field of algorithm engineering.

Courses in module Algorithm Design [IW3INALGT]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24614</td>
<td>Algorithms for Planar Graphs (S. 138)</td>
<td>2/1</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>24171</td>
<td>Randomized Algorithms (S. 128)</td>
<td>2</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>xAlgoEng</td>
<td>Algorithm Engineering (S. 265)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
</tr>
<tr>
<td>24109</td>
<td>Parallel Algorithms (S. 119)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
</tr>
<tr>
<td>AlgoMO</td>
<td>Algorithmic Methods for Hard Optimization Problems (S. 240)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
</tr>
<tr>
<td>AlgVG</td>
<td>Algorithms for Visualization of Graphs (S. 239)</td>
<td>2/1</td>
<td>S</td>
<td>3</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s)
- D. Wagner
- T. Worsch
- P. Sanders, D. Wagner
- P. Sanders
- D. Wagner, P. Sanders
- D. Wagner, M. Nöllenburg
Module: Algorithms II

Subject: Informatics (Specialization)
Module coordination: Dorothea Wagner, Peter Sanders
Credit points (CP): 6

Learning Control / Examinations

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes
The student
• gains profound insight into the most important aspects of algorithmics
• identifies algorithmic problems in different areas of application and can formulate these in a formal manner
• comprehends and determines the running times of algorithms
• knows fundamental algorithms and data structures and can apply this knowledge to new problems.

Content
This module conveys knowledge of basic theoretical and practical aspects of algorithmics. It covers common methods for the design and analysis of basic algorithmic problems as well as the fundamentals of common algorithmic methods such as approximations algorithms, linear programming, randomized algorithms, parallel algorithms and parameterized algorithms.

Courses in module Algorithms II [IW3INALG2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24079</td>
<td>Algorithm Design (S. 116)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>D. Wagner, P. Sanders</td>
</tr>
</tbody>
</table>
Module: Praktikum Algorithmentechnik

Module key: [IW3INALGOP]

Subject: Informatics (Specialization)
Module coordination: Dorothea Wagner
Credit points (CP): 6

Learning Control / Examinations

Prerequisites
Successful completion of the modules in semester 1–4 except for up to two modules. The module Internship [IW1EXPRAK] and the law modules [IW1JURA1,2,3] are not relevant in this calculation.

Conditions
None.

Learning Outcomes

Content

Courses in module Praktikum Algorithmentechnik [IW3INALGOP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24079p</td>
<td>Practical Course in Algorithm Design (S. 117)</td>
<td>4</td>
<td>W/S</td>
<td>6</td>
</tr>
</tbody>
</table>

P. Sanders, D. Wagner, M. Krug

Module Handbook: Version 04.03.2010
Information Engineering and Management (B.Sc.)
Module: Security

Subject: Informatics (Specialization)
Module coordination: Jörn Müller-Quade
Credit points (CP): 6

Learning Control / Examinations
The assessment consists of a written exam (approx. 60 minutes) according to sec. 4 subsec. 2 no. 1 study and examination regulations.

The grade of the module corresponds to the grade of the written exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows the theoretic background and the basic mechanisms of computer security and cryptography
• understands the mechanisms of computer security and can explain them,
• can read and understand the current scientific papers,
• can evaluate the safety procedures and can recognize hazards,
• can adapt mechanisms of computer security to new environment.

Content
• Theoretical and practical aspects of computer security
• Development of safety goals and classification of threats
• Presentation and comparison of different formal access control models
• Formal description of authentication systems, presentation and comparison of different authentication methods (passwords, biometrics, challenge-response protocols)
• Analysis of typical vulnerabilities in programs and web applications and development of appropriate protective protection methods / avoidance strategies
• Introduction to key management and Public Key Infrastructure
• Presentation and comparison of current safety certifications
• Block ciphers, hash functions, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (e.g., Diffie-Hellman)
• Furthermore, an introduction to provable security is provided, which presents some of the key security concepts (e.g. IND-CCA).
• Presentation of combinations of cryptographic modules using currently used protocols such as Secure Shell (SSH) and Transport Layer Security (TLS).

Courses in module Security [IW3INSICH]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24941</td>
<td>Security (S. 141)</td>
<td>3/1</td>
<td>S</td>
<td>6</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s): J. Müller-Quade
Module: Public Key Cryptography

Module key: [IW3INPKK]

Subject: Informatics (Specialization)
Module coordination: Jörn Müller-Quade
Credit points (CP): 6

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

- The student will learn the methods and mechanisms of cryptography in practice as well as the theoretical foundations of cryptography.
- The student should be able to critically assess algorithms and protocols and to identify vulnerabilities / threats.

Content

- This module will show the students the theoretical and practical aspects of Public Key Cryptography.
- The most important primitives of cryptography will be covered: one-way function, hash function, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (e.g., Diffie-Hellman) with their strengths and weaknesses.
- In addition to public-key systems, the module provides knowledge about number-theoretic algorithms for solving problems such as primality testing, factoring large numbers and computing discrete logarithms in finite groups. Thus the choice of parameters and the related level of security of a cryptographic system can be estimated.
- Furthermore, an introduction to provable security is provided, which presents some of the key security concepts (e.g., IND-CCA).
- The combination of cryptographic modules will be treated using the example of currently used protocols such as Secure Shell (SSH), Transport Layer Security (TLS) and anonymous digital money.
Module: Software Engineering I

Subject: Informatics (Specialization)
Module coordination: Walter F. Tichy, Ralf Reussner
Credit points (CP): 6

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Software Engineering I [IW3INSWT1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24518</td>
<td>Software Engineering I (S. 133)</td>
<td>3/1/2</td>
<td>S</td>
<td>6</td>
<td>W. Tichy, Höfer, Meder</td>
</tr>
</tbody>
</table>

Module Handbook: Version 04.03.2010 Information Engineering and Management (B.Sc.)
Module: Softwaretechnik II

Module key: [IW3INSWT2]

Subject: Informatics (Specialization)
Module coordination: Ralf Reussner, Walter F. Tichy
Credit points (CP): 6

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Softwaretechnik II [IW3INSWT2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWT2</td>
<td>Software Engineering II (S. 247)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>R. Reussner, W. Tichy</td>
</tr>
</tbody>
</table>
Module: Programming Paradigms

Subject: Informatics (Specialization)
Module coordination: Gregor Snelting
Credit points (CP): 6

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
The student will

• gain insight in the most important programming paradigms
• learn the handling of various programming concepts
• be able to analyze methods of system developments

Content
The students should learn advanced skills in programming. This may include certain paradigms (e.g., functional programming), specific areas in programming (e.g., parallel programming) or machine-oriented languages (e.g., C/C++), even knowledge concerning the implementation of programming languages. Basing on the courses Programming, Software Engineering I and Software Engineering in Practice, this lecture teaches advanced knowledge.

Courses in module Programming Paradigms [IW3IWPROGP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24357/24860</td>
<td>Programming Paradigms (S. 130)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>G. Snelting, R. Reussner</td>
</tr>
</tbody>
</table>
Module: Advanced object orientation

Subject: Informatics (Specialization)
Module coordination: Gregor Snelting
Credit points (CP): 6

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Participants in this course know the basics of different object oriented programming languages (e.g. Java, C#, Smalltalk, Scala). They know how inheritance and dynamic dispatch work, behave and are implemented, and how these are used in software engineering. They know innovative language constructs in objects oriented languages like generics, aspects and traits. The participants know the theoretic foundations of (e.g. type systems), software engineering tools for (e.g. refactoring) and techniques (e.g. points-to analysis) for analysing object oriented programs. They know current trends in research on object oriented programming.

Content
- Behaviour and semantics of dynamic dispatch
- Implementation of single and multiple inheritance
- Genericity, refactoring
- Aspect oriented programming
- Traits and mixins, virtual classes
- Cardelli’s type system
- Palsberg-Schwartzbach type inference
- Analyses on the call graph, points-to analyses
- Operational semantics, type safety
- Bytecode JVM, bytecode verifier, dynamic compilation

Courses in module Advanced object orientation [IW3INFOO]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOO</td>
<td>Fortgeschrittene Objektorientierung (S. 241)</td>
<td>3/2</td>
<td>S</td>
<td>6</td>
<td>G. Snelting</td>
</tr>
</tbody>
</table>
Module: Energiebewusste Betriebssysteme
Module key: [IW3INEBB]

Subject: Informatics (Specialization)
Module coordination: Frank Bellosa
Credit points (CP): 6

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Content

Courses in module Energiebewusste Betriebssysteme [IW3INEBB]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24127</td>
<td>Power Management (S. 123)</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>F. Bellosa</td>
</tr>
<tr>
<td>24181</td>
<td>Power Management Praktikum (S. 129)</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>F. Bellosa, Merkel</td>
</tr>
</tbody>
</table>
Module: Rechnerstrukturen

Module key: [IW3INRS]

Subject: Informatics (Specialization)
Module coordination: Wolfgang Karl
Credit points (CP): 6

Learning Control / Examinations
Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Rechnerstrukturen [IW3INRS]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24570</td>
<td>Rechnerstrukturen (S. 135)</td>
<td>3/1</td>
<td>S</td>
<td>6</td>
<td>J. Henkel, W. Karl</td>
</tr>
</tbody>
</table>
Module: Intellectual Property and Data Protection

Module coordination: Thomas Dreier
Credit points (CP): 6

Learning Control / Examinations

Prerequisites
From the law modules in the core programme, Introduction to Civil Law [IW1INJURA1], Commercial Law [IW1INJURA2], and Constitutional and Administrative Law [IW1INJURA2], 2 out of 3 have to be completed successfully.

Conditions
None.

Learning Outcomes

Content
Building onto what the students have learned in law during the first two years of Bachelor studies, the module Law in the third Bachelor years has the purpose of both deepening and specialising the legal studies in areas of practical importance for information economics and management...

Courses in module Intellectual Property and Data Protection [IW3JURA]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24070</td>
<td>Industrial Property and Copyright Law (S. 113)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>T. Dreier</td>
</tr>
<tr>
<td>24018</td>
<td>Data Protection Law (S. 112)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
</tbody>
</table>
6 Courses

6.1 Courses of term 1-4

Course: Basic Notions of Computer Science

Course key: [24001]

Lecturers: Thomas Worsch
Credit points (CP): 5 Hours per week: 2/1/2
Term: Wintersemester Level: 1
Teaching language: Deutsch
Part of the modules: Foundations in Informatics [IW1INF1] (S. 17)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

- Students know the most important techniques for definitions and are able to read and understand such definitions.
- Students know the difference between syntax and semantics.
- Students know the most important notions from discrete mathematics and computer science and are able to use them for the description of problems and in proofs.

Content

- informal notion of algorithm, basics of correctness proofs
- computational complexity measures, hard problems
- big O notation, master theorem
- alphabets, words, formal languages
- finite acceptors, contextfree grammars
- inductive/recursive definitions, proofs by induction, closure
- relations and functions
- graphs
- syntax and semantics of propositional logic

Media
Blackboard, lecture notes, slides (pdf).

Complementary literature

- Goos: Vorlesungen über Informatik, Band 1, Springer, 2005
- Abeck: Kursbuch Informatik I, Universitätsverlag Karlsruhe, 2005
Course: Programming

Lecturers: Gregor Snelting
Credit points (CP): 5 Hours per week: 2/0/2
Term: Wintersemester Level: 1
Teaching language: Deutsch
Part of the modules: Foundations in Informatics [IW1INF1] (S. 17)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
See german version.

Content
See german version.

Basic literature

Complementary literature
B. Eckels: Thinking in Java. Prentice Hall 2006
J. Bloch: Effective Java, Addison-Wesley 2008
Course: Algorithms I

Lecturers: Peter Sanders
Credit points (CP): 6 Hours per week: 3/1/2
Term: Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Algorithms I [IW2INF2] (S. 18)

Learning Control / Examinations
The assessment is described in the module.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student is supposed to
- know and understand basic, frequently used algorithms, their conception, analysis of their correctness and efficiency, implementation, documentation and application
- be able to use their comprehension to work on new algorithmic problems
- apply the knowledge acquired in the module Grundlagen der Informatik (B.Sc. Information Engineering and Management) to non-trivial algorithms
- apply the knowledge acquired in the module Grundbegriffe der Informatik (Bachelor Informatics) or in Grundlagen der Informatik (B.Sc. Information Engineering and Management) and the mathematical methodologies learned in the mathematics lectures to solve problems, the focus being on both formal correctness arguments and mathematical efficiency analysis

Content
The module contains the „basic toolbox for algorithmics“. The following topics are covered in particular:
- result analysis (checkers) and certification
- asymptotic algorithm analysis: worst case, average case, probabilistic, amortised
- basic terms of algorithm engineering
- efficient application of linked lists
- unlimited arrays, batches and queues
- hash tables: with linking, linear probing, universal hashing
- sorting: efficient algorithms (mergesort, quicksort), lower border, radix sort
- selection: quickselect
- sorted sequences/search trees: How to support all important operations within logarithmic time?
- graphs (representation, traversing: breadth search, deep search, applications (topological sorting,...), shortest path: Dijkstra’s algorithm, Bellman-Ford algorithm, minimum spanning trees: Kruskals algorithm, Jarnik-Prim algorithm)
- generic optimisation algorithms (greedy, dynamic programming, systematic search, local search)

Basic literature
Algorithms and Data Structures – The Basic Toolbox
K. Mehlhorn und P. Sanders
Springer 2008

Complementary literature
Algorithmen - Eine Einführung
T. H. Cormen, C. E. Leiserson, R. L. Rivest, und C. Stein
Oldenbourg, 2007

Algorithmen und Datenstrukturen
T. Ottmann und P. Widmayer
Spektrum Akademischer Verlag, 2002

Algorithmen in Java. Teil 1-4: Grundlagen, Datenstrukturen, Sortieren, Suchen
R. Sedgewick
Pearson Studium 2003
Algorithm Design
J. Kleinberg and É. Tardos
Addison Wesley, 2005
Vöcking et al.
Taschenbuch der Algorithmen
Springer, 2008
Course: Theoretical Foundation of Computer Science

Lecturers: Jörn Müller-Quade
Credit points (CP): 7 Hours per week: 3/1
Term: Wintersemester Level: 2
Teaching language: Deutsch
Part of the modules: Theoretical Informatics [W2INF3] (S. 19)

Learning Control / Examinations
The assessment is described in the module.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• has a deeper insight into the fundamentals of theoretical computer science and knows the computation models and proof techniques,
• understands the limits and possibilities of computer science in relation to the solution of definable but only partially predictable problems
• knows basic aspects of computer science in contrast to specific circumstances, such as specific computers or programming languages, and also can phrase general statements about the solvability of problems
• is able to apply the proof techniques learned for the specification of systems of computer science and for the systematic design of programs and algorithms

Content
There are important problems whose solutions can clearly be defined but one will never be able to calculate such a solution systematically. Other problems are "likely" to be solved only through trial and error. Other topics of the module provide the basis for circuit design, design of compilers, and many others. Most results are rigorously proved. The proof techniques learned by the way are important for the specification of systems of computer science and for the systematic design of programs and algorithms.

The module provides a deep insight into the principles and methods of theoretical computer science. In particular, this will be discussed on the basic properties of Formal Languages as foundations of programming languages and communication protocols (regular, context-free Chomsky hierarchy), machine models (finite automata, pushdown automata, Turing machines, nondeterminism, and relations to families of formal languages), equivalence of sufficiently powerful computational models (Church's thesis), non computationable important functions (halting problem,...), Gödel's incompleteness theorem and introduction to complexity theory, NP-complete problems and polynomial reductions.

Media
Slides, lecture notes, practice sheets.

Complementary literature
• Ingo Wegener: Theoretische Informatik. Teubner (1999)
Course: Computer Organization

Course key: [24502]

Lecturers: Tamim Asfour, Rüdiger Dillmann, Jörg Henkel, Wolfgang Karl
Credit points (CP): 6 Hours per week: 3/1/2
Term: Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Computer Engineering [IW2INF4] (S. 20)

Learning Control / Examinations
The assessment is described in the module.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
- D. Patterson, J. Hennessy: Rechnerorganisation und -entwurf
- Th. Flick, H. Liebig: Mikroprozessortechnik; Springer-Lehrbuch, 5. Auflage 1998
Course: Applied Informatics I - Modelling

Lecturers: Andreas Oberweis, Rudi Studer, Sudhir Agarwal
Credit points (CP): 4 Hours per week: 2/1
Term: Wintersemester Level: 2
Teaching language: Deutsch
Part of the modules: Applied Informatics [IW1INF5] (S. 21)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Basic knowledge about the strengths and weaknesses of various modeling approaches including their application areas.

Content
In the context of complex information systems, modelling is of central importance, e.g. – in the context of systems to be developed – for a better understanding of their functionality or in the context of existing systems for supporting maintenance and further development.

Modelling, in particular modelling of information systems, forms the core part of this lecture. The lecture is organized in two parts. The first part mainly covers the modelling of static aspectes, the second part covers the modelling of dynamic aspects of information systems.

The lecture sets out with a definition of modelling and the advantages of modelling. After that, advanced aspects of UML, the Entity Relationship model (ER model) and description logics as a means of modelling static aspects will be explained. This will be complemented by the relational data model and the systematic design of databases based on ER models. For modelling dynamic aspects, different types of petri-nets as well as event driven process chains together with their respective analysis techniques will be introduced.

Media
Slides.

Basic literature

Complementary literature
Course: Applied Informatics II - IT Systems for e-Commerce
Course key: [25033]

Lecturers: Stefan Tai
Credit points (CP): 4 Hours per week: 2/1
Term: Sommersemester Level: 2
Teaching language: Deutsch
Part of the modules: Applied Informatics [IW1INF5] (S. 21)

Learning Control / Examinations

Prerequisites
Knowledge of content of the courses Foundations of Informatics I [25074] and Foundations of Informatics II [25076] is expected.

Conditions
None.

Learning Outcomes
The student learns about IT methods and systems in support of modern electronic commerce. The student should be able to select, assess, design, and apply these methods and systems in a context-sensitive manner.

Content
The course introduces methods and systems in support of electronic commerce, including the topics:
- application architectures (incl. client server architectures)
- document description and exchange (incl. XML)
- enterprise middleware (incl. CORBA, Messaging Middleware, Java Enterprise Edition)
- Web services and SOA

Media
Slides, internet resources.

Basic literature
Tba in the lecture.
Course: Financial Accounting and Cost Accounting

Lecturers: Thomas Burdelski
Credit points (CP): 4
Hours per week: 2/2
Term: Wintersemester
Level: 1
Teaching language: Deutsch
Part of the modules: Foundations in Business Administration [IW1BWL1] (S. 22)

Learning Control / Examinations
The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. The examination takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Business transactions are economic events that affect the financial position of a business entity. After this basic course students have to be familiar with the principles of Financial and Management Accounting especially with the four financial statements and the instruments of a cost accounting system.

Content
After an introduction to the objectives of accounting the student will learn the double-entry system, the basic method of accounting, and the difference between accounting and bookkeeping. We examine the typical business transactions for Trading Companies and Industrial Enterprises. Financial statements are the primary means of communicating important accounting information about a business to those who have an interest in the business. Four major financial statements are used to communicate accounting information: the income statement, the statement of retained earnings, the balance sheet and the statement of cash flows, here in the context with German laws (HGB). In the second part of the course the cost accounting instruments will be analyzed: cost type accounting, cost center accounting, and unit of output costing. Aspects of modern systems in Management Accounting conclude this basic course.

Media
Slides

Basic literature
- R. Buchner, Buchführung und Jahresabschluss, Vahlen Verlag
- A. Coenenberg, Jahresabschluss und Jahresabschlussanalyse, Verlag Moderne Industrie
- A. Coenenberg, Kostenrechnung und Kostenanalyse, Verlag Moderne Industrie
- R. Ewert, A. Wagenhofer, Interne Unternehmensrechnung, Springer Verlag
- J. Schöttler, R. Spulak, Technik des betrieblichen Rechnungswesen, Oldenbourg Verlag
Course: Introduction to Information Engineering and Management

Course key: [26490]

Lecturers: Christof Weinhardt, Andreas Geyer-Schulz

Credit points (CP): 4 Hours per week: 2/2

Term: Sommersemester Level: 1

Teaching language: Deutsch

Part of the modules: Foundations in Business Administration [IW1BWL1] (S. 22)

Learning Control / Examinations

The assessment of the course Introduction to Information Engineering and Management is a written exam according to §4(2), 1 of the examination regulation. The duration of the exam is 60 minutes. There are 90 points possible.

The grades are allocated on the basis of the following table:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimal Points for Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>87</td>
</tr>
<tr>
<td>1.3</td>
<td>83</td>
</tr>
<tr>
<td>1.7</td>
<td>79</td>
</tr>
<tr>
<td>2.0</td>
<td>75</td>
</tr>
<tr>
<td>2.3</td>
<td>71</td>
</tr>
<tr>
<td>2.7</td>
<td>67</td>
</tr>
<tr>
<td>3.0</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>59</td>
</tr>
<tr>
<td>3.7</td>
<td>55</td>
</tr>
<tr>
<td>4.0</td>
<td>> 50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites

None.

Conditions

None.

Learning Outcomes

The student

- is able to handle interdisciplinary case studies of information management and engineering and to consider the impact of juridical framework of information technology on the design of business processes.
- knows the basic principles of informations as source for economic decision support.
- can develop and design venture creation and independently develop and create a business plan with external help.
- knows the fundamentals of strategic and operative marketing and logistic systems.
- can model and analyze dynamic systems.
- can apply with external help causal loop diagrams and methods from System Dynamics to a well defined business problem, describe system behavior and analyze the consequences of decisions on the system behavior.
- learns to work team-oriented and independently in small groups, learns English terminology in the context of information management and he is able to read and comprehend international literature to solve the tutorial assignments.

Content

The last years have seen the rise of information companies whose company purpose is the generation and distribution of informations. In these companies, as well as companies of the old economy, the role of information, communication, and their cost is increasing. Some of the problems related with this trend are presented and treated in-depth in the course Introduction to Information Engineering and Management.

The goal of this course is to present the foundation of information engineering and management and the necessary linking of the different disciplines in today’s information society. The course is completely motivated by authentic, real-world examples. With the help of these examples, the following topics as well as the interdependencies between business administration, economics, information technology, and law, are treated:

- The foundation of a company: Choosing the legal form and financing
- Information for economic decision support.
- Organizing information flows, valuation of information
- Network Economies
- Service Engineering
- Electronic markets
- Logistics/SCM
- Web/Internet-Marketing
• Production and Procurement

Media
Web, Audio/Slides, Full Text Documents.

Basic literature

Complementary literature
Course: Business Administration and Management Science B Course key: [25024/25025]

Lecturers: Wolfgang Gaul, Thomas Lützkendorf, Andreas Geyer-Schulz, Christof Weinhardt, Thomas Burdelski
Credit points (CP): 4 Hours per week: 2/0/2
Term: Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Business Administration [IW1BWL2] (S. 23)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The target of this course and the tutorials of this course are the basic points of marketing, production economics and information engineering and management.

After this basic course students have to be familiar with these three topics in Business Administration and Management Science.

Content
1. Marketing:
Marketing is an organizational function to handle situations, activities, and processes for creating, communicating, and delivering value to customers in a best way. (Customer) relationship management comprises collecting, aggregating, and analyzing information (e.g., developments in the society, changing conditions of markets, alterations w.r.t. buying behavior) to benefit different target groups.
Main topics will deal with market research and optimized application of marketing mix instruments with emphasis on “marketing and the web”, ”innovation management”, and “international marketing”.

2. Production economics
In the part of production economics the student will learn basics in the field of production theory, procurement and resource acquisitions, production and operations management and industrial engineering.
Aspects of electrical engineering industry, technological foresights, construction industry and real estate markets will be treated.

3. Information engineering and management
In today's economy, information is a competitive factor that calls for an interdisciplinary investigation from economics and business administration, informatics and law. In this part of the lecture, selected topics from information engineering and management and their impact in market competition are presented.
Topics include: Information in a company, Information processing: From an agent to business networks, social networks, service value networks, complex service auction, market engineering, physioeconomics, grid und cloud computing, dynamic pricing.

Basic literature
Further literature references are announced in the materials to the lecture.

Remarks
Key qualifications can be shown in an active participation through presentations of solutions and discussions in the tutorials which accompany the course. Each part of the course is taught by instructors specialised in the field of that part.
Course: Business Administration and Management Science C
Course key: [25026/25027]

Lecturers: Hagen Lindstädt, Martin E. Ruckes, Marliese Uhrig-Homburg, Thomas Burdelski

Credit points (CP): 4
Hours per week: 2/0/2

Term: Wintersemester
Level: 1

Teaching language: Deutsch

Part of the modules: Business Administration [IW1BWL2] (S. 23)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of this course and the tutorials of this course is to equip students with the fundamentals and basics in the fields of management and organization, investment und finance and the german specific term controlling. After this course students have to be familiar with these three topics in business administration and management science.

Content
1. Management and Organization
 A) Foundations of Management
 B) Foundations of Strategic Management
 • Process of Strategic Management
 • Strategic Analysis using the SWOT Framework
 • Formulating Strategic Options
 • Evaluation and Choice
 C) Foundations of Organization
 • Why do Organizations exist?
 • Objectives, Measures and Conditions of Managing Organizations
 • Level 1: Division of Labour and Design of Departments
 • Level 2: Choosing the Hierarchical Structure
 • Level 3: Coordination and Formalization
 D) Agency-theoretic Foundations:
 • Organization under Asymmetric Organization
 • Three Types of Informational Asymmetries
 • Type 1: Hidden Intention and Holdup
 • Type 2: Hidden Characteristics and Adverse Selection
 • Type 3: Hidden Action and Moral Hazard

2. Investment and Finance
 This part of the course deals with the fundamentals of capital market theory und provides a modern introduction to the theory und practice of capital raising and capital budgeting. These topics are covered:
 • Valuation of financial und real investments
 • Portfolio theory
 • Pricing in financial markets
 • Theory and practice of corporate finance
 • Arbitrage

3. Controlling
 Planning, control (e. g. monitoring), organization, leadership and information systems are the core elements of a business management system. These fields have to be coordinated with one another to achieve the corporate goals in an optimal way. This coordinating function is the main task of the german specific term controlling. Thus, controlling fulfills the coordinating task within the management system in an essential way. These topics are covered:
 • Fundamentals of controlling und its context
 • Instruments of controlling for business planning and control/monitoring (selected operational instruments, benchmarking as a tactical instrument and portfolio analysis as a strategic instrument)
 • Instruments of controlling for information systems (performance indicators und reporting)

Basic literature
Extensive bibliographic information will be given in the materials to the lecture.
Remarks
Key qualifications can be shown in an active participation through presentations of solutions and discussions in the tutorials which accompany the course. Each part of the course is taught by instructors specialised in the field of that part.
Course: Introduction to Operations Research I

Lecturers: Stefan Nickel, Oliver Stein, Karl-Heinz Waldmann
Credit points (CP): 4.5 Hours per week: 2/2/2
Term: Sommersemester Level: 2
Teaching language: Deutsch
Part of the modules: Introduction to Operations Research [IW1OR] (S. 25)

Learning Control / Examinations
See module description.

Prerequisites
See module information.

Conditions
None.

Learning Outcomes
See module information.

Content
Examples for typical OR problems.
Linear Programming: Basic notions, simplex method, duality, special versions of the simplex method (dual simplex method, three phase method), sensitivity analysis, parametric optimization, game theory.
Graphs and Networks: Basic notions of graph theory, shortest paths in networks, project scheduling, maximal and minimal cost flows in networks.

Media
Blackboard, slides, beamer presentations, lecture notes, OR software.

Basic literature
Lecture notes

Complementary literature
- Bünning, Naeve, Trenkler, Waldmann: Mathematik für Ökonomen im Hauptstudium. Oldenbourg, 2000
Course: Introduction to Operations Research II

Lecturers: Stefan Nickel, Oliver Stein, Karl-Heinz Waldmann

Credit points (CP): 4.5 Hours per week: 2/2/2

Term: Wintersemester Level: 2

Teaching language: Deutsch

Part of the modules: Introduction to Operations Research [IW1OR] (S. 25)

Learning Control / Examinations
See module description.

Prerequisites
See corresponding module information. Especially the course Introduction to Operations Research I [25040] is assumed.

Conditions
None.

Learning Outcomes
See module information.

Content
Integer and Combinatorial Programming: Basic notions, cutting plane methods, branch and bound methods, branch and cut methods, heuristics.
Nonlinear Programming: Basic notions, optimality conditions, solution methods for convex and nonconvex optimization problems.
Dynamic and stochastic models and methods: dynamical programming, Bellman method, lot sizing models, dynamical and stochastic inventory models, queuing theory.

Media
Blackboard, slides, beamer presentations, lecture notes, OR software

Basic literature
Lecture notes

Complementary literature
- Büning, Naeve, Trenkler, Waldmann: Mathematik für Ökonomen im Hauptstudium. Oldenbourg, 2000
Course: Economics I: Microeconomics

Lecturers: Siegfried Berninghaus
Credit points (CP): 5
Hours per week: 3/0/2
Term: Wintersemester
Level: 1
Teaching language: Deutsch
Part of the modules: Economics [IW1VWL] (S. 24)

Course key: [25512]

Learning Control / Examinations
The assessment consists of a written exam (120 min) following §4, Abs. 2, 1 of the examination regulation. There may be offered a practice exam in the middle of the semester. The results of this exam may be used to improve the grade of the main exam. A detailed description of the examination modalities will be given by the respective lecturer. The main exam takes place subsequent to the lecture. The re-examination is offered at the same examination period. Only repeating candidates are entitled for taking place the re-examination. For a detailed description on the exam regulations see the information of the respective chair.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the main aim of this course to provide basic knowledge in economic modelling. Particularly, the student should be able to analyze market processes and the determinants of market results. Furthermore, she should be able to evaluate the effects of economic policy measures on market behavior and propose alternative but more effective policy measures. In particular, the student should learn

• to apply simple microeconomic concepts,
• to analyze the structure of real world economic phenomena,
• to judge the possible effects of economic policy measures on the behavior of economic agents (in simple decision problems),
• to possibly suggest alternative policy measures,
• to analyze as a participant of a tutorial simple economic problems by solving written exercises and to present the results of the exercises on the blackboard,
• practicing to solve the home work in due time,
• to become familiar with the basic literature on microeconomics.

The student should gain basic knowledge in order to help in practical problems

• to analyze the structure of microeconomics relationships and possibly to present own problem solutions,

Content
The students learn the basic concepts in Microeconomics and some basics in game theory. The student will understand the working of markets in modern economies and the role of decision making. Furthermore, she should be able to understand simple game theoretic argumentation in different fields of Economics.

In the two main parts of the course problems of microeconomic decision making (household behavior, firm behavior) and problems of commodity allocation on markets (market equilibria and efficiency of markets) as well are discussed. In the final part of the course basics of imperfect competition (oligopolistic markets) and of game theory are presented.

Media
downloadable from IT server

Basic literature
• H. Varian, Grundzüge der Mikroökonomik, 5. edition (2001), Oldenburg Verlag
• Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson. Münchens, 2005

Complementary literature
• Offer for interested and top students: detailed top articles with proofs, algorithms, ... state-of-the-art surveys, industrial magazines and scientific journals, pointers to recent developments related to the course.
• Tutorials and perhaps simpler literature alternatives for students to fill in gaps in prerequisites (or to fresh up their memory). Alternatives with a different mode of explanation to help students understand ...
Course: Statistics I

Lecturers: Markus Höchstötter
Credit points (CP): 5 Hours per week: 4/0/2
Term: Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Statistics [IW1STAT] (S. 26)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The Student should understand and apply
- the basic concepts of statistical data exploration
- the basic definitions and theorems of probability theory

Content
A. Descriptive Statistics: univariate und bivariate analysis
B. Probability Theory: probability space, conditional and product probabilities

Media
lecture notes

Basic literature
Skriptum: Kurzfassung Statistik I

Complementary literature
- Bosch, K.: Statistik-Taschenbuch, Oldenbourg, München etc., 1992
Course: Statistics II

Lecturers: Markus Höchstötter
Credit points (CP): 5 Hours per week: 4/0/2
Term: Wintersemester Level: 2
Teaching language: Deutsch
Part of the modules: Statistics [IW1STAT] (S. 26)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The exam takes place at the end of the lecture period or at the beginning of the recess period. The re-examination takes place in the following semester.

Prerequisites
It is recommended to attend the course Statistics I [25008/25009] before the course Statistics II [25020/25021].

Conditions
None.

Learning Outcomes
probability theory (continued), Introduction to estimation and testing theory

Content
B. Probability Theory:
- transformation of probabilities,
- parameters of location and dispersion,
- most important discrete and continuous distributions,
- covariance and correlation,
- convolution and limit distributions

C. Theory of estimation and testing:
- sufficiency of statistics,
- point estimation (optimality, ML-method),
- internal estimations,
- theory of tests (optimality, most important examples of tests)

Media
lecture notes

Basic literature
Script: Kurzfassung Statistik II

Complementary literature
- Bosch, K.: Statistik-Taschenbuch, Oldenbourg, München etc., 1992
Course: Civil Law for Beginners

Lecturers: Thomas Dreier, Peter Sester
Credit points (CP): 4 Hours per week: 4/0
Term: Wintersemester Level: 1
Teaching language: Deutsch
Part of the modules: Introduction to Civil Law [IW1JURA1] (S. 27)

Learning Control / Examinations
The assessment consists of a written exam (90 min) according to Section 4, (2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
To begin with, the course provides students with a general introduction into law. It shall enable them to understand legal problems and solutions both with regard to lawmaking and to individual cases. Students shall grasp the differences between civil law, public law and criminal law. In particular, students shall learn the fundamental notions and constructions of Civil law as laid down in the German Civil Code (Bürgerliches Gesetzbuch, BGB), such as subjects and objects of law, legally binding declarations, the formation of contracts, standard terms and conditions, consumer protection, performance of contractual promises etc. Students shall be trained to understand legal problems and legal solutions. They shall be able to recognise the legal problems of a given factual situation and develop solutions to simple legal problems.

Content
The course starts with a general introduction into law. What is law, why are legal rules valid, and what is the role of law in conjunction with social behaviour, technological and market developments? What is the relationship between law and justice? Moreover, the distinction between civil law, public law and criminal law will be highlighted. The basics of jurisdiction, international conflicts and alternative dispute settlement will be discussed. The main focus of the course is on the fundamental notions of civil law as defined and regulated in the German Civil Code (Bürgerliches Gesetzbuch, BGB), such as subjects and objects of law, legally binding declarations, agency, the formation of contracts, standard terms and conditions, consumer protection, performance of contractual promises. The course ends with an outlook to the law of contracts and property law.

Media
Transparencies/Slides

Basic literature
Tba at the beginning of the course,

Complementary literature
Tba at the beginning of the course,
Course: Advanced Civil Law
Course key: [24504]

Lecturers: Thomas Dreier, Peter Sester
Credit points (CP): 3
Hours per week: 2/0
Term: Sommersemester
Level: 1
Teaching language: Deutsch
Part of the modules: Commercial Law [IW1JURA2] (S. 28)

Learning Control / Examinations
Assessment will consist of written exams within Privatrechtliche Übung following §4, Abs. 2, 3 of the examination regulation.

Prerequisites
The course Civil law for beginners [24012] is required.

Conditions
None.

Learning Outcomes
Following what the students have learned in the course Civil law for beginners about the basic notions of law and, in particular, the general part of the German Civil Code (Bürgerliches Gesetzbuch, BGB), in this course the students shall acquire knowledge of contract and of property law. They will learn about the statutory regulation of place, time and modalities of the performance of contractual duties, as well as the statutory rules governing defaults of performing contractual promises (impossibility of performance; non-performance; delayed performance, defective performance). In addition the students will be presented with the different types of contracts and with both liability for fault and strict liability. As far as property law is concerned, the students shall understand the different types of transfer of ownership and of securities the German Civil Code provides for.

Content
Following what the students have learned in the course Civil law for beginners about the basic notions of law and, in particular, the general part of the German Civil Code (Bürgerliches Gesetzbuch, BGB), in this course the students shall acquire knowledge of contract and of property law. On the one hand, this includes the statutory rules on place, time and modalities of performance, and the statutory rules governing defaults of performing contractual promises (impossibility of performance; non-performance; delayed performance, defective performance). On the other hand, the statutory types of contracts will be discussed (in particular, sale, lease, contract for work and contract for services, lending and borrowing) as well as new types of combined contracts (e.g., leasing, factoring, computer contracts). Moreover, legal liability will be discussed both with regard to liability for fault and with regard to strict liability. As regards property law, possession and ownership will be discussed as well as the different forms of transfer of ownership and the most important of the security rights.

Media
Transparencies/Slides

Basic literature
Tba at the beginning of the course.

Complementary literature
tba at the beginning of the course
Course: Commercial and Corporate Law

Lecturers: Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Commercial Law [IW1JURA2] (S. 28)

Learning Control / Examinations
Assessment will consist of written exams following §4, Abs. 2, 3 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Based on the lectures on civil law, the students are provided with an overview of the specifics of commercial transactions, commercial agency and the law of merchants. Moreover, the forms of organization available in German company law are outlined.

Content
The lecture begins with an introduction into the different terms of merchants of the German Commercial Code. Subsequently, the rules governing trade names, commercial registries and commercial agency are dealt with. This is followed by a presentation of the general rules of commercial transactions and of the specific commercial transactions. In company law, first of all, the basics of partnerships are explained. Thereafter, the focus will be on corporate law which is most important in practice.

Media
Slides.

Basic literature
Klunzinger, Eugen

Complementary literature
Will be announced in the lecture.
Course: Exercises in Civil Law

Course key: [24506/24017]

Lecturers: Peter Sester, Thomas Dreier
Credit points (CP): 3 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Commercial Law [IW1JURA2] (S. 28)

Learning Control / Examinations
Assessment will consist of five written exams following §4, Abs. 2, 3 of the SPO. At least two exams have to be passed, to pass the course. The final grade is calculated as the median of the two exams that have been passed with the best grades.

Prerequisites
Students must have attended the course Civil Law for Beginners [24012] or a comparable introduction into (German) civil law. It is highly recommended that students have likewise attended the courses Advanced Civil Law [24504] and Commercial and Corporation Law [24011].

Conditions
None.

Learning Outcomes
It is the aim of this course to enable students to solve legal cases by way of the appropriate legal technique (so-called Subsumtion). At the same time, the legal knowledge which students have acquired in the courses “Civil Law for Beginners”, “Advanced Civil Law” and “Commercial and Corporation Law” will be repeated and deepened. This shall enable students to solve practical legal problems in a methodologically correct way.

Content
In 5 sessions the substantive law which students have been taught in the courses “Civil Law for Beginners”, “Advanced Civil Law” and “Commercial and Corporation Law” will be repeated and the method for solving legal cases deepened. Moreover, 5 sessions are reserved to written exam problems which cover the totality of what students have learned so far. Additional sessions are reserved for the subsequent in-class discussion of the exam problems.

Media
Slides

Basic literature
tba in the course.
Course: Public Law I - Basic Principles

Lecturers: Indra Spiecker genannt Döhmman
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 2
Teaching language: Deutsch
Part of the modules: Constitutional and Administrative Law [IW1JURA3] (S. 29)

Learning Control / Examinations
The assessment consists of a written exam concerning the courses Public Law I [24016] and Public Law II [24520] (according to Section 4(2), 1 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture covers the core principles of public law. Students shall become acquainted with the basics of constitutional law, the fundamental rights which route governmental actions and the entire legal system, as well as possibilities of actions and instruments (especially law, administrative act, public-private contract) of the public authority. Furthermore the distinction between public and private law will be clarified. Moreover, possibilities of legal protection regarding administrative behavior will be addressed. Students shall learn to classify problems in public law and to solve (simple) administrative and constitutional cases.

Content
The course covers core material of constitutional and administrative law. It begins with the differentiation between public and private law. In the constitutional law part, the course will concentrate on the rule of law and individual rights, especially those protecting communication and entrepreneurship. The administrative law part will explain the different legal instruments of the administration how to act (rule, order, contract, etc.) and their propositions. Also, court proceedings to sue the administrative will be discussed. Students will learn the technique how to solve (simple) administrative and constitutional cases.

Media
abstracts, sketches on blackboard, slides

Basic literature
tba in scriptum

Complementary literature
tba in scriptum

Remarks
From the winter term 2008 on, the Public Law I will be lectured during the winter term and Public Law II will be lectured during the summer term. This means:

1. In the winter term 2008/2009, Public Law I was being lectured.
2. In the summer term 2009, Public Law II will be lectured.
Course: Public Law II - Public Economic Law

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3
Hours per week: 2/0
Term: Sommersemester
Level: 2
Teaching language: Deutsch
Part of the modules: Constitutional and Administrative Law [IW1JURA3] (S. 29)

Learning Control / Examinations
The assessment consists of a written exam concerning the courses Public Law I [24016] and Public Law II [24520] according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Public economic law is of significant importance to supervise the German economy. In order to understand the functionality of mandatory interventions into market mechanisms in a thoroughly normed legal system, appropriate legal knowledge is required. This knowledge is to be provided in the lecture. In doing so, substantive law ought to be dealt with in a deepened way, while responsible authorities and institutions as well as possibilities of legal protection in the area of public commercial law will be taught at a glance. The lecture’s primary aim is to exercise handling the corresponding legal norms. It proceeds the lecture public law I.

Content
In a first step legal basics of the economic system (such as financial system and freedom of property and profession) will be presented. In this context, interaction between the Basic Constitutional Law and presettings of European Community law will be elaborated on as well. Thereafter, regulatory instruments of the administrative law will be analysed extensively. As particular matters, we will deal with industrial code, further trade law (handicrafts code; law of gastronomy), basic principles of telecommunication law, state aid law and public procurement law. A last part is devoted to the institutional design of the economy’s regulation.

Media
content structure; documents

Basic literature
Will be announced in the lecture.

Complementary literature
tba in lecture slides

Remarks
In winter term 2008 on, the Public Law I will be lectured during the winter term and Public Law II will be lectured during the summer term. This means:

1. In the winter term 2008/2009, Public Law I will be lectured.
2. In the summer term 2009, Public Law II will be lectured.
Course: Mathematics I for Information Engineering and Management
Course key: [01360]

Lecturers: Andreas Rieder, Christian Wieners, Nicolas Neuss
Credit points (CP): 8
Hours per week: 4/2/2
Term: Wintersemester
Level: 1
Teaching language: Deutsch
Part of the modules: Mathematics I [IW1MATH1] (S. 30)

Learning Control / Examinations
The assessment consists of
1. a graded certificate of exercise following §4(2), 3 of the examination regulation from the exercises to mathematics I and
2. a written examination of 60 minutes on the lectures mathematics I following §4(2), 1 of the examination regulations.

The grade of the module is computed as a weighted sum, where the grade of the written examination has a weight of 80% and
the certificates a weight of 20%.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The aim of the course "Mathematics I" is to impart a comprehension of basic methods in linear algebra.

Content
The two lectures „Mathematics I and II for the subject area Information Systems“ ,edote basic mathematical knowlegde which is
required to understand modern computer science and economical sciences. Part I is concerned with linear algebra including the
basic algebraic structures, vector spaces and linear mappings. These structures are important for example in computer science.

Media
blackboard, data projector and transparencies if necessary

Basic literature
None.

Complementary literature
• Offer for interested and top students
 Ammann / Escher: Analysis I–III, Birkhäuser
• Tutorials / simpler literature alternatives
 Henze / Last: Mathematik für Wirtschaftsingenieure I–II, Teubner
 Ansorge / Oberle: Mathematik für Ingenieure I–III, Wiley
Course: Mathematics II for Information Engineering and Management Course key: [01877]

Lecturers: Andreas Rieder, Christian Wieners, Nicolas Neuss
Credit points (CP): 8 Hours per week: 4/2/2
Term: Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Mathematics II [IW1MATH2] (S. 31)

Learning Control / Examinations
The assessment in this module consists of
1. a graded certificate of exercise following §4(2), 3 of the examination regulation from the exercises to mathematics II and
2. a written examination of 60 minutes on the lectures mathematics II following §4(2), 1 of the examination regulations.

The grade of the module is computed as a weighted sum, where the grade of the written examination has a weight of 80% and the certificate a weight of 20%.

Prerequisites
Mathematics I

Conditions
None.

Learning Outcomes
The aim of the course “Mathematics I” is to impart a comprehension of basic methods in analysis.

Content
The lectures in mathematics give an overview in basic mathematical knowledge which is required to understand modern computer science and economical sciences. Part II consists of analysis including an introduction into the calculus of functions of one or several variables.

Media
blackboard, data projector and transparencies if necessary

Basic literature
none

Complementary literature
• Offer for interested and top students
 Ammann / Escher: Analysis I–III, Birkhäuser
• Tutorials / simpler literature alternatives
 Henze / Last: Mathematik für Wirtschaftsingenieure I–II, Teubner
 Ansorge / Oberle: Mathematik für Ingenieure I–III, Wiley
6.2 Courses of term 5-6

Course: Data Protection Law

Course key: [24018]

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Intellectual Property and Data Protection [IW3JURA] (S. 83)

Learning Control / Examinations
Assessment will consist of a written exam (following §4(2), 1 SPO).

Prerequisites
Keine.

Conditions
None.

Learning Outcomes
Increasing significance of information technology for data processing and interconnectedness of the society by means of telecommunication does not only enhance the social and economical relevance of data in general, it raises the question about legal rules for the protection of personal data as well. The problem for those who are responsible for the application of law is that national rules in this area are in constant flux due to technological progress and Europeanisation of law. Additionally there is a vast number of sector-specific regulation (such as labour law). Bearing all this in mind, the lecture’s main focus is the presentation of the basic principles of the German Federal Act on Data Protection (Bundesdatenschutzgesetz). In doing so, new concepts of data protection like self-data protection or system data protection will be analysed. A further focal point is the examination of evolution of sector-specific data protection law, considering as example regulation of data protection in connection with teleservice or mediaservice. Students should learn how to negotiate their ways in the interaction of different levels of legal norms and solve simple problems of data protection law.

Content
After illustrating contents and history of data protection law there will be presented backgrounds with respect to Community law and under constitutional law. Further on, the German Federal Act on Data Protection will be focussed. At this will be set forth basic principles of regulation (such as necessity), personalised data as an object of regulation, rights of those who are affected as well as the legitimacy of different procedures of data processing. Organisational regulations, particularly data security official will be approached as well. Further on, in a case study current concepts of data protection and the problem of video surveillance will be discussed. Finally, there are three units on sector-specific regulation of telecommunication and teleservice / mediaservice.

Media
abstracts, sketches on blackboard, slides

Basic literature
Will be announced in the course.

Complementary literature
Will be announced in the course.

Remarks
In cooperation with the House of Competence, Students should be rhetorical trained asking and answering questions (short-answer-and-question-technique). Therefor most likely a coach will attend several lessons.
Course: Industrial Property and Copyright Law

Lecturers: Thomas Dreier
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Intellectual Property and Data Protection [IW3JURA] (S. 83)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to give students an overview of the law of intellectual property. The course focuses on patent law, trademark law, copyright law and also presents other laws of industrial property, including the additional legal protection by unfair competition law. Students shall understand the differences between registration and non-registration rights. Key concepts such as territoriality, conditions for protection, exclusive rights, limitations and exceptions, infringement and sanctions will be discussed. In addition, the focus will be on licensing of IP rights. The course covers national, european and international IP law.

Content
The course gives an introduction in to the legal protection of intellectual property. The different rationals for granting legal protection to immaterial goods will be explained, as well as the difference between registration and non-registration rights, and the system of international IP protection on the basis of the principle of territoriality will be explained. Following, the different IP rights will be discussed with regard to their respective conditions and scope of protection. An overview of licensing and of the sanctions in case of infringement of IP rights will be given.

Media
Slides.

Basic literature
Ilzhöfer, Volker Patent-, Marken- und Urheberrecht Verlag Vahlen, 7current edition

Complementary literature
Additional literature tba
Course: Networked IT-Infrastructures

Lecturers: Wilfried Juling
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Information Services in Networks [IW3INAIFB4] (S. 64)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
Dependencies according to the module.

Learning Outcomes
The goal of this lecture is to introduce the fundamental models, approaches and technologies used in today’s digital telecommunication networks. The topics covered in this lecture are strongly aligned with the OSI Reference Model, a broadly accepted layer model for describing communication systems.

Content
The lecture introduces formal methods to describe communication in general. After a brief discussion covering the basics of signal processing as well as physical constraints of telecommunication technologies, the lecture follows the architectural pattern of the OSI Reference Model to point out its given systematics. Based on elementary network technologies like Ethernet and Token Ring the lecture outlines essential problems concerned with frame alignment, shared or controled medium access or error processing. Further topics deal with the realization of worldwide networks regarding protocols, technologies and algorithms used to construct them. Particularly, technical solutions and algorithms from the TCP/IP stack of the Internet Reference Model are discussed. Furthermore, the functionality and application scope of modern components to interconnect heterogenous networks are presented. Finally dedicated communication technologies like ISDN and higher level application protocols like HTTP or SMTP are introduced to indicate the pervasion of network communication technologies towards people.

Media
Slides.

Basic literature

Complementary literature
Course: Seminar in Telematics

Lecturers: Martina Zitterbart, Hannes Hartenstein
Credit points (CP): 4 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module Informatics [IW3SEMINFO] (S. 33)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students have the opportunity
• to do a literature research starting from a given subject to identify relevant literature and to review, and evaluate it.
• to identify independently issues that arise from subdomains of Telematics and to classify methods of resolution found in the literature.
• to generate scientific presentations. Techniques are introduced that help to present a subject before an audience in a proper way. Part of this is also to present the topic in a given time frame and to answer questions that may arise from the topic.
• to identify open questions of other presentations and to contribute them to a discussion that follows each presentation.
• to present the results of the literature research in a written document in a way that is common practice for scientific publications.

Content
In this seminar, the focus lies on specific subjects that were partly introduced in the respective lectures and aims to discuss them more in detail. The following subjects are addressed:
• Future Internet: The focus of the seminar is on concepts for enabling the internet to cope with current and future requirements, including, e.g., mobility support, quality of service, and security. The discussed approaches span from incremental improvements of the current internet to a clean slate approach.
• Sensor networks: The seminar covers different new research results, e.g. concerning sensor architecture, communication technologies, special routing procedures, data aggregation, safety and algorithms in sensors networks etc.

starting WS 10/11:
• Network Security and Hacking Prevention: Attacks aimed at the infrastructure and applications of the Internet are the subject of this seminar. Having a firm understanding of the weaknesses, the students will examine protocols, mechanisms, and tools which can be used to provide secure communication.
Course: Algorithm Design

Lecturers: Dorothea Wagner, Peter Sanders
Credit points (CP): 6
Hours per week: 3/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Algorithms II [IW3INALG2] (S. 73)

Learning Control / Examinations

The assessment is explained in the module description.

Prerequisites

None.

Conditions

None.

Learning Outcomes

The students

- get a deep insight into the most important subareas of algorithmics,
- get a broad algorithmic understanding,
- get the ability to understand and determine the running times of algorithms,
- get the knowledge of fundamental algorithms and data structures, as well as the ability to apply them to new problems.

Content

The Lecture “Algorithm Design” (german name is “Algorithmentechnik”) deepens the most important subareas of algorithmics. This, for example, includes graph algorithms, advanced data structures, design principles for algorithms, algorithmic geometry, and combinatorial optimization. Moreover, different methodic approaches are deepened. For example, randomized algorithms, approximation algorithms, parallel algorithms, online algorithms, and algorithm engineering.

Basic literature

None

Complementary literature

Course: Practical Course in Algorithm Design

Lecturers: Peter Sanders, Dorothea Wagner, Marcus Krug
Credit points (CP): 6 Hours per week: 4
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Praktikum Algorithmentechnik [IW3INALGOP] (S. 74)

Learning Control / Examinations

Prerequisites
Lecture Algorithmentechnik

Conditions
None.

Learning Outcomes
The purpose of the practical course in algorithm design is to make learned knowledge work. The students are given varying topics from algorithmics, which they have to implement in small working groups. Possible Topics are, for example, algorithms for flow problems, shortest path problems, or clustering techniques. In this way students learn to write efficient code.

Content
In the practical course Algorithm Engineering the students are given miscellaneous questions from algorithmics, which they have to implement independently in small working groups. The main focus lies on object oriented programming with Java or C++. Linear programming may also occur.
Course: Seminar in Algorithm Design

Course key: [24079s]

Lecturers: Dorothea Wagner
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module Informatics [IWSEMINFO] (S. 33)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students shall
- conduct literature research starting from a given topic, identify, locate, evaluate and summarize relevant literature.
- compose their written elaboration (and later their bachelor/masters thesis) with a minimum of introductory effort, and thereby respect given templates similiar to those enforced in standard scientific publication processes.
- devise a presentation in the context of the scientific topic. To this end, techniques are presented that enable the processing and the presentation of content in a way suitable for the audience.
- present their research results in a written form similar to standard scientific dissemination.

Content
Various current topics that build upon the contents of the associated lectures.
Course: Parallel Algorithms

Lecturers: Peter Sanders
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Algorithm Design [IW3INALGT] (S. 72)

Learning Control / Examinations

Prerequisites
Knowledge from lecture Algorithmentechnik is required.

Conditions
None.

Learning Outcomes
The Students are to learn basic techniques for the design of parallel algorithms as well as a selection of important parallel algorithms.

Content
Models and their relationship to real machines:
- Shared memory - PRAM
- Message passing, BSP
- Circuits
Analysis: speedup, efficiency, scalability
Basic techniques:
- SPMD
- Parallel divide and conquer
- Collective communication
- Load balancing
Examples of real algorithms:
- Collective Communication (also for large data sets): broadcast, reduce, prefix sums, all-to-all exchange
- Matrix arithmetic
- Sorting
- List ranking
- Minimum spanning trees
- Load balancing: master worker with adaptive problem size, random polling, random distribution

Media
Slides (pdf), scientific articles

Complementary literature
- Sanders, Worsch. Parallele Programmierung mit MPI – ein Praktikum
- Kumar, Grama, Gupta und Karypis. Introduction to Parallel Computing.
- JáJá. An Introduction to Parallel Algorithms
Course: Workflowmanagement-Systems

Lecturers: Jutta Mülle
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Information Systems [IW3INGIS] (S. 68)

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture Communications and Database Systems [24574].

Conditions
None.

Learning Outcomes
A goal of the course is that the participants are able to model workflows, to explain modelling aspects and their relationships, to compare modelling methods, and to evaluate the usability of these methods in different application areas. They should understand the technical construction of workflow-management systems with the most important components and different architectures and implementation alternatives. Finally, the participants should have obtained an overview on actual relevant standardization proposals and how to use these approaches, and they should be aware of actual research topics.

Content
Workflow Management Systems (WFMS) support the management of business processes according to pre-defined process descriptions. Managing processes flexibly, i.e., handle deviations, e.g., in order to catch exceptions, adapt processes to modified process environments or to support ad-hoc workflows, becomes more and more important.

The course starts with discussing WFMS in the context of business-information systems and their relationship with the more common business-process modelling. Petri nets and pi-calculus are introduced as basic formalisms. Then, methods to model workflows and the design process for workflow-management applications are presented in detail and supplemented with exercises.

An advanced aspect is new research in WFMS technology. In particular, the use of internet techniques like web services and standardization approaches for process modeling, orchestration, and choreography in service-oriented architectures will be presented.

In the realization part of the course, various implementation techniques and architectural issues to realize workflow-management systems as well as diverse system types and concrete workflow-management systems are presented.

Media
Slides.

Basic literature

Complementary literature
Course: Data Warehousing and Mining
Course key: [24118]

Lecturers: Klemens Böhm
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Information Systems [IW3INGIS] (S. 68)

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture Communications and Database Systems [24574].

Conditions
This course cannot be combined with the courses Knowledge Discovery [25742] and Data Mining [25375].

Learning Outcomes
At the end of the lecture, the participants should be aware of – and able to explain – the necessity of data warehousing and of data mining concepts. They should be able to assess and compare different approaches of management and analysis of large datasets with respect to efficiency and applicability. The participants should have gained an insight into the current research issues in the area of data warehousing and data mining and should understand which problems are currently unsolved.

Content
Data warehouses and data mining raise much interest from practitioners with huge amounts of data, e.g., in retail, finance and the insurance sector. Both warehousing and mining are motivated by the desire for keeping track of large and possibly distributed datasets and for extracting interesting relations from such data, ideally with minimal effort. A data warehouse is a repository which is fed with data from one or more operational database systems. The data is preprocessed allowing for a fast evaluation of complex analytical queries (OLAP, Online Analytical Processing). In contrary, data mining provides techniques for discovering patterns in large datasets.

Media
Slides.

Basic literature
• Jiawei Han, Micheline Kamber: Data Mining: Concepts and Techniques. 2nd edition, Morgan Kaufmann Publishers, March 2006.

Complementary literature
Further literature will be mentioned at the end of each chapter in the lecture slides.
Course: **Web Engineering**

Course key: [24124]

Lecturers: Martin Nußbaumer

Credit points (CP): 4

Hours per week: 2/0

Term: Wintersemester

Level: 4

Teaching language: Deutsch

Part of the modules: Information Services in Networks [IW3INAIFB4] (S. 64)

Learning Control / Examinations

The assessment is explained in the module description.

Prerequisites

None.

Conditions

None.

Learning Outcomes

- Students know fundamentals as well as current methodologies and techniques in the field of Web Engineering
- Students have gained insight into existing Web-oriented application platforms and development frameworks, and have the basic knowledge for system design close to current practices.
- Students can apply methods for analyzing current standards and technologies of the Web. Students are able to understand and interpret scientific papers and standard specifications and are confident in using the domain-specific terminology.
- Students are able to analyze, structure and describe problems in the field of Web Engineering as well as to design Web-based system architectures.

Content

This lecture will discuss the systematic construction of Web-based applications and systems by focusing on the different phases and aspects of the Web application lifecycle. It helps students to look at the Web phenomenon from different perspectives - e.g. as a Web designer, analyst, architect, component engineer, program manager, product manager or CIO. Students learn how to engineer Web applications and agile systems from requirements engineering, planning, design, development, testing, deployment and up to operation, maintenance and evolution. Many examples are shown and discussed, demonstrating the need for expecting change and staying agile. As this is not a programming course, students will be introduced to the core technology aspects and are encouraged to consolidate the details.

Media

Slides

Basic literature

Will be announced in the lecture.
Course: Power Management

Lecturers: Frank Bellosa
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Energiebewusste Betriebssysteme [IW3INEBB] (S. 81)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Telematics

Lecturers: Martina Zitterbart
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Telematics [IW3INTM] (S. 70)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
This course details selected protocols, architectures, techniques, and algorithms, which were already presented in the communications part of the course Communication and Database Systems [24574]. Thus, overall knowledge and knowledge about problems that occur within a world-wide and dynamic network as well as solutions that are applied in order to avoid these problems is imparted in this course.

Content
This course addresses protocols, architectures, techniques, and algorithms that are used, e.g., for Internet routing and establishing of reliable end-to-end communication associations. In addition to different media access control mechanisms in local area networks further communication systems, e.g., line-switched ISDN, are detailed. It is intended that students additionally understand which possibilities for network management and administration currently exist.

Media
Slides.

Basic literature

Complementary literature
- Internet standards
- Selected journal articles
Course: Multimedia Communications

Lecturers: Roland Bless
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Telematics II [IW3INTM2] (S. 71)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
The communication part of Kommunikation und Datenhaltung (recommended).

Conditions
None.

Learning Outcomes
Objective of the lecture is to present techniques, protocols, and latest developments in Internet-based multimedia communications. Especially in the context of increasing amount of voice communications over the Internet (Voice over IP), key technologies and protocols such as RTP and SIP are intensively discussed so that their function and principles are understood in detail.

Content
This lecture describes techniques and protocols to transmit audio and video data over the Internet. Topics are audio/video conferences, audio/video transport protocols, Voice over IP SIP for signaling, establishment and control of multimedia sessions, RTP for transport of multimedia data over the Internet, RTSP for control of A/V streams, ENUM, A/V Streaming, Middleboxes and Caches, DVB, and Video on Demand.

Media
Slides. Protocol traces.

Basic literature

Complementary literature
Alan B. Johnston SIP – understanding the Session Initiation Protocol 2nd ed., Artech House, 2004
Course: Consulting in Practice

Lecturers: Klemens Böhm, Dürr
Credit points (CP): 1 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Information Systems [IW3INGIS] (S. 68)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
At the end of the course, the participants
• have gained knowledge and understanding for the activities of the consulting process in general,
• have gained function-specific knowledge and understanding of IT consulting,
• have an overview about consulting companies,
• know concrete consulting examples,
• have experienced how effective teams work and
• have got an insight into the professional field “consulting”.

Content
The market for consulting services grows annually by 20% and is therefore one of the leading growth sectors and professional fields in the future. This trend is in particular driven by the IT industry. Here, widely used standard software moves the focus of the future professional field from software development to consulting. In this context, consulting services have usually a broad definition, reaching from pure IT-focused consulting (e.g., deployment of SAP) to strategic consulting (strategy, organisation etc). In contrast to common rumors, a qualification in business studies is not a must. This opens up a diversified and exciting field with exceptional development perspectives for computer science students. The copurse deals thematically with the two fields consulting in general and function-specific consulting (with IT consulting as an example).

The structure of the course is oriented along the phases of a consulting project:

• Diagnosis: The consultant as an analytic problem solver.
• Strategic adjustment/redesign of the core processes: Optimisation/redesign of essential business functionality to solve the diagnosed problems in cooperation with the client.
• Implementation: Installation of the solutions in the client’s organisation for assuring the implementation.

Emphasised topics in the course are:
• Elementary problem solving: Problem definition, structuring of problems and focussing through the usage of tools (e.g., logic and hypothesis trees), creative techniques, solution systems etc.
• Obtaining information effectively: Access of information sources, interview techniques etc.
• Effective communication of findings/recommendations: Analysis/planning of communication (media, audience, formats), communication styles (e.g., top-down vs. bottom-up), special topics (e.g., arrangement of complex information) etc.
• Efficient teamwork: Tools for optimising efficient work, collaboration with clients, intellectual and process leadership in the team etc.

Media
Slides
Course: Network and IT-Security Management

Lecturers: Hannes Hartenstein
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Telematics II [IW3INTM2] (S. 71)

Learning Control / Examinations

Prerequisites
Basics in computer networks, according to the lectures Kommunikation und Datenhaltung [24574] and Vernetzte IT-Infrastrukturen [24074] respectively are required.

Conditions
Dependencies according to the module description.

Learning Outcomes
The goal of this lecture is to introduce the basics of network and IT-security management. Technical as well as underlying management concepts should be described.

Content
The lecture covers architectures, models, protocols and tools for controlling and monitoring of heterogeneous networks. Additionally, issues related to security and reliability are also covered. The lecture presents technical solutions as well as corresponding management concepts. The first part of the lecture introduces management architecture in particular the Internet management architecture based on the SNMP protocol. Afterwards corresponding tools, platforms, and operational implementations are presented. Furthermore public IP coordination and current trends are described. In the IT-Security management part of the lecture the concept of a security process is introduced based on the BSI Grundschutz. Additional topics are access and identity management as well as firewalls, intrusion detection and prevention. Besides theoretical method and concepts, practical examples are shown.

Media
Slides

Basic literature

Complementary literature
Course: Randomized Algorithms

Lecturers: Thomas Worsch
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Algorithm Design [IW3INALGT] (S. 72)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students know the important approaches and techniques for the use of randomization in algorithms, as well as tools for their analysis.

Students are able to find weak points in deterministic algorithms, to develop randomized approaches to eliminate them, and to assess them using tools from probability theory.

Content
Randomised algorithms are not deterministic. Their behavior depends on the outcome of random experiments. One of the first uses is Rabin’s randomized test for primality. Meanwhile for a multitude of problems randomized algorithms have been described which are faster (at least in some sense) than deterministic algorithms. In addition sometimes randomized algorithms are easier to understand and/or implement then deterministic algorithms.

During the course not only different kinds of randomized algorithms (Las Vegas, Monte Carlo, ...) are presented; the foundations from probability theory needed e.g. for the analysis of the time complexity are presented, too. Also, important concepts like Markov chains are treated. Since stochastic methods are gaining importance in more and more areas in computer science, the course will also be useful outside the area of randomized algorithms.

Topics: probabilistic complexity classes, routing in hypercubes, game theory, random walks, randomized graph algorithms, randomized hashing, randomized online algorithms

Media
lecture notes and slides in pdf format;

Basic literature
• J. Hromkovic : Randomisierte Algorithmen, Teubner, 2004
• M. Mitzenmacher, E. Upfal: Probability and Computing, Cambridge Univ. Press, 2005
• R. Motwani, P. Raghavan: Randomized Algorithms, Cambridge Univ. Press, 1995

Complementary literature
• E. Behrends: Introduction to Markov Chains, Vieweg, 2000
• A. Borodin, R. El-Yaniv: Online Computation and Competitive Analysis, Cambridge Univ. Press, 1998
Course: Power Management Praktikum

Lecturers: Frank Bellosa, Merkel
Credit points (CP): 3
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Energiebewusste Betriebssysteme [IW3INEBB] (S. 81)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Programming Paradigms

Lecturers: Gregor Snelting, Ralf Reussner
Credit points (CP): 6 Hours per week: 3/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Programming Paradigms [IW3IWPROGP] (S. 79)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student will

• gain insight in the most important programming paradigms
• learn the handling of various programming concepts
• be able to analyze methods of system developments

Content
The students should learn advanced skills in programming. This may include certain paradigms (e.g., functional programming), specific areas in programming (e.g., parallel programming) or machine-oriented languages (e.g., C/C++), even knowledge concerning the implementation of programming languages. Basing on the courses Programming, Software Engineering I and Software Engineering in Practice, this lecture teaches advanced knowledge.
Course: Applied Telematics

Lecturers: Martina Zitterbart
Credit points (CP): 2 Hours per week: 1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Telematics [IW3INTM] (S. 70)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
This course details selected protocols, architectures, techniques, and algorithms, which were already presented in the course Telematics. It is intended to internalize the learned concepts by applying them in the exercise course or in the practical project, which takes place during the whole term.

Content
This course addresses protocols, architectures, techniques, and algorithms that are used, e.g., for Internet routing and establishing of reliable end-to-end communication associations. In addition to different media access control mechanisms in local area networks further communication systems, e.g. line-switched ISDN, are detailed. It is intended that students additionally understand which possibilities for network management and administration currently exist.

Media
Practice sheets

Basic literature

Complementary literature
• standards in the internet
• articles in journals
Course: Database Systems

Lecturers: Klemens Böhm
Credit points (CP): 4 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Communication and Database Systems [IW3INKD] (S. 69)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
Recommendation: It is recommended but not required to participate at lectures covering communication networks, system architecture and software engineering.

Conditions
None.

Learning Outcomes
The student
• is able to explain the benefits of database technology,
• has understood the development of database applications including its models and methods,
• is able to set up and query simple databases,
• is familiar with the terminology and the fundamentals of the underlying theory.

Content
Database systems are one of the crucial software fundamentals in modern information systems. Therefore, they belong to the core subjects in university curriculums in the area of computer science. The goal of the lecture is to obtain the basic knowledge to work with database systems. Key aspects are database models for design and implementation (ER models, relational model), languages for database systems (SQL) and its theoretical foundation (relational algebra) as well as aspects of transaction processing, data integrity and views.

Media
Slides.

Basic literature
• Andreas Heuer, Kai-Uwe Sattler, Gunther Saake: Datenbanken - Konzepte und Sprachen, 3. Aufl., mitp-Verlag, Bonn, 2007
• Alfons Kemper, André Eickler: Datenbanksysteme. Eine Einführung, 7. Aufl., Oldenbourg Verlag, 2009

Complementary literature
Course: Software Engineering I

Lecturers: Walter F. Tichy, Höfer, Meder
Credit points (CP): 6 Hours per week: 3/1/2
Term: Sommersemester Level: 1
Teaching language: Deutsch
Part of the modules: Software Engineering I [IW3INSWT1] (S. 77)

Learning Control / Examinations
The assessment will consist of a 60 minute written exam according to § 4 Abs. 2 Nr. 1 SPO.
The grade of the module is the grade of the written exam.

Prerequisites
The passing of the module Grundlagen der Informatik [IW1INF1] is obligatory.

Conditions
None.

Learning Outcomes

Content

Media
slides, tutorial papers

Basic literature

Complementary literature

- Design Patterns: Elements of Reusable Object-Oriented Software / Gamma, Erich and Helm, Richard and Johnson, Ralph and Vlissides, John, Addison-Wesley 2002 ISBN 0-201-63361-2
Course: Introduction in Computer Networks

Course key: [24519]

Lecturers: Hannes Hartenstein
Credit points (CP): 4 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Communication and Database Systems [IW3INKD] (S. 69), Telematics [IW3INTM] (S. 70)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature

Complementary literature

Course: Rechnerstrukturen

Lecturers: Jörg Henkel, Wolfgang Karl
Credit points (CP): 6
Hours per week: 3/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Rechnerstrukturen [IW3INRS] (S. 82)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature

Course: Network Security: Architectures and Protocols

Lecturers: Marcus Schöller
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Telematics II [IW3INTM2] (S. 71)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course aims at teaching fundamental concepts of the design of secure communication protocols. More advanced topics include existing security protocols of the internet and local networks.

Content
The lecture Network Security: Architectures and Protocols considers challenges and technologies in the design of secure communication protocols, as well as topics of data security and privacy. Complex systems like Kerberos will be discussed explicitly and their design decision considering security aspects will be outlined. A special focus is set on PKI-basics, infrastructures, as well as on specific PKI-formats. Furthermore, an emphasis is set on the commonly used security protocols IPSec, TLS/SSL, and protocols of infrastructure security.

Media
Slides.

Basic literature

Complementary literature
- Carlisle Adams and Steve Lloyd. Understanding PKI. Addison Wesley, 2003
Course: Data Privacy Protection in Interconnected Information Systems
[24605]

Lecturers: Buchmann
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Information Systems [IW3INGIS] (S. 68)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
At the end of the lecture, the participants are aware of the objectives and basic principles of informational self-determination. The participants are able to name and explain the fundamental challenges and impacts of data privacy protection for both individuals and society. Furthermore, the participants are expected to know and to apply current methods and technologies for data privacy protection, e.g., spatial and temporal cloaking. The objective of the lecture is to enable the participants to assess and analyze the risks of unknown technologies towards privacy, to propose methods that can be expected to deal with such risks, and to measure the effectiveness of the methods proposed.

Content
This lecture is intended to explain the impacts of interconnected information systems on data privacy. The lecture addresses both current information systems that can be observed on the Internet and information systems that are under development yet. In order to tackle these challenges, a number of technical methods have been proposed and discussed in research and practice. The lecture introduces such approaches, and points out how effective they are in ensuring data privacy. An examination of the social implications of data privacy challenges and privacy enhancing technologies concludes the lecture.

Basic literature
Will be announced within the lecture slides.
Course: Algorithms for Planar Graphs

Lecturers: Dorothea Wagner
Credit points (CP): 3 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Algorithm Design [IW3INALGT] (S. 72)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The module aims at providing students with an overview on the field of planar graphs and especially focuses on algorithmic aspects. The students obtain a systematic understanding of the central concepts and techniques for tackling algorithmic questions on planar graphs, which builds upon the students' knowledge in the areas of graph theory and algorithmics. In this course problems are reduced to their algorithmic core and are afterwards, if possible from a complexity theoretical point of view, solved efficiently. The students learn to apply the presented methods and techniques autonomously to related problems. With the obtained knowledge they are able to to work on current research problems in the area of planar graphs.

Content
A planar graph is defined as a graph that can be drawn in the plane such that no edges intersect. Planar graphs have many interesting properties that can be used to solve several problems in a particularly simple, fast and elegant way. In addition, some problems that are (NP-)hard in general graphs can be efficiently solved in planar graphs. The lecture presents a selection of these problems and corresponding algorithmic approaches.

Complementary literature
Course: Mobile Communications

Lecturers: Oliver Waldhorst
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Telematics II [IW3INTM2] (S. 71)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of the course is to introduce the technical foundations of mobile communication systems (signal propagation, medium access, etc.). An additional focus is on topics of current research (Mobile IP, Ad hoc Networks, Mobile TCP, etc.).

Content
The course “Mobile Communications” uses prominent examples for systems of currently deployed mobile communication systems, to explain typical architectures of such systems, e.g. mobile telecommunication systems, wireless personal, local, and metropolitan area networks. Additional topics related to current research efforts include TCP/IP-based communication over mobile networks and positioning systems. The goal of the course is not to teach facts on particular architectures and standards, but to show typical problems in mobile communications and present typical solutions. The fundamental principles of digital wireless transmissions including the frequency bands, signal propagation, modulation, and multiplexing are explained by application examples.

Media
Slides.

Basic literature
J. Schiller; Mobilkommunikation; Addison-Wesley, 2003.

Complementary literature
H. Kaaranen, A. Ahtainen, et. al., UMTS Networks – Architecture, Mobility and Services, Wiley Verlag, 2001.
What You Should Know About the ZigBee Alliance http://www.zigbee.org.
Course: Aktuelle Fragen des Datenschutzrechts

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module Law [IW3SEMJURA] (S. 35)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Security

Course key: [24941]

Lecturers: Jörn Müller-Quade
Credit points (CP): 6 Hours per week: 3/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Security [IW3INSICH] (S. 75)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- knows the theoretic background and the basic mechanisms of computer security and cryptography
- understands the mechanisms of computer security and can explain them,
- can read and understand the current scientific papers,
- can evaluate the safety procedures and can recognize hazards,
- can adapt mechanisms of computer security to new environment.

Content
- Theoretical and practical aspects of computer security
- Development of safety goals and classification of threats
- Presentation and comparison of different formal access control models
- Formal description of authentication systems, presentation and comparison of different authentication methods (passwords, biometrics, challenge-response protocols)
- Analysis of typical vulnerabilities in programs and web applications and development of appropriate protective protection methods / avoidance strategies
- Introduction to key management and Public Key Infrastructure
- Presentation and comparison of current safety certifications
- Block ciphers, hash functions, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (e.g., Diffie-Hellman)
- Furthermore, an introduction to provable security is provided, which presents some of the key security concepts (e.g. IND-CCA).
- Presentation of combinations of cryptographic modules using currently used protocols such as Secure Shell (SSH) and Transport Layer Security (TLS).
Course: Economics III: Introduction in Econometrics

Course key: [25016]

Lecturers: Markus Höchstötter

Credit points (CP): 5
Hours per week: 2/2

Term: Sommersemester
Level: 3

Teaching language: Deutsch

Part of the modules: Statistical Applications of Financial Risk Management [IW3VWL] (S. 57)

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
Knowledge of the lectures Statistics I + II is required.

Conditions
None.

Learning Outcomes
Familiarity with the basic concepts and methods of econometrics

Preparation of simple econometric surveys

Content
Simple and multiple linear regression (estimating parameters, confidence interval, testing, prognosis, testing assumptions)

Multi equation models

Dynamic models

Basic literature
- Schneeweiß: Ökonometrie ISBN 3-7908-0008-2

Complementary literature
Additional literature will be suggested in course
Course: Private and Social Insurance

Lecturers: Wolf-Rüdiger Heilmann, Besserer
Credit points (CP): 2.5 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Insurance Markets and Management [IW3BWLFBV4] (S. 50)

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation). The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Getting to know basic terms and functioning of private and social insurance.

Content
Basic terms of insurance, i.e. characteristics, judicial and political background and functioning of private and social insurance as well as their economic and societal and political meaning.

Complementary literature
- Jahrbücher des GDV. Die deutsche Versicherungswirtschaft.

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science.
Course: Principles of Insurance Management

Lecturers: Ute Werner
Credit points (CP): 4.5
Hours per week: 3/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an oral presentations (incl. elaboration) within the lecture (according to Section 4 (2), 3 of the examination regulation) and an oral exam at the end of the semester (according to Section 4 (2), 2 of the examination regulation). The overall grade consists of the valuation of the oral presentation incl. elaboration (50 percent) and the valuation of the oral exam (50 percent).

Prerequisites
None.

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Basic literature
- U. Werner. Einführung in die Versicherungsbetriebslehre. Skript zur Vorlesung.

Complementary literature
Will be announced in the lecture.

Remarks
To attend the course please register at the secretariat of the chair of insurance science.
Course: Seminar in Applied Informatics

Lecturers: Andreas Oberweis, Hartmut Schmeck, Detlef Seese, Wolffried Stucky, Rudi Studer, Stefan Tai
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Semantic Web and Applications [IW3INAIFB3] (S. 63)

Learning Control / Examinations
The assessment is done according to §4(2), 3 of the examination regulation in form of an evaluation of the seminar presentation and a written seminar report. The weighting of the individual marks (presentation and report) is announced at the beginning of the seminar.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are able to
• do literature search based on a given topic: identify relevant literature, find, assess and evaluate this literature.
• write the seminar thesis (and later the Bachelor-/Masterthesis) with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
• give presentations in a scientific context in front of an auditorium. These techniques are presented and learn during the seminar.
• present results of the research in written form generally found in scientific publications.

Content
The seminar intensifies and extends specific topics which are discussed within corresponding lectures. The actual topics are changing each semester. Knowledge of these lecture topics is an advantage but not a precondition.

Media
Slides, Access to internet resources

Basic literature
Literature will be given individually.

Remarks
The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre
Course: Nonlinear Optimization I

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Methodical Foundations of OR [IW3OR6] (S. 59), Stochastic Methods and Simulation [IW3OR7] (S. 60)

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in the semester of the lecture and in the following semester.
The examination can also be combined with the examination of Nonlinear Optimization II [25113]. In this case, the duration of the written examination takes 120 minutes.
In a combined examination of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more than 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.
In a combined examination of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more than 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows and understands fundamentals of nonlinear optimization,
• is able to choose, design and apply modern techniques of nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. The lecture is structured as follows:
• Introduction, examples, and terminology
• Existence results for optimal points
• First and second order optimality conditions for unconstrained problems
• Optimality conditions for unconstrained convex problems
• Numerical methods for unconstrained problems (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

Constrained problems are the contents of part II of the lecture.
The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
• W. Alt, Nichtlineare Optimierung, Vieweg, 2002
• M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Nonlinear Optimization II

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Methodical Foundations of OR [IW3OR6] (S. 59)

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to §4(2), 1 of the examination regulation. The exam takes place in the semester of the lecture and in the following semester. The exam can also be combined with the examination of Nonlinear Optimization I [25111]. In this case, the duration of the written exam takes 120 minutes. In a combined exam of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more than 50% of the exercise points, the grade of the passed exam is improved by a third of a grading step. In a combined exam of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more than 50% of the computer exercise points, the grade of the passed exam is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- knows and understands fundamentals of nonlinear optimization,
- is able to choose, design and apply modern techniques of nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. Part I of the lecture treats unconstrained optimization problems. Part II of the lecture is structured as follows:
- Topology and first order approximations of the feasible set
- Theorems of the alternative, first and second order optimality conditions for constrained problems
- Optimality conditions for constrained convex problems
- Numerical methods for constrained problems (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Seminar in Continuous Optimization

Course key: [25131]

Lecturers: Oliver Stein
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations
The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation.
The total grade is composed of the equally weighted grades of the written and oral assessments.
The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the seminar presentation.

Prerequisites
See corresponding module information.

Conditions
Attendance is compulsory.
Preferably at least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes
The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application.
The student is introduced to the style of scientific work. By focussed treatment of a scientific topic the student learns the basics of scientific investigation and reasoning.
For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.
With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also rhetoric abilities may be improved.

Content
The current seminar topics are announced under http://kop.ior.kit.edu at the end of the preceding semester.

Basic literature
References and relevant sources are announced at the beginning of the seminar.
Course: Global Optimization I

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. The examination can also be combined with the examination of Global Optimization II [25136]. In this case, the duration of the written examination takes 120 minutes.

In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more then 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.

In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more then 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

• knows and understands the fundamentals of deterministic global optimization,
• is able to choose, design and apply modern techniques of deterministic global optimization in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

Part I of the lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:

• Introduction, examples, and terminology
• Existence results
• Optimality in convex optimization
• Duality, bounds, and constraint qualifications
• Numerical methods

Nonconvex optimization problems are treated in part II of the lecture.
The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
• W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
• C.A. Floudas Deterministic Global Optimization Kluwer 2000
• R. Horst, H. Tuy Global Optimization Springer 1996
• A. Neumaier Interval Methods for Systems of Equations Cambridge University Press 1990

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Global Optimization II

Lecturers: Oliver Stein

Credit points (CP): 4.5 Hours per week: 2/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: Methodical Foundations of OR [IW3OR6] (S. 59)

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation.
The examination is held in the semester of the lecture and in the following semester.
The examination can also be combined with the examination of Global Optimization I [25134]. In this case, the duration of the written examination takes 120 minutes.
In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more then 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.
In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more then 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows and understands the fundamentals of deterministic global optimization,
• is able to choose, design and apply modern techniques of deterministic global optimization in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.
The global solution of convex optimization problems is subject of part I of the lecture.
Part II of the lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:
• Introduction and examples
• Convex relaxation
• Interval arithmetic
• Convex relaxation via αBB method
• Branch and bound methods
• Lipschitz optimization

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
• W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
• C.A. Floudas Deterministic Global Optimization Kluwer 2000
• R. Horst, H. Tuy Global Optimization Springer 1996
• A. Neumaier Interval Methods for Systems of Equations Cambridge University Press 1990

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Marketing and Consumer Behavior

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Foundations of Marketing [IW3BWLMAR] (S. 42)

Learning Control / Examinations

Prerequisites
See corresponding module description.

Conditions
See corresponding module description.

Learning Outcomes

Content
Starting from the S-O-R paradigm where S stands for “stimuli”, O for “organism”, and R for “reactions”, aspects of consumer behavior are explained and possibilities are provided how marketing activities can be used to create desired influences. S-R models describe how consumer reactions depend on stimuli. Cognitive processes and psychical states help to explain how the (unobservable) interior of the organism contributes to the interpretation of reactions. In this context the adequate combination of available marketing instruments (price, product, promotion, place) will be discussed.

Basic literature
Further literature references are announced in the script.
Course: Modern Market Research

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Marketing [IW3BWLMMAR] (S. 42)

Learning Control / Examinations
See module description.

Prerequisites
Basic knowledge of statistics.

Conditions
None.

Learning Outcomes

Content

Basic literature
Further literature references are announced in the script.
Course: Marketing and Operations Research

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Marketing [IW3BWLMAR] (S. 42)

Learning Control / Examinations
Prerequisites
Basics of Operations Research are required.
Conditions
None.

Learning Outcomes
Content
Basic literature
Will be announced in the lecture. Further literature references are announced in the script.
Course: Corporate Planning and Operations Research

Course key: [25158]

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Specialization in Customer Relationship Management [IW3BWLISM5] (S. 41)

Learning Control / Examinations
See module description.

Prerequisites
Basics of operations research are assumed.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced in the lecture. Further literature references are announced in the script.
Course: Brand Management

Lecturers: Bruno Neibecker
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Foundations of Marketing [IW3BWLMAR] (S. 42)

Learning Control / Examinations

Prerequisites

None.

Conditions

None.

Learning Outcomes

(See description of the module)

Content

The students should learn the essential scientific and practical principles of Marketing, especially branding. Branding consists of any name, design, style, words or symbols, singly or in any combination that distinguish one product from another in the eyes of the consumer. Brand positioning, brand loyalty and brand equity are discussed as important elements of a management concept. The focus of the course is not limited to short-term ROI, but also long-term benefits of communication strategies facing company’s responsibilities to all of its stakeholders, e.g. consumers, investors and public. The strategies and techniques in branding are broaden by several case studies. English as an international technical language in marketing is practiced with course readings and scientific papers. Content:

The course brand management starts with the development of the corporate objectives as the heart of the brand planning process followed by definitions of brand. Setting up on the psychological and social bases of consumer behavior, aspects of an integrated marketing communication are discussed. The students should acquire the particular value of branding strategies. The concept of brand personality is considered in two perspectives, from a practical point of view and the challenging position of the theoretical construct. Methods for the measurement of a consumer-based brand equity are compared with the financial valuation of the brand. The information provided by this equity measurements are related to the equity drivers in brand management. The marketers perspective will be accomplish with the analysis of several case studies. Within the limits of a knowledge based system for advertising evaluation many of the issues accomplished in the course are summarized. At the same time it is discussed as a tool to use marketing knowledge systematically.

Media

Slides, Powerpoint presentations, Website with Online Course Readings

Basic literature

Course: Bachelor Seminar in Foundations of Marketing

Lecturers: Wolfgang Gaul
Credit points (CP): 3 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations

Prerequisites
Knowledge like it is provided in the course Foundations of Marketing [WI3BWLMAR] is assumed.

Conditions
None.

Learning Outcomes

Content
Course: Management Accounting

Lecturers: Torsten Lüdecke
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Topics in Finance I [IW3BWLFBV5] (S. 47)

Learning Control / Examinations
The assessment consists of a written exam (60 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
This course aims at providing students with the understanding of the purposes of alternative costing systems as well as the use of relevant information for decision making. The course will also examine techniques for the purpose of cost management and accounting for control.

Content
- Design of Cost Systems
- Cost Classifications, Cost Behavior, and Principles of Cost Allocation
- Activity-based Costing
- Product Costing
- Production Decisions
- Cost-based Pricing
- Cost Management
- Decisions under Risk
- Cost Accounting for Control

Complementary literature
Course: Financial Management

Lecturers: Martin E. Ruckes
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Essentials of Finance [IW3BWLFBV1] (S. 46)

Learning Control / Examinations
The assessment consists of a written exam (60 min.) according to Section 4 (2), 1 of the examination regulation.
The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students get an comprehensive insight into financing, capital investments of firms and the essentials of valuation.

Content
Analytical methods and theories in the field “Capital investments and financing” with the main focus on:
 • Capital Structure
 • Dividend policy
 • Essentials of valuation
 • Investment decisions
 • Short term/ long term finance
 • Working Capital Management

Complementary literature
 • Berk, De Marzo (2007): Corporate Finance, Pearson Addison Wesley
Course: Financial Intermediation

Lecturers: Martin E. Ruckes
Credit points (CP): 4.5 Hours per week: 3
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Topics in Finance I [IW3BWLFBV5] (S. 47)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are introduced to the theoretical fundamentals of financial intermediation.

Content
• Arguments for the existence of financial intermediaries
• Bank loan analysis, relationship lending
• Competition in the banking sector
• Stability of the financial system
• The macroeconomic role of financial intermediation

Complementary literature
• Freixas/Rochet (1997): Microeconomics of Banking, MIT Press.
Course: Seminar in Finance

Course key: [25293]

Lecturers: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student gets in touch with scientific work. Through profound working on a specific scientific topic the student is meant to learn the foundations of scientific research and reasoning in particular in finance. Through the presentations in this seminar the student becomes familiar with the fundamental techniques for presentations and foundations of scientific reasoning. In addition, the student earns rhetorical skills.

Content
Within this seminar different topics of current concern are treated. These topics have their foundations in the contents of certain lectures. The topics of the seminar are published on the website of the involved finance chairs at the end of the foregoing semester.

Basic literature
Will be announced at the end of the foregoing semester.
Course: Exchanges

Lecturers: Jörg Franke
Credit points (CP): 1.5 Hours per week: 1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: eFinance [IW3BWLISM3] (S. 39), Topics in Finance I [IW3BWLFBV5] (S. 47)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students learn about current developments regarding organisation of exchanges and securities trading.

Content
• Organisation of exchanges: Changing Zeitgeist - Corporates instead of co-operative structures
• Market models: order driven vs. market maker - Liquidity provision for less frequently traded securities
• Trading systems: The end of an era? - No more need for running traders?
• Clearing: Diversity instead of uniformity - Safety for all?
• Settlement: Increasing importance - Does efficient settlement assure the “value added” of exchanges in the long run?

Complementary literature
Educational material will be offered within the lecture.
Course: Business Strategies of Banks

Lecturers: Wolfgang Müller
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Topics in Finance I [IW3BWLFBV5] (S. 47)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are told the basics of commercial banking.

Content
The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank’s success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management’s perspective.

The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank’s corporate policy.

Complementary literature
- A script is disseminated chapterwise within the lecture.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2000, Bankbetriebslehre, 2. Auflage, Springer
Course: Statistics and Econometrics in Business and Economics

Lecturers: Wolf-Dieter Heller
Credit points (CP): 4.5
Hours per week: 2/2
Term: Wintersemester
Level: 3
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
Basic knowledge in statistics is required.

Conditions
None

Learning Outcomes
statistically accurate use of financial market data, particularly time series analysis
Evaluation of various time series models and their applicability

Content
In Part 1 we will provide a thorough description of the quantitative part of investment theory paying attention to the mathematical, probabilistic and statistical methods now widely used in financial practice.
In Part 2 we shall study the methods of construction, identification and verification of the time-series models, which are among most powerful instruments of the financial econometrics. The emphasis will be on the financial and economic indicators forecasting the financial time-series.

Media
transparencies lecture

Basic literature

1. Franke/Härdle/Hafner : Einführung in die Statistik der Finanzmärkte.
2. Ruppert: Statistics and Finance

Complementary literature
See reading list

Lecturers: Karl-Heinz Vollmer
Credit points (CP): 5 Hours per week: 2/2
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
- Bierwag: Duration-Analysis; Managing Interest Rate Risk, 1987
- Andrew Harvey: The Econometric Analysis of Time Series, 2nd. Ed. 1993
- Andrew Harvey: Time Series Models, 2nd. Ed. 1994
- Pindyck, Rubinfeld: Econometric Models and Economic Forecasts, 1998
- B. Rolles: Gesamtbanksteuerung, 1999
Course: Economics of Uncertainty

Lecturers: Karl-Martin Ehrhart
Credit points (CP): 4.5
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Strategic Games [IW3VWL4] (S. 54)

Learning Control / Examinations
Written exam, possible further requirements.

Prerequisites
See corresponding module information.

Conditions
Knowledge in mathematics and statistics is required.

Learning Outcomes
The student will be made familiar with the basics in modern decision making under uncertainty so that she will be able to analyze concrete decision problems and to develop simple solution procedures. By being confronted with experimental results in decision making the student should also be able to evaluate the behavioral part of decision making.

Content
In the first part of the course we deal with problems of decision making under uncertainty and introduce models like expected utility theory, stochastic dominance, risk aversion, and prospect theory. We also consider the empirical validity of the different approaches. In the second part the concepts learned in the first part are applied for example to search models and Bayesian games.

Media
overhead slides, possibly additional printed material.

Basic literature

Complementary literature
- Lippman/McCall, Economics of Uncertainty, in: Handbook of Mathematical Economics I, 1986
- DeGroot, Optimal Statistical Decisions, Kap. 1 und 2, 1970
Course: Game Theory II

Lecturers: Siegfried Berninghaus
Credit points (CP): 4.5 Hours per week: 2/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Applied Game Theory [IW3VWL1] (S. 53), Strategic Games [IW3VWL4] (S. 54)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
See corresponding module information.
Basic knowledge of mathematics and statistics is assumed.

Conditions
None.

Learning Outcomes
This course teaches advanced knowledge in strategic decision theory. Latest developments in game theory are discussed. The student learns to judge complex strategic problems and to offer adequate solutions.

Content
This lecture aims at amplifying the students' knowledge in game theory. Main topics are further concepts of non-cooperative game theory, cooperative game theory, evolutionary game theory and bargaining theory.

Media
Folien, Übungsblätter.

Basic literature

Complementary literature
Course: Industrial Organization

Lecturers: Siegfried Berninghaus
Credit points (CP): 4.5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Applied Game Theory [IW3VWL1] (S. 53)

Learning Control / Examinations
The assessment consists of a written exam (80 min) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
The students will learn to understand the negative effects of imperfect competition and possible political implications thereof. In every chapter of the course game theoretic models will be introduced with the objective to reveal how the theory of industrial organization can explain real world economic phenomena. The theoretical analysis of economic interrelations will be supplemented by class room experiments and if possible by presentations from business experts.

Content
In the first part of the course different market structures like monopoly, oligopoly and perfect competition will be introduced and compared with each other. In the main part advanced concepts on topics like price discrimination, product differentiation, collusive behavior, as well as different theoretical models on market entry and R&D will be presented.

Media
Slides.

Basic literature
• H. Bester (2007), Theorie der Industrieökonomik. Berlin: Springer-Verlag

Complementary literature
• D. Carlton, J. Perloff (2005), Modern Industrial Organization. Reading, Mass.: Addison-Wesley
• N. Schulz (2003), Wettbewerbspolitik: eine Einführung aus industrieökonomischer Perspektive, Tübingen: Mohr Siebeck
Course: Experimental Economics

Lecturers: Siegfried Berninghaus, Kroll
Credit points (CP): 4,5
Hours per week: 2/2
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Applied Game Theory [IW3VWL1] (S. 53)

Learning Control / Examinations
The assessment consists of an 80 min written exam. The lecturer may offer the opportunity to reach up to 10 points by writing a seminar thesis and a presentation to an individually announced topic.

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
The students should learn
- how to gain scientific experience and knowledge (philosophy of science),
- how Game Theory and Experimental Economics influenced each other in scientific research,
- about the methods as well as the strengths and weaknesses of Experimental Economics,
- some examples of experimental research, such as markets and market equilibria, coordination games, bargaining, decision making under risk,
- how to evaluate data.

Content
Experimental Economics have become a separate field in Economics. Nearly all fields of the economic discipline use economic experiments to verify theoretical results. Besides being used for empirical validation, this method is applied in political and strategic consulting. The lecture gives an introduction to experimental methods in economics and shows differences to experiments in natural sciences. Scientific studies are used to show exemplary applications.

Media
Classroom experiments or experiments in the computer laboratory will be conducted. To some extent, slides are made available online.

Complementary literature
- Strategische Spiele; S. Berninghaus, K.-M. Ehrhart, W. Güth; Springer Verlag, 2nd ed., 2006.
- Experimental Methods: A Primer for Economists; D. Friedman, S. Sunder; Cambridge University Press, 1994.

Course key: [25373]
Course: Data Mining

Lecturers: Gholamreza Nakhaeizadeh

Credit points (CP): 5 Hours per week: 2

Term: Wintersemester Level: 4

Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Part one: Data Mining

Why Data Mining?

• What is Data Mining?
• History of Data Mining
• Conferences and Journals on Data Mining
• Potential Applications
• Data Mining Process:
 • Business Understanding
 • Data Understanding
• Data Preparation
• Modeling
• Evaluation
• Deployment
• Interdisciplinary aspects of Data Mining
• Data Mining tasks
• Data Mining Algorithms (Decision Trees, Association Rules,
 • Regression, Clustering, Neural Networks)
• Fuzzy Mining
• OLAP and Data Warehouse
• Data Mining Tools
• Trends in Data Mining

Part two: Examples of application of Data Mining

• Success parameters of Data Mining Projects
• Application in industry
• Application in Commerce

Basic literature

U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, AAI/MIT Press, 1996 (order on-line from Amazon.com or from MIT Press).

• Jiawei Han, Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.
• David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining , MIT Press, Fall 2000
Course: Facility Location and Strategic Supply Chain Management
Course key: [25486]

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4 (2), 1 of the examination regulation. The exam takes place in every semester.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture covers basic quantitative methods in location planning in the context of strategic Supply Chain Planning. Besides the discussion of several criteria for the evaluation of the locations of facilities, the students are acquainted with classical location planning models (planar models, network models and discrete models) and advanced location planning models designed for Supply Chain Management (single-period and multi-period models). The exercises accompanying the lecture offer the possibility to apply the considered models to practical problems.

Content
Since the classical work “Theory of the Location of Industries” of Weber from 1909, the determination of an optimal location of a new facility with respect to existing customers is strongly connected to strategical logistics planning. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning allows an efficient flow of materials and leads to lower costs and increased customer service. Subject of the course is an introduction to the most important terms and definitions in location planning as well as the presentation of basic quantitative location planning models. Furthermore, specialized location planning models for Supply Chain Management will be addressed as they are part in many commercial SCM tools for strategic planning tasks.

Complementary literature
- Domschke, Drex: Logistik: Standorte, 4. Auflage, Oldenbourg, 1996
- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988

Remarks
The lecture is offered in every summer term. The planned lectures and courses for the next three years are announced online.
Course: Tactical and Operational Supply Chain Management

Lecturers: Stefan Nickel
Credit points (CP): 4.5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Supply Chain Management [IW3BWLISM2] (S. 38), Applications of Operations Research [IW3OR5] (S. 58), Stochastic Methods and Simulation [IW3OR7] (S. 60)

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester.

Prerequisites
Successful completion of the module *Introduction to Operations Research* [IW1OR].

Conditions
None.

Learning Outcomes
The main goal of the lecture is the presentation of fundamental techniques from procurement and distribution logistics. A further aspect is set on methods from inventory management and lot sizing. Students acquire the ability to efficiently utilize quantitative models from transportation planning (long-distance and distribution planning), inventory management and lot sizing in production. The introduced methods will be discussed in more detail and illustrated with case-studies in the accompanying exercises.

Content
The planning of material transport is an essential element of Supply Chain Management. By linking transport connections across different facilities, the material source (production plant) is connected with the material sink (customer). The general supply task can be formulated as follows (cf. Gudehus): For given material flows or shipments, choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. The main goal of the inventory management is the optimal determination of order quantities in terms of minimization of fixed and variable costs subject to resource constraints, supply availability and service level requirements. Similarly, the problem of lot sizing in production considers the determination of the optimal amount of products to be produced in a time slot.

The course includes an introduction to basic terms and definitions of Supply Chain Management and a presentation of fundamental quantitative planning models for distribution, vehicle routing, inventory management and lot sizing. Furthermore, case studies from practice will be discussed in more detail.

Complementary literature
- Domschke: Logistik: Transporte, 5. Auflage, Oldenbourg, 2005
- Ghiani, Laporte, Musmanno: Introduction to Logistics Systems Planning and Control, Wiley, 2004
- Gudehus: Logistik, 3. Auflage, Springer, 2005

Remarks
The lecture is offered in every winter term. The planned lectures and courses for the next three years are announced online.
Course: Software Laboratory: OR Models I

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 1/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Applications of Operations Research [IW3OR5] (S. 58)

Learning Control / Examinations
The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the software laboratory and the following term.

Prerequisites
Firm knowledge of the contents from the lecture Introduction to Operations Research I [25040] of the module Operations Research [WI1OR].

Conditions
None.

Learning Outcomes
The software laboratory has the goal to make the students familiar with the usage of computers in practical applications of Operations Research. An important benefit lies in the ability to assess and estimate general possibilities and fields of usage of modeling and implementation software for solving OR models in practice. As software-based planning modules are used in many companies, this course provides a reasonable preparation for students for practical planning activities.

Content
After an introduction to general concepts of modelling tools (implementation, data handling, result interpretation, . . .), the program XPRESS-MP IVE with its modelling language Mosel will be presented in detail. Subsequently, a broad range of exercises will be discussed. The main goals of the exercises from literature and practical applications are to learn the process of modeling optimization problems as linear or mixed-integer programs, to efficiently utilize the presented tools for solving these optimization problems and to implement heuristic solution procedures for mixed-integer programs.

Remarks
The course is offered in every winter term.
The planned lectures and courses for the next three years are announced online.
Course: Seminar in Discrete Optimization

Lecturers: Stefan Nickel
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEM WIWI] (S. 34)

Learning Control / Examinations
The assessment consists of a written seminar thesis of 20-25 pages and a presentation of 40-60 minutes (according to §4(2), 3 of the examination regulation).
The final mark for the seminar is the weighted average of the marks for the assessed assignments (seminar thesis 50 %, presentation 50%).
The seminar can be attended both by Bachelor and Master students. A differentiation will be achieved by different valuation standards for the seminar thesis and presentation.

Prerequisites
Successful completion of the module Introduction to Operations Research [IW1OR].

Conditions
Attendance is compulsory.
If possible, at least one module of the institute should be taken before attending the seminar.

Learning Outcomes
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization.
The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management).
The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.
Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Content
The topic of the seminar will be announced at the end of the preceding term on the internet.

Basic literature
Literature and relevant sources will be announced at the beginning of the seminar.

Remarks
The seminar is offered in each term.
Course: Welfare Economics

Lecturers: Clemens Puppe

Credit points (CP): 4.5 **Hours per week:** 2/1

Term: Sommersemester **Level:** 4

Teaching language: Deutsch

Part of the modules: Microeconomic Theory [IW3VWL6] (S. 55)

Learning Control / Examinations
The assessment consists of a written exam at the end of the semester (according to Section 4 (2), 1 or 2 of the examination regulation.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
The courses Economics I: Microeconomics [25012] and Economics II: Macroeconomics [25014] have to be completed beforehand.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Game Theory I

Lecturers: Siegfried Berninghaus
Credit points (CP): 4.5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (80 minutes) according to Section 4(2),1 of the examination regulation. The exam takes place in the recess period and can be resited at every ordinary examination date.

Prerequisites
Basic knowledge of mathematics and statistics is assumed. See corresponding module information.

Conditions
None.

Learning Outcomes
This course conveys established knowledge in theory of strategic decision making. The students shall be able to analyze strategic problems systematically and to give advice for behavior in concrete economic situations.

Content
Main topic is non-cooperative game theory. Models, solution concepts and applications are discussed for simultaneous as well as sequential games. Different equilibrium concepts are introduced and a short introduction to cooperative game theory is given.

Media
Folien, Übungsblätter.

Basic literature
Gibbons, A primer in Game Theory, Harvester-Wheatsheaf, 1992

Complementary literature
• Binmore, Fun and Games, DC Heath, Lexington, MA, 1991
Course: Advanced Topics in Economic Theory

Lecturers: Clemens Puppe, Marten Hillebrand, Kay Mitusch
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Microeconomic Theory [IW3VWL6] (S. 55)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
The focus of the course is the modern economic theory of (general) equilibrium. The course is divided into three parts.
The first part introduces the microeconomic foundations of general equilibrium à la Debreu ("The Theory of Value", 1959) and Hildenbrand/Kirman ("Equilibrium Analysis", 1988).
The second part considers dynamic (stochastic) equilibrium models with a particular focus on the overlapping generations model which lie at the heart of modern macroeconomics.
The third part deals with asymmetric information and introduces the basic models based on Akerlof’s “Market for Lemons.”
The course is largely based on the textbook “Microeconomic Theory” (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green

Basic literature
The course is based on the excellent textbook “Microeconomic Theory” (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green

Remarks
The lecture will be offered in the summer term 2010 for the first time.
Up to now, the lecture was named Advanced Microeconomic Theory.
Course: Theory of Economic Growth

Lecturers: Marten Hillebrand
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Macroeconomic Theory [IW3WL8] (S. 56)

Learning Control / Examinations
According to the attendance the assessment consists of a written or an oral exam at the beginning of the recess period (according to Section 4 (2), 1 or 2 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Basic knowledge in micro- and macroeconomics, as conveyed in the courses Economics I: Microeconomics [25012] and Economics II: Macroeconomics [25014], is assumed.
According the focus of the course quantitativ-mathematical modelling should be in participant's interest.

Conditions
None.

Learning Outcomes

Content
Course: Theory of Business Cycles
Course key: [25549]

Lecturers: Marten Hillebrand
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Englisch
Part of the modules: Macroeconomic Theory [IW3VWL8] (S. 56)

Learning Control / Examinations
According to the attendance the assessment consists of a written or an oral exam at the beginning of the recess period (according to Section 4 (2), 1 or 2 of the examination regulation.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Basic knowledge in micro- and macroeconomics, as conveyed in the courses Economics I: Microeconomics [25012] and Economics II: Macroeconomics [25014], is assumed.
According the focus of the course quantitativ-mathematical modelling should be in participant's interest.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Simulation I

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4.5 Hours per week: 2/1/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Applications of Operations Research [IW3OR5] (S. 58), Stochastic Methods and Simulation [IW3OR7] (S. 60)

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3 (according to Section 4(2), 3 of the examination regulation).

Prerequisites
Foundations in the following fields are required:
• Operations Research, as lectured in Introduction to Operations Research I [25040] and Introduction to Operations Research II [25043].
• Statistics, as lectured in Statistics I [25008/25009] and Statistics II [25020/25021].

Conditions
None.

Learning Outcomes
The lecture provides insights into the typical process in planning and conducting simulation studies.

Content
As the world is getting more complex it is often not possible to analytically provide key figures of interest without overly simplifying the problem. Thus efficient simulation techniques become more and more important. In the lecture important basic concepts are presented in terms of selected case studies.
Topics overview: Discrete event simulation, generation of random numbers, generating discrete and continuous random variables, statistical analysis of simulated data.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
• Lecture Notes

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Simulation II

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4.5 Hours per week: 2/1/2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Methods and Simulation [IW3OR7] (S. 60)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4(2), 1 SPO. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3 (§4(2), 3 SPO).

Prerequisites
Foundations in the following fields are required:

• Operations Research, as lectured in Introduction to Operations Research I [25040] and Introduction to Operations Research II [25043].
• Statistics, as lectured in Statistics I [25008/25009] and Statistics II [25020/25021].
• Simulation I [25662]

Conditions
not any

Learning Outcomes
The lecture provides insights into the typical process in planning and conducting simulation studies.

Content
As the world is getting more complex it is oftern not possible to analytically provide key figures of interest without overly simplifying the problem. Thus efficient simulation techniques become more and more important. In the lecture important basic concepts are presented in terms of selected case studies.
Topics overview: Variance reduction techniques, simulation of stochastic processes, case studies.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
• Lecture Notes

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.

Course key: [25665]

Module Handbook: Version 04.03.2010
Course: Markov Decision Models I
Course key: [25679]

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 5
Hours per week: 2/1/2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Methodical Foundations of OR [IW3OR6] (S. 59), Stochastic Methods and Simulation [IW3OR7] (S. 60)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques of stochastic modelling. Students are able to properly describe and analyze basic stochastic systems.

Content
Markov Chains, Poisson Processes, Markov Chains in Continuous Time, Queuing Systems

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature

Complementary literature
Bremaud, P. (1999): Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues; Springer
Course: Efficient Algorithms
Course key: [25700]

Lecturers: Hartmut Schmeck
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Algorithms and Applications [W3INAIFB5] (S. 65)

Learning Control / Examinations
The assessment consists of assignments or of a bonus exam (wrt §4 (2), 3 SPO), and a written exam (60 min.) in the week after the end of the lecturing period wrt (§4 (2), 1 SPO).
If the mark obtained in the written exam is in between 1.3 and 4.0, a successful completion of the assignments or the bonus exam will improve the mark by one level (i.e. by 0.3 or 0.4). Deviations from this type of assessment are announced at the beginning of this course.

Prerequisites
credits for the Informatics modules of years 1 and 2.

Conditions
None.

Learning Outcomes
The student will learn how to use methods and concepts of efficient algorithms and how to demonstrate adequate innovative capabilities with respect to the used methods.
This course emphasizes the teaching of advanced concepts for the design and application of algorithms, data structures, and computer infrastructures in relation to their applicability in the real world. Based on a fundamental understanding of the covered concepts and methods, students should know how to select appropriate concepts and methods for problem settings in their professional life, and, if necessary, to extend and apply them in an adequate form. The students should be enabled to find adequate arguments for justifying their chosen problem solutions.

Content
In a problem oriented way the course presents systematic approaches to the design and analysis of efficient algorithms using standard tasks of information processing as generic examples. Special emphasis is put on the influence of data structures and computer architectures on the performance and cost of algorithms. In particular, the course emphasizes the design and analysis of algorithms on parallel computers and in hardware, which is increasingly important considering the growing presence of multicore architectures.

Media
- powerpoint slides with annotations using a tablet pc
- access to applets and Internet resources
- lecture recording (camtasia)

Basic literature
Borodin, Munro: The Computational Complexity of Algebraic and Numeric Problems (Elsevier 1975)
Cormen, Leiserson, Rivest: Introduction to Algorithms (MIT Press)
Sedgewick: Algorithms (Addison-Wesley) (many different versions available)

Complementary literature
will be announced in class
Course: Special Topics of Efficient Algorithms

Lecturers: Hartmut Schmeck
Credit points (CP): 5 Hours per week: 2/1
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Algorithms and Applications [IW3INAIFB5] (S. 65)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Will be announced in the lecture.
Course: Algorithms for Internet Applications

Lecturers: Hartmut Schmeck
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Information Services in Networks [IW3INAIFB4] (S. 64), Algorithms and Applications [IW3INAIFB5] (S. 65)

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to Section 4(2), 1 of the examination regulation) and an additional written examination (called "bonus exam", 60 min) (according Section 4(2), 3 of the examination regulation) (the bonus exam may be split into several shorter written tests).

The grade of this course is the achieved grade in the written examination. If this grade is at least 4.0 and at most 1.3, a passed bonus exam will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
credits for all the Informatics modules of years 1 and 2 (except for at most one module).

Conditions
None.

Learning Outcomes
The students will learn to master methods and concepts of essential algorithms within Internet applications and to develop capabilities for innovative improvements. The course aims at teaching advanced concepts for the design and application of algorithms with respect to the requirements in networked systems. Based on a fundamental understanding of taught concepts and methods the students should be able to select appropriate concepts and methods for problem settings in their future professional life, and - if necessary - customize and apply them in an adequate way. The students will be capable to find appropriate arguments for their chosen approach to a problem setting.

In particular, the student will - know the structure and elementary protocols of the Internet (TCP/IP) and standard routing algorithms (distance vector and link state routing), - know methods of information retrieval in the WWW, algorithms for searching information and be able to assess the performance of search engines, - know how to design and use cryptographic methods and protocols to guarantee and check confidentiality, data integrity and authenticity, - know algorithmic basics of electronic payment systems and of electronic money, - the architectures and methodologies of firewalls.

Content
Internet and World Wide Web are changing our world, this core course provides the necessary background and methods for the design of central applications of the Internet. After an introduction into Internet technology the following topics are addressed: information retrieval in the www, structure and functioning of search engines, foundations of secure communication, electronic payment systems and digital money, and - if time permits - security architectures (firewalls), data compression, distributed computing on the Internet.

Media
Powerpoint slides with annotations on graphics screen, access to Internet resources, recorded lectures

Basic literature

Complementary literature
- Further references will be given in the course.
Course: Organic Computing

Lecturers: Hartmut Schmeck, Sanaz Mostaghim
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Englisch
Part of the modules: Algorithms and Applications [IW3INAIFB5] (S. 65)

Learning Control / Examinations
The assessment of this course consists of a written examination (60 min) (following §4(2), 1 SPO) and of submitting written papers or of writing an additional examination (called “bonus exam”, 60 min) (following §4(2), 3 SPO). The exam will be offered every second semester (summer term) and may be repeated at every ordinary exam date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student acquires the ability to master methods and concepts of Organic Computing and to demonstrate innovation skills regarding the used methods.
Therefore the course aims at the teaching of fundamentals and methods of Organic Computing within the context of its applicability in practice. On the basis of a fundamental understanding of the taught concepts and methods the students should be able to choose the adequate methods and concepts, if necessary further develop them according to the situation and use them properly when facing related problems in their later job. The students should be capable of finding arguments for the chosen solutions and express them to others.

Content
The mission of Organic Computing is to tame complexity in technical systems by providing appropriate degrees of freedom for self-organized behaviour adapting to changing requirements of the execution environment, in particular with respect to human needs. According to this vision an organic computer system should be aware of its own capabilities, the requirements of the environment, and it should be equipped with a number of “self-x” properties allowing for the anticipated adaptiveness and for a reduction in the complexity of system management. These self-x properties are self-organisation, self-configuration, self-optimization, self-healing, self-protection and self-explanation. In spite of these self-x properties, an organic system should be open to external control actions which might be necessary to prevent undesired behaviour.

Media
powerpoint slides with annotations using a tablet pc access to applets and Internet resources lecture recording (camtasia).

Basic literature

Complementary literature
further references will be announced in class
Course: Nature-inspired Optimisation

Lecturers: Sanaz Mostaghim, Pradhyum Shukla
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Algorithms and Applications [IW3INAIF5] (S. 65)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Workflow-Management

Lecturers: Andreas Oberweis
Course key: [25726]

Credit points (CP): 5
Hours per week: 2/1

Term: Sommersemester
Level: 3

Teaching language: Deutsch

Part of the modules: Business Process Engineering [IW3INAIFB6] (S. 66)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites
Knowledge of course Applied Informatics I - Modelling [25070] is expected.

Conditions
None.

Learning Outcomes
Students are familiar with the concepts and principles of workflow management concepts and systems and their applications. Based on theoretical foundations they can model business process models. Furthermore they have an overview of further problems of workflow management systems in commercial use.

Content
A workflow is that part of a business process which is automatically executed by a computerized system. Workflow management includes the design, modelling, analysis, execution and management of workflows. Workflow management systems are standard software systems for the efficient control of processes in enterprises and organizations. Knowledge in the field of workflow management systems is especially important during the design of systems for process support.

The course covers the most important concepts of workflow management. Modelling and design techniques are presented and an overview about current workflow management systems is given. Standards, which have been proposed by the workflow management coalition (WfMC), are discussed. Petri nets are proposed as a formal modelling and analysis tool for business processes. Architecture and functionality of workflow management systems are discussed. The course is a combination of theoretical foundations of workflow management concepts and of practical application knowledge.

Media
Slides, Access to internet resources.

Basic literature

Complementary literature
Course: Software Technology: Quality Management

Lecturers: Andreas Oberweis
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Business Processes and Information Systems [IW3INAIFB7] (S. 67)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites
Programming knowledge in Java and basic knowledge of computer science are expected.

Conditions
None.

Learning Outcomes
Students are familiar with basic concepts and principles of software quality and software quality management. They know key measures and models for certification of quality in software development. They are aware of different test methods and evaluation methods. Furthermore, they are able to assess quality management aspects in different standard process models.

Content
This lecture imparts fundamentals of active software quality management (quality planning, quality testing, quality control, quality assurance) and illustrates them with concrete examples, as currently applied in industrial software development. Keywords of the lecture content are: software and software quality, process models, software process quality, ISO 9000-3, CMM(I), BOOTSTRAP, SPICE, software tests.

Media
Slides, access to internet resources.

Basic literature
• Helmut Balzert: Lehrbuch der Software-Technik. Spektrum-Verlag 1998
• Peter Liggesmeyer: Software-Qualität, Testen, Analysieren und Verifizieren von Software. Spektrum Akademischer Verlag 2002

Complementary literature
Further literature is given in lectures.
Course: Business Process Modelling

Lecturers: Andreas Oberweis, Marco Mevius

Credit points (CP): 5
Hours per week: 2/1

Term: Wintersemester
Level: 3

Teaching language: Deutsch

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students know goals of business process modelling and master different modelling languages. They are able to choose the appropriate modelling language according to a given context and to use the modelling language with suitable modelling tools. They master methods for analysing and assessing process models and methods for analysing them according to specific quality characteristics.

Content
The proper modeling of relevant aspects of business processes is essential for an efficient and effective design and implementation of processes. This lecture presents different classes of modeling languages and discusses the respective advantages and disadvantages of using actual application scenarios. For that simulative and analytical methods for process analysis are introduced. In the accompanying exercise the use of process modeling tools is practiced.

Media
Slides, access to internet resources.

Basic literature
Literature will be given in the lecture.
Course: Knowledge Management

Lecturers: Rudi Studer

Credit points (CP): 5
Hours per week: 2/1

Term: Wintersemester
Level: 4

Teaching language: Deutsch

Learning Control / Examinations
Written Examination (60 min) according to §4, Abs. 2, 1 of the examination regulations or oral examination of 20 minutes according to §4, Abs. 2, 2 of the examination regulations. The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites
Basics in logic, e.g. from lecture Foundations of Informatics 1.

Conditions
None.

Learning Outcomes
Making students sensitive to the problems of corporate knowledge management, knowledge about the central dimensions of influence as well as of relevant technologies for supporting knowledge management.

Content
In modern corporations, knowledge is an increasingly important aspect for fullfilling central tasks (amelioration of business processes, increasing innovation, increasing customer satisfaction, strategic planning and the like). Therefore, knowledge management has become a determining factor of success.

The lecture covers the different types of knowledge that play a role in knowledge management, the corresponding knowledge processes (generation, capture, access and usage of knowledge) as well as methodologies for the introduction of knowledge management solutions.

The lecture will further emphasize the following computer science techniques for knowledge management:

- Communities of Practice, Collaboration Tools, Skill Management
- ontology-based knowledge management
- Business Process oriented Knowledge Management
- Personal Knowledge Management
- Case Based Reasoning (CBR)

Media
Slides and scientific publications as reading material.

Basic literature
- C. Beierle, G. Kern-Isberner: Methoden wissensbasierter Systeme, Vieweg, Braunschweig/Wiesbaden, 2. überarb. Auflage, 2005

Complementary literature
Course: Semantic Web Technologies I

Lecturers: Rudi Studer, Sebastian Rudolph

Credit points (CP): 5 Hours per week: 2/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: Semantic Knowledge Management [IW3INAIFB2] (S. 62), Semantic Web and Applications [IW3INAIFB3] (S. 63), Information Services in Networks [IW3INAIFB4] (S. 64)

Learning Control / Examinations

The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

Lectures on Informatics of the Bachelor on Information Management (Semester 1-4) or equivalent.

Conditions

None.

Learning Outcomes

• Basic knowledge about the main ideas and the realisation of Semantic Web Technologies

Content

"Semantic Web" denotes an extension of the World Wide Web by meta data and applications in order to make the meaning (semantics) of data on the web usable by intelligent systems, e.g. in e-commerce and internet portals. Central to this is the representation and processing of knowledge in form of ontologies. This lecture provides the foundations for knowledge representation and processing for the corresponding technologies and presents example applications. It covers the following topics:

• Extensible Markup Language (XML)
• Resource Description Framework (RDF) and RDF Schema
• Web Ontology Language (OWL)
• Rule Languages
• Applications

Media

Slides.

Basic literature

Complementary literature

Course: Intelligent Systems in Finance

Lecturers: Detlef Seese
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: eFinance [IW3BWLISM3] (S. 39)

Learning Control / Examinations
The assessment is a written examination. See the German part for special requirements to be admitted for the examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
- The students acquire abilities and knowledge of methods and systems from the area of machine learning and learn how to use them in the area of finance, which is the core area of application of this lecture.
- It is taught the ability to choose and change these methods and systems adequate to the situation and to use them for problem solving in the area of finance.
- The students get the ability to find strategic and creative answers in their search for solutions for precisely defined, concrete and abstract problems.
- At the same time the lecture aims to give foundational knowledge and methods in the context of their application in practise. On the basis of the basic understanding of concepts and methods of informatics the students should be able to comprehend quickly the new developments in the area and to use them correctly.

Content
A new generation of computing methods, commonly known as “intelligent systems”, has recently been successfully applied to a variety of business and financial modelling tasks. In many application fields these novel methods outperform traditional statistical techniques. The lecture provides a comprehensive coverage of the area, including foundations and applications. In particular it deals with intelligent software agents, genetic algorithms, neural networks, support vector machines, fuzzy-logic, expert systems and intelligent hybrid systems. The presented applications focus on the finance area and are related to risk management (credit risk, operational risk), financial trading, portfolio management and economic modelling. The lecture is given in cooperation with the company msgGILLARDON. The lecture starts with an introduction of the central problems of application in this area, e.g. decision support for investors, Portfolio selection under constraints, information retrieval from business reports, automatic development of trading rules for the capital market, modelling of time series at the capital market, explanation of phenomena at capital markets by simulation, decision support in risk management (credit risk, operational risk). After this the basics of intelligent systems are discussed. Basic ideas and essential results for different stochastic heuristics for local search are discussed next, especially Hill Climbing, Simulated Annealing, Threshold Accepting and Tabu Search. After this different population-based approaches of evolutionary methods are presented, e.g. Genetic Algorithms, Evolutionary Strategies and Programming, Genetic Programming, Memetic Algorithms and Ant-Algorithms. It follows an introduction into Neural Networks, Support Vector Machines and Fuzzy logic. Software agents and agent-based stock market models are the next topic. The lecture ends with an overview on the complexity of algorithmic problems in the area of finance, giving in this way one of the key reasons for the necessity to use heuristics and intelligent systems. Essential examples and basic applications are chosen from the area of finance.

Media
Slides.

Basic literature
There is no text book covering completely the content of the lecture.

Further references will be given in each lecture.
Complementary literature

- Further references will be given in the lecture.

Remarks
The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described contend and schedule.
Course: Service Oriented Computing 1

Lecturers: Stefan Tai
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment of this course is a written examination (60min.) in the first week after lecture period (nach §4(2), 1 SPO).

Prerequisites
Lecture AI2 [25033] is recommended.

Conditions
None.

Learning Outcomes
The course introduces concepts, methods, and techniques of “service-oriented computing”, including languages for (Web) service description, methods and tools for the development of services, and platforms (middleware, runtimes) for the Web-based deployment, delivery, and execution of services. The course provides a solid technical foundation that enables the student to address the increasingly relevant challenges of developing “service-oriented architectures (SOA)” in the industry.

Content
Web services represent the next-generation of Web technology, and are an evolution of conventional distributed middleware. They enable new and improved ways for enterprise computing, including application interoperability and integration, and business process management. Modern software systems are being designed as service-oriented architectures (SOA), introducing increased agility and flexibility at both the software systems and the business level. Web services and SOA thus have a profound impact on software development and the businesses that they support. The course “Service-oriented Computing” introduces the concepts, methods and technology that provide a solid foundation in this area. Topics include:

- Service description
- Service engineering, including development and implementation
- Service composition (aggregation), including process-based service orchestration
- Interoperability formats and protocols
- Service platforms and runtimes (middleware)

Media
Slides, access to internet resources.

Basic literature
Will be announced in the lecture.
Course: Cloud Computing

Course key: [25776]

Lecturers: Stefan Tai, Kunze

Credit points (CP): 5
Hours per week: 2/1

Term: Wintersemester
Level: 4

Teaching language: Deutsch

Part of the modules: Web Information Systems [IW3INAIFB1] (S. 61), Information Services in Networks [IW3INAIFB4] (S. 64)

Learning Control / Examinations

Prerequisites

None.

Conditions

None.

Learning Outcomes

The course introduces concepts, methods, and techniques of Cloud Computing for providing and consuming IT resources, development- and runtime environments, and software applications of all kinds as Web services.

Content

Building on compute and storage virtualization, Cloud Computing provides scalable, network-centric, abstracted IT infrastructure, platforms, and software applications as on-demand services that are billed by consumption. Innovative business models, cost efficiency, and time-to-market are further promises associated with Cloud Computing. The lecture introduces Cloud Computing, covering topics such as:

- Fundamentals (virtualization, service-orientation)
- Cloud architecture
- Commercial Cloud offerings, open source cloud computing stack
- Cloud management
- Cloud service engineering
- Cloud economics, obstacles, and opportunities

Basic literature

Course: Enterprise Architecture Management
Course key: [25786]

Lecturers: Thomas Wolf
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Business Processes and Information Systems [IW3INAIFB7] (S. 67)

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students understand the connection between enterprise strategy, business processes and business objects and IT architecture; they know methods to depict these connections and how they can be developed based on each other.

Content
The following topics will be covered: components of enterprise architecture, enterprise strategy including methods to develop strategies, business process (re)engineering, methods to implement changes within enterprises (management of change)

Media
Slides, access to internet resources.

Basic literature
- Doppler, K., Lauterburg, Ch.: Change Management. Campus Verlag 1997
Course: Capability maturity models for software and systems engineering
Course key: [25790]

Lecturers: Ralf Kneuper
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Business Processes and Information Systems [IW3INAIFB7] (S. 67)

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students master the basics of capability maturity models, oversee the whole process in project management and development processes according to CMMI and SPICE. They know how to use capability maturity models for quality assurance.

Content
Capability maturity models like CMMI and SPICE are an important tool for assessing and improving software development. A significantly increasing number of companies use these models in their own approach to improve their development and to demonstrate a certain minimum quality and effective external presentation. This is the case in Germany, especially in the automotive industry, but also many other industries.

Preliminary Structure of the lecture:
1. Introduction and Overview, motivation
2. Project management according to CMMI
3. Development processes according to CMMI
4. Process management and supporting processes according to CMMI
5. Differences between SPICE and CMMI
6. Introduction of capability maturity models
7. Assessments and Appraisals
8. Costs and benefits of capability maturity models

Media
Slides, access to internet resources.

Basic literature
Literature is given in each lecture individually.
Course: Special Topics of Knowledge Management

Lecturers: Rudi Studer
Credit points (CP): 5 Hours per week: 2/1
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Semantic Knowledge Management [IW3INAIFB2] (S. 62)

Learning Control / Examinations
Assessment is provided by a written exam of 60 minutes or an oral exam during the first few weeks after the lecturing period (acc. to §4(2), 1 or 2 SPO). The exam is offered each semester and may be repeated at the regular examination day.

Prerequisites
The lecture Angewandte Informatik I - Modellierung [25070] is a prerequisite.

Conditions
None.

Learning Outcomes
The students acquire the skills, methods and tools in one area of “knowledge management” to demonstrate their mastery and innovativeness.
This event aims at providing basic principles and methods in the context of the practical application of KM. On the basis of a fundamental understanding of these concepts and methods taught to students they will be able to work on advanced problems. The students will be able to find and argue for solutions of KM problems.

Content
The lecture deals with special topics in the area of knowledge management (incl. Knowledge Discovery and Semantic Web). The lecture deepens one of the following topics:
- Dynamic and interoperable systems in knowledge management
- Personal Knowledge Management
- Formal Concept Analysis

Complementary literature
Depends on the actual content.
Course: Management and Strategy

Lecturers: Hagen Lindstädt
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Strategy and Organization [IW3BWL201] (S. 43)

Learning Control / Examinations
The assessment consists of a written exam (60 min) taking place at the beginn of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration.

Content
• Corporate management principles
• Strategic management principles
• Strategic analysis
• Competitive strategy: modelling and selection on a divisional level
• Strategies for oligopolies and networks: anticipation of dependencies
• Corporate strategy: modelling and evaluation on a corporate level
• Strategy implementation

Media
Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Managing Organizations
Course key: [25902]

Lecturers: Hagen Lindstädt
Credit points (CP): 4
Hours per week: 2/0
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Strategy and Organization [IW3BWLUO1] (S. 43)

Learning Control / Examinations
The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course should enable the participants to assess the strengths and weaknesses of existing organisational structures and rules using systematic criteria. Here concepts and models for designing organisation structures, regulating organisational processes and managing organisational changes are presented and discussed using case studies. The course is structured to relate to actions and aims to give students a realistic view of the opportunities and limits of rational design approaches.

Content
- Principles of organisational management
- Managing organisational structures and processes: the selection of design parameters
- Ideal-typical organisational structures: choice and effect of parameter combinations
- Managing organisational changes

Media
Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Special Topics in Management: Management and IT

Lecturers: Hagen Lindstädt
Credit points (CP): 2
Hours per week: 1/0
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Strategy and Organization [IW3BWL001] (S. 43)

Learning Control / Examinations
The assessment consists of a written exam (30 min) at the beginning of the recess period (according to Section 4(2), 1 of the examination regulation).
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course discusses management questions and concepts that are clearly motivating from a current and practical perspective. Here the integration of IT and process issues into corporate management from the management's perspective is one of the subjects of particular interest. The event takes place in close cooperation with leading, practical managers.

Content
(Excerpt):
 • A summary of current management concepts and questions.

Media
Slides.

Basic literature
The relevant excerpts and additional sources are made known during the course.
Course: Seminar: Management and Organization

Lecturers: Hagen Lindstädt
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations
Term paper (50%) and presentation (50%).

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
The aim of the seminar is to describe corporate and organisational management approaches, to assess them critically and clarify them using practical examples. The focus is on assessing the models with a view to their applicability and theoretical limits.

Content
The subjects are redefined each semester on the basis of current issues.

Media
Slides.

Basic literature
The relevant sources are made known during the course.
Course: Fundamentals of Production Management

Course key: [25950]

Lecturers: Frank Schultmann
Credit points (CP): 5.5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Industrial Production I [IW3BWLIIP1] (S. 45)

Learning Control / Examinations
The examination will be in form of a written exam acc. to §4(2), 1 ER. Exams are offered in every semester and can be re-examined at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
- Students shall describe the tasks of strategic corporate planning.
- Students shall be able to use general approaches in order to solve these problems.

Content
This lecture focuses on strategic production management with respect to various economic aspects. Interdisciplinary approaches of systems theory will be used to describe the challenges of industrial production. This course will emphasize the importance of R&D as the central step in strategic corporate planning to ensure future long-term success.

In the field of site selection and planning for firms and factories, attention will be drawn upon individual aspects of existing and greenfield sites as well as existing distribution and supply centres. Students will obtain knowledge in solving internal and external transport and storage problems with respect to supply chain management and disposal logistics.

Media und Pflichtliteratur: können aus der alten Fassung übernommen werden.

Media
Media will be provided on learning platform.

Basic literature
will be announced in the course
Course: Energy Policy

Lecturers: Martin Wietschel
Credit points (CP): 3.5 Hours per week: 2/0
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Energy Economics [IW3BWLIIP2] (S. 44)

Learning Control / Examinations

Prerequisites
Keine.

Conditions
Keine.

Learning Outcomes

Content
The course deals with material and energy policy of policy makers and includes the effects of such policies on the economy as well as the involvement of industrial and other stakeholders in the policy design. At the beginning the neoclassical environment policy is discussed. Afterwards the Sustainable Development concept is presented and strategies how to translate the concept in policy decision follows. In the next part of the course an overview about the different environmental instruments classes, evaluation criteria for these instruments and examples of environmental instruments like taxes or certificates will be discussed. The final part deals with implementation strategies of material and energy policy.

Basic literature
Will be announced in the lecture.
Course: Material and Energy Flows in the Economy

Lecturers: Michael Hiete
Credit points (CP): 3.5 Hours per week: 2/0
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Industrial Production I [IW3BWLIIP1] (S. 45)

Learning Control / Examinations
Prerequisites
None.

Conditions
None.

Learning Outcomes
Students shall be aware of issues concerning the material and energy flow in an economy and shall apply strategies to solve these issues.

Content
Internal and external management of material flows will be the focus of this lecture. Herein, the discussion will be about cost-effective and environmentally acceptable steps to avoid, abate and recycle emissions and waste as well as ways of efficient resources handling. These topics will be analysed with tools such as eco-balancing and environmental-controlling accompanied by special IT-tools. Further approaches, decision supporting models and OR-algorithms are being introduced in case studies.

Basic literature
will be announced in the course

Remarks
This lecture will be called “Stoffstromorientierte Produktionswirtschaft” from Winter 2010/2011 onwards.
Course: Logistics and Supply Chain Management

Lecturers: Frank Schultmann
Credit points (CP): 3.5 Hours per week: 2/0
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Industrial Production I [IW3BWLIIP1] (S. 45)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students shall learn foundations and main characteristics of managerial logistics and supply chain management. Following an overview of basic managerial logistics functions, students will learn the interdependencies and trade-offs between these functions and concurring aims. Additionally, students will gain knowledge in designing and steering internal and external value-creating networks.

Content
This course covers following topics:

• Introduction into logistics
• Fields of activity
• Aims and costs of logistics
• Performance and performance figures
• Supply logistics
• Production logistics
• Distributing logistics
• Reverse logistics
• Definition and aims of Supply Chain Management
• Concepts of Supply Chain Management
• Modeling Supply Chains

Media
Medie will be provided on learning platform.
Course: Introduction to Energy Economics

Lecturers: Wolf Fichtner
Credit points (CP): 5.5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Energy Economics [IW3BWLIP2] (S. 44)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Media
Media will be provided on the e-learning platform ILIAS.
Course: Renewable Energy Sources - Technologies and Potentials
Course key: [26012]

Lecturers: Wolf Fichtner
Credit points (CP): 3.5 Hours per week: 2/0
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Energy Economics [IW3BWLIIP2] (S. 44)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Media
Media will likely be provided on the e-learning platform ILIAS.
Course: Competition in Networks
Course key: [26240]

Lecturers: Kay Mitusch
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Specialization in Customer Relationship Management [IW3BWLSM5] (S. 41)

Learning Control / Examinations

Prerequisites
Basics of microeconomics obtained within the undergraduate programme (B.Sc) of economics are required. Useful, but not necessary, are basic knowledge of industrial economics, principal agent theory, and contract theory.

Conditions
None.

Learning Outcomes
The lecture provides the students with the basic economic understanding of network industries like telecom, utilities, IT and transport sectors.
Students are prepared for a possible job in the network industries. The student should get a vivid idea of the special characteristics of network industries concerning planning, competition, competitive distortion and state intervention. He should be able to apply abstract concepts and formal methods to use in these fields.

Content
Network or infrastructure industries like telecommunication, transport, and utilities form the backbone of modern economies. The lecture provides an overview of the economic characteristics of network industries. The planning of networks is complicated by the multitude of aspects involved (like spatial differentiation and the like). The interactions of different companies – competition or cooperation or both – are characterized by complex interdependencies within the networks: network effects, economies of scale, effects of vertical integration, switching costs, standardization, compatibility etc. appear increasingly in these sectors and even tend to appear in combination. Additionally, government interventions can often be observed, partly driven by the aims of competition policy and partly driven by the aims industrial policy. All these issues are brought up, analyzed formally (in part) and illustrated by several examples in the lecture.

Basic literature
Will be announced in the lecture.

Remarks
Beginning in WT 2009/2010, the lecture Competition in Networks [26240] will always be held during the winter term.
Course: Insurance Models

Lecturers: Christian Hipp, N.N.
Credit points (CP): 5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Insurance: Calculation and Control [IW3BWLFBV2] (S. 48)

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
- Versicherungsbetriebslehre: Das Risiko und seine Kalkulation. Studienhefte 21, 22, 23. gabler Studientexte
Course: Insurance Marketing

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Insurance Markets and Management [IW3BWLFBV4] (S. 50)

Learning Control / Examinations
The assessment consists of an oral exam (according to Section 4 (2), 2 of the examination regulation) and oral presentations within the lecture (according to Section 4 (2), 3 of the examination regulation).
The overall grade consists of the valuation of the oral presentations (incl. elaboration) and the valuation of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Complementary literature
- Farny, D.. Versicherungsbetriebslehre (Kapitel III.3 sowie V.4). Karlsruhe 2006
- Wiedemann, K.-P./Klee, A. Ertragsorientiertes Zielkundenmanagement für Finanzdienstleister, Wiesbaden 2003

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Enterprise Risk Management

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Risk and Insurance Management [IW3BWLBV3] (S. 49)

Learning Control / Examinations
The assessment consists of an oral presentation within the lecture (according to Section 4 (2), 3 of the examination regulation) and an oral exam (according to Section 4 (2), 2 of the examination regulation). The overall grade consists of the valuation of the oral presentation and the valuation of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Learning to identify, to analyse and to assess business risks; this serves as a basis for strategy and policy design regarding risks and opportunities of an enterprise. Introduction to optimization approaches that allow to consider area-specific objectives, risk-bearing capacity and risk acceptance.

Content
1. Concepts and practice of risk management, based on decision theory
2. Goals, strategies and measures for the identification, analysis, assessment and management of risks
3. Insurance as an instrument for loss-financing
4. Selected aspects of risk management: e.g. environmental protection, organizational failure and D&O-cover, development of a risk management culture
5. Organisation of risk management
6. Approaches for determining optimal combinations of risk management measures considering their investment costs and outcomes.

Basic literature

Complementary literature
Continuative literature is indicated during the course.

Remarks
To attend the course please register at the secretariat of the chair of insurance science.
Course: Current Issues in the Insurance Industry

Course key: [26350]

Lecturers: Wolf-Rüdiger Heilmann
Credit points (CP): 2.5
Hours per week: 2/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Part of the modules: Insurance Markets and Management [IW3BWLFVB4] (S. 50)

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation) . The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
For the understanding of this course knowledge of Private and Social Insurance [25050] is required.

Conditions
None.

Learning Outcomes
Knowledge and understanding of important current peculiarities of insurance, e.g. insurance markets, lines, products, investment, company pension schemes, corporate structures and controlling.

Content
Changing urgent topics in insurance.

Complementary literature
Schwebler, Knauth, Simmert. Kapitalanlagepolitik im Versicherungsbinnenmarkt. 1994
Seng. Betriebliche Altersversorgung. 1995
von Treuberg, Angermayer. Jahresabschluss von Versicherungsunternehmen. 1995

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science.
Course: International Risk Transfer

Lecturers: Wolfgang Schwehr
Credit points (CP): 2.5 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Insurance Markets and Management [IW3BWLFBV4] (S. 50)

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation).
The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Becoming acquainted with the various possibilities of international risk transfer.

Content
How are the costs of potential major damages financed and covered on a global scale? Traditionally, direct insurers and, especially, reinsurers are conducting a global business, Lloyd’s of London is a turntable for international risks, and global industrial enterprises are establishing captives for self insurance. In addition to this, capital markets and insurance markets are developing innovative approaches to cover risks, which were hard to insure in the past (e.g. weather risk). The lecture will elucidate the functioning and the background of these different possibilities of international risk transfer.

Basic literature

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science.
Course: Insurance Contract Law

Lecturers: Hanns-Jörg Schwebler
Credit points (CP): 4.5 Hours per week: 3/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Insurance Markets and Management [IW3BWLFBV4] (S. 50)

Learning Control / Examinations
The assessment consists of an oral or a written exam (according to Section 4 (2), 1 of the examination regulation).
The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science.
The course will not be held any more after winter term 2009/10, the exam will not be offered after the exam period of summer term 2010.
Course: Insurance Game

Lecturers: Christian Hipp, N.N.
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Insurance: Calculation and Control [IW3BWLFBV2] (S. 48)

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
• Insgame: Das Unternehmensplanspiel Versicherungen, Lehrstuhl für Versicherungswirtschaft, FBV, Uni Karlsruhe
• Zweifel, Eisen: Versicherungsökonomie, 2000, Kapitel 1, 2 und 5
• Aktuelle Ausgaben der Zeitschrift „Versicherungswirtschaft“
Course: **Real Estate Management II**

Lecturers: Thomas Lützkendorf
Credit points (CP): 4,5
Hours per week: 2/2
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Real Estate Management [IW3BWLOOW2] (S. 52)

Course key: [26400]

Learning Control / Examinations
The assessment consists of a written exam (60 min) or an oral exam (20 min.) according to Section 4 (2), 1 or 2 of the examination regulation.
The exam takes place twice at every summer-semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
A combination with the module *Design Construction and Assessment of Green Buildings I* [IW3BWLOOW1] is recommended.
Furthermore it is recommended to choose courses of the following fields
- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Conditions
None.

Learning Outcomes
Application of economic methods to the fields of real estate economics and sustainable construction.

Content
The course Real Estate Management II gives special attention to topics in connection to the management of large real estate portfolios. This especially includes property valuation, market and object rating, maintenance and modernization, as well as real estate portfolio and risk management. The tutorial provides examples in order to practice the application of theoretical knowledge to practical problems.

Media
Presentation slides and supplementary material is provided partly as printout, partly online for download.

Complementary literature
See german version.

Remarks
The course is replenished by excursions and guest lectures by practitioners out of the real estate business.
Course: Real Estate Management I

Lecturers: Thomas Lützkendorf

Credit points (CP): 4.5 Hours per week: 2/2

Term: Wintersemester Level: 3

Teaching language: Deutsch

Part of the modules: Real Estate Management [IW3BWLOOW2] (S. 52)

Learning Control / Examinations
The assessment consists of a written exam (60 min) or an oral exam (20 min.) according to Section 4 (2), 1 or 2 of the examination regulation.
The exam takes place twice at every winter-semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
A combination with the module Design Construction and Assessment of Green Buildings I [IW3BWLOOW1] is recommended.
Furthermore it is recommended to choose courses of the following fields
- Finance and Banking
- Insurance
- Civil Engineering and Architecture (building physics, structural design, facility management)

Conditions
None.

Learning Outcomes
Application of economic methods to the fields of real estate economics and sustainable construction.

Content
The course Real Estate Management I deals with questions concerning the economy of a single building throughout its lifecycle. Among other topics this includes project development, location and market studies, german federal building codes as well as finance and assessment of economic efficiency.
The tutorial recesses the contents of the course by means of practical examples and, in addition to that, goes into the possible use of software tools.

Media
Presentation slides and supplementary material is provided partly as printout, partly online for download.

Complementary literature

Remarks
The course is replenished by excursions and guest lectures by practitioners out of the real estate business.
Course: Sustainability Assessment of Construction Works
Course key: [26404]

Lecturers: Thomas Lützkendorf
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Sustainable Construction [IW3BWLOOW1] (S. 51)

Learning Control / Examinations
The assessment consists of a written or an oral exam (20 min.) according to Section 4 (2), 1 or 2 of the examination regulation. The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
A combination with the module Real Estate Management [IW3BWLOOW2] and with engineering science modules from the areas building physics and structural design is recommended.

Conditions
None.

Learning Outcomes
Knowledge in the area of economic and environmental assessment of construction works.

Content
The course identifies problems concerning the economical and environmental assessment of buildings along their lifecycle and discusses suitable procedures and tools supporting the decision making process. For example, the course addresses topics like operating costs, heat cost allocation, comparisons of heating costs, applied economical assessment methods, life cycle assessment as well as related design and assessment tools (e.g. element catalogues, databases, emblems, tools) and assessment procedures (e.g. carbon footprint, MIPS, KEA), which are currently available.

Complementary literature
See german version.
Course: Design, Construction and Assessment of Green Buildings I Course key: [26404w]

Lecturers: Thomas Lützkendorf
Credit points (CP): 4,5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Sustainable Construction [IW3BWLOOW1] (S. 51)

Learning Control / Examinations
The assessment consists of an oral exam (20 min.) according to Section 4 (2), 2 of the examination regulation. The oral exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
A combination with the module Real Estate Management [IW3BWLWOU1] and with engineering science modules in the area of building physics and structural design is recommended.

Learning Outcomes
Knowledge in the area of sustainable construction concerning whole buildings, building components, equipment and appliances as well as building material.

Content
Taking low-energy buildings as an example the course is an introduction to cheap, energy-efficient, resource-saving and health-supporting design, construction and operation of buildings. Questions of the implementation of the principles of a sustainable development within the building sector are discussed on the levels of the whole building, its components, building equipment as well as the materials. Besides technical interrelationships basics dimensioning and various approaches to ecological and economical assessment play a role during the lectures, as well as the different roles of people involved into the building process. Topics are the integration of economical and ecological aspects into the design process, strategies of energy supply, low-energy and passive buildings, active and passive use of solar energy, selection and assessment of construction details, selection and assessment of insulation materials, greened roofs plus health and comfort.

Media
For a better clearness videos and simulation tools will be presented during the lectures.

Complementary literature
See german version.
Course: Topics of Sustainable Management of Housing and Real Estate

Course key: [26420]

Lecturers: Thomas Lützkendorf
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations
The assessment of this course is (according to §4(2), 3 SPO) in form of an examination of the written seminar thesis and a presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
• Students autonomously compile a paper treating of a marked-off subject within the area of real estate economics respectively sustainable construction, and present their results within the seminar.
• Therefore they master the principles of scientific writing, especially research, reasoning and citation, as well as handling information suspiciously.
• Through own and observed experiences they develop the ability to hold scientific presentations, including technical, formal, rhetorical and didactical aspects.

Content
The seminar deals with changing up-to-date topics concerning Real Estate Economics or Sustainable Construction. Current topics and schedules are announced at the beginning of term.

Media
A reader dealing with the basics of scientific writing is provided (in german language).
Course: Management of Business Networks

Lecturers: Christof Weinhardt, Jan Kraemer
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: eBusiness and Servicemanagement [IW3BWLISM1] (S. 37), Supply Chain Management [IW3BWLISM2] (S. 38)

Learning Control / Examinations
The total grade for this lecture will consist to 50% of the grade achieved in the written mid term examination, to 10% of the assignments during the exercises, and to 40% of a project work, which includes a term paper and a presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student will become acquainted with the theoretical fundamentals of economic networks and how to manage them. Support of economic networks by information systems will be accomplished by several case studies, which will be worked on by groups autonomously. Basic knowledge of organisation theory, network analysis, strategic & operative management and logic systems will be communicated to the student. Furthermore, he will have a focused view on the mechanisms and supporting tools for interaction between companies, especially in negotiations and negotiation-supporting systems. In small groups, the student is trained in team-oriented and autonomous working techniques. Within this domain, the student will be trained to seek and read relevant technical literature in English, the language of science, and to adopt it to a specific problem.

Content
The significant and lasting impact of web-based business-to-business (B2B) networks has just recently become apparent. The exploratory phase during the first Internet hype bred a variety of approaches which were often bold in business nature, yet simple and unfounded in system architecture. Only very few survived and proved sustainable. Nowadays web-based B2B networks are increasingly reappearing and even promoted by major traditional companies and governments. However, this new wave of networks is more mature and more powerful in functionality than their predecessors. As such they provide not only auction systems but also facilities for electronic negotiation. This implies a shift from price-focused to relationship-oriented trading. But what motivates this shift? Why do firms enter business networks? How can these networks be best supported by IT? The course intends to resolve these questions. Firstly, an introduction in organization theory will be given. Secondly, the problems of networks will be addressed. Thirdly, an analysis of how IT can alleviate those problems will be undertaken.

Media
Powerpoint presentations, recorded lecture available on the internet, (if circumstances allow videoconferencing).

Basic literature
Course: eFinance: Information Engineering and Management for Securities Trading

Course key: [26454]

Lecturers: Christof Weinhardt, Ryan Riordan

Credit points (CP): 4.5 Hours per week: 2/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: eBusiness and Servicemanagement [IW3BWLISM1] (S. 37), eFinance [IW3BWLISM3] (S. 39), Topics in Finance I [IW3BWLFBV5] (S. 47)

Learning Control / Examinations

70% of the mark is based on the written examination and 30% is based on assignments during the exercises.

Prerequisites

None.

Conditions

None.

Learning Outcomes

The goal of the lecture is to make the students familiar with the theoretical as well as the practical aspects of electronic trading and exchanges and the IT systems used in the financial industry. While markets for products and services are discussed, the focus is on the trading of financial securities. Existing centralized equity exchanges face competition from new alternative trading systems made possible by today’s information technology. This course will also examine the impact and implications of this dynamic. The focus is on the economic and technical design of markets as information processing systems.

Content

The theoretical part of the course examines the New Institutions Economics which provides a theoretically found explanation for the existence of markets and intermediaries. Building upon the foundations of the market microstructure, several key parameters and factors of electronic trading are examined. These insights gained along a structured securities trading process are complemented and verified by the analysis of prototypical trading systems developed at the institute as well as selected trading systems used by leading exchanges in the world. In the more practical-oriented second part of the lecture, speakers from practice will give talks about financial trading systems and link the theoretical findings to real-world systems and applications.

Media

Powerpoint presentations, recorded lecture available on the internet

Basic literature

Complementary literature

Course: eServices

Lecturers: Christof Weinhardt, Gerhard Satzger

Credit points (CP): 5 Hours per week: 2/1

Term: Sommersemester Level: 3

Teaching language: Englisch

Part of the modules: eBusiness and Servicemanagement [IW3BWLISM1] (S. 37), Specialization in Customer Relationship Management [IW3BWLISM5] (S. 41)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
This course conveys the fundamental knowledge to understand the importance of services in our economy and the impact of information and communication technology (ICT) on existing and emerging service industries. Combining theoretical models with multiple case studies and application scenarios, this course will enable students:

• to understand different service perspectives and apply the general concept of “value co-creation”
• to know and to be able to apply concepts, methods and tools used for the design, engineering and management of eServices
• to be familiar with current research topics
• to gain experience in group work and to improve their presentation skills
• to be exposed to English language in preparation for working in international environments

Content
The world is moving more and more towards “service-led” economies: in developed countries services already account for around 70% of gross value added. In order to design, engineer, and manage services, traditional “goods-oriented” models are often inappropriate. In addition, the rapid development of information and communication technology (ICT) pushes the economic importance of services that are rendered electronically (eServices) and, thus, drives competitive changes: increased interaction and individualization open up new dimensions of “value co-creation” between providers and customers; dynamic and scalable service value networks replace static value chains; digital services can be globally delivered and exchanged across today’s geographic boundaries;

Building on a systematic categorization of (e)Services and on the general notion of “value co-creation”, we cover concepts and foundations for engineering and managing IT-based services, allowing for further specialization in subsequent KSRI courses. Topics include service innovation, service economics, service modeling as well as the transformation and coordination of service value networks.

In addition, case studies, hands-on exercises and guest lectures will illustrate the applicability of the concepts. English language is used throughout the course to acquaint students with international environments.

Media
PowerPoint slides;

Complementary literature
Stauss, B. et al. (Hrsg.) (2007), Service Science – Fundamentals Challenges and Future Developments.
Teboul, (2007), Services is Front Stage.
Course: Special Topics in Information Engineering & Management
Course key: [26478]

Lecturers: Christof Weinhardt
Credit points (CP): 4.5
Hours per week: 3
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: eBusiness and Servicemanagement [IW3BWLISM1] (S. 37)

Learning Control / Examinations
The student is evaluated based on the written and practical work, a presentation of the results in front of an audience and his contribution to the discussion.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of information engineering and management. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The practical work components should enable the student to learn and independently use scientific methods employed e.g. in case studies or experiments. The student learns to present his results in a paper and in front of an audience on an academic level. This process is helpful for further scientific work like the master or doctoral thesis.

Content
In this course the student should learn to apply the search methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires a interdisciplinary examination. Experiments, case studies or software development can be part of the practical work that offers the students an opportunity to get a deeper insight into the field of Information Engineering and Management. The course also encompasses a documentation of the implemented work.

Media
- Power Point
- eLearning Plattform Ilias
- Software tools for development, if needed

Basic literature
The basic literature will be made available to the student according to the respective topic.

Remarks
All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Engineering & Management course. The current topics of the practical seminars are available at the following homepage: www.iism.kit.edu/im/lehre
Course: Management of Business Networks (Introduction)
Course key: [26496]

Lecturers: Christof Weinhardt, Jan Kraemer
Credit points (CP): 3
Hours per week: ???
Term: Wintersemester
Level: 3
Teaching language: Englisch
Part of the modules: Supply Chain Management [IW3BWLISM2] (S. 38)

Learning Control / Examinations

The assessment consists of a written examination (60 min) according to Section 4(2), 1 of the examination regulation and by submitting written papers as part of the exercise according to section 4(2), 3 of the examination regulation. Grading: Exam counts for 85 %, exercises for 15 %.

Prerequisites

None.

Conditions

None.

Learning Outcomes

The student will become acquainted with the theoretical fundamentals of economic networks and how to manage them. Support of economic networks by information systems will be accomplished by several case studies, which will be worked on by groups autonomously. Basic knowledge of organisation theory, network analysis, strategic & operative management and logic systems will be communicated to the student. Furthermore, he will have a focused view on the mechanisms and supporting tools for interaction between companies, especially in negotiations and negotiation-supporting systems. In small groups, the student is trained in team-oriented and autonomous working techniques. Within this domain, the student will be trained to seek and read relevant technical literature in English, the language of science, and to adopt it to a specific problem.

Content

The significant and lasting impact of web-based business-to-business (B2B) networks has just recently become apparent. The exploratory phase during the first Internet hype bred a variety of approaches which were often bold in business nature, yet simple and unfounded in system architecture. Only very few survived and proved sustainable. Nowadays web-based B2B networks are increasingly reappearing and even promoted by major traditional companies and governments. However, this new wave of networks is more mature and more powerful in functionality than their predecessors. As such they provide not only auction systems but also facilities for electronic negotiation. This implies a shift from price-focused to relationship-oriented trading. But what motivates this shift? Why do firms enter business networks? How can these networks be best supported by IT? The course intends to resolve these questions. Firstly, an introduction in organization theory will be given. Secondly, the problems of networks will be addressed. Thirdly, an analysis of how IT can alleviate those problems will be undertaken.

Media

Powerpoint presentations, recorded lecture available on the internet.

Basic literature

Remarks

This Version of the MBN Course does not include the case study in the second part of the lecture, so that it is worth less credits. The lecture was first offered in the winter term of 2009/10.
Course: Customer Relationship Management
Course key: [26508]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 4,5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: CRM and Service Management [IW3BWLISM4] (S. 40)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from exercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students
- understand service management as an economic basis for Customer Relationship Management and learn the resulting consequences for the management, the organisation itself and their departments,
- design and develop service concepts and service systems at a conceptual level,
- work on case studies in the CRM-area in small groups with limit time,
- learn English as the technical language in the area of CRM and consult international literature from this field for the case studies.

Content
The course begins with an introduction into Service Management as the strategic concepts which also covers all CRM applications. The course is divided in the basics of Service Management as well as different topics within this concept like external and internal marketing, quality management and organizational requirements.

Media
Slides

Basic literature

Complementary literature
Course: Operative CRM

Lecturers: Andreas Geyer-Schulz

Credit points (CP): 4.5 Hours per week: 2/1

Term: Wintersemester Level: 3

Teaching language: Deutsch

Part of the modules: CRM and Service Management [IW3BWLISM4] (S. 40), Specialization in Customer Relationship Management [IW3BWLISM5] (S. 41)

Learning Control / Examinations

Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from exercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites

None.

Conditions

The attendance of courses Customer Relationship Management [26508] and Analytical CRM [26522] is advised.

Learning Outcomes

The Student

• understands the theory of methods for process and data analyses and applies them for the design and implementation of operative CRM-processes in the complex context of companies,
• takes privacy problems into account,
• evaluates existing operative CRM-processes in companies and gives recommendations for their improvement. This requires the knowledge of example processes and the ability to transform them according to the given setting.
• uses literature for the solution of case studies, communicates with professionals and summarizes his recommendations and drafts in precise and coherent texts.

Content

The Student should be able to understand and implement methods and applications within the operative CRM. This includes, but is not limited to the analysis of business processes, as a basis for improvements in CRM, and applications like call centers.

Basic literature

Complementary literature

Chris Todman. Designing a Data Warehouse : Supporting Customer Relationship Management.
Course: Analytical CRM

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch

Part of the modules: CRM and Service Management [IW3BWLISM4] (S. 40), Specialization in Customer Relationship Management [IW3BWLISM5] (S. 41)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from exercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
We expect knowledge about data models and the UML modelling language concerning information systems.

Learning Outcomes
The Student should
- understand the principal scientific methods from statistics and informatics used in analytical CRM and their application to enterprise decision problems and be able to independently apply these methods to standard cases,
- understand the components for creating and managing a data warehouse from operative system sources including the processes and steps involved and should be able to apply these methods to a simple example, and
- use his knowledge to conduct a standard CRM analysis on enterprise data for a business decision problem and deduce and justify a recommendation for appropriate action.

Content
The course Analytical CRM deals with methods and techniques for analysis concerning the management and improvement of customer relationships. Knowledge about customers is aggregated and used for enterprise decision problems like product line planning, customer loyalty, etc. A necessary precondition for these analyses is the transformation of data stemming from operative systems into a common data warehouse that assembles all necessary information. This requires transformation of data models and processes for creating and managing a data warehouse, like ETL processes, data quality and monitoring. The generation of customer oriented and flexible reports for different business purposes is covered. The course finally treats several different statistical analysis methods like clustering, regression etc. that are necessary for generating important indicators (like customer lifetime value, customer segmentation).

Media
slides

Basic literature
Course: Bachelor Seminar in Information Engineering and Management [26524]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations

Prerequisites
See corresponding module description. Furthermore, knowledge from CRM is required. Therefore, the lecture Customer Relationship Management [26508] (or a similar one) has to be attended parallel or before the seminar.

Conditions
None.

Learning Outcomes
The student is able to

- to perform a literature search for a given topic, to identify, find, value and evaluate the relevant literature.
- to write his seminar thesis (and later on, the bachelors/masters thesis) with the text setting system LaTeX and include format requirements as used by scientific publishers.
- to do a presentation in an adequate scientific manner.
- to write down the results of his investigations in the form of scientific publications.

Content
This seminar serves as an introduction into the process of scientific work. Students write a review for a selected scientific article. A profound literature search is required to judge the article. The review is written with LaTeX by using formatting styles similar to those of scientific publishers.

The seminar treats questions of Customer Relationship Management.

Basic literature
A CRM-specific article is assigned to every student participating in this seminar. The chosen articles are published in the beginning of every term.

Complementary literature
Course: Derivatives

Lecturers: Marliese Uhrig-Homburg
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: eFinance [IW3BWLISM3] (S. 39), Topics in Finance I [IW3BWLFBV5] (S. 47)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of the Derivatives lecture is to become familiar with financial markets, especially derivatives markets. Traded securities and frequently used trading strategies will be introduced. Furthermore the pricing of derivatives will be derived and their use in risk management will be discussed.

Content
The lecture deals with the application areas and valuation of financial derivatives. After an overview of the most important derivatives and their relevance, forwards and futures are analysed. Then, an introduction to the Option Pricing Theory follows. The main emphasis is on option valuation in discrete and continuous time models. Finally, construction and usage of derivatives are discussed, e.g. in the context of risk management.

Media
Slides, Exercises/Exercise sheets

Basic literature

Complementary literature
Course: International Finance

Lecturers: Marliese Uhrig-Homburg, Walter
Credit points (CP): 3
Hours per week: 2
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: eFinance [IW3BWLISM3] (S. 39), Topics in Finance I [IW3BWLFBV5] (S. 47)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of this course is to become familiar with the basics of investment decisions on international markets and to manage foreign exchange risks.

Content
The main aspects of this course are the chances and the risks which are associated with international transactions. We carry out our analysis from two distinct perspectives: First the point of view of an international investor second that, of an international corporation. Several alternatives to the management of foreign exchange risks are shown. Due to the importance of foreign exchange risks, the first part of the course deals with currency markets. Furthermore current exchange rate theories are discussed.

Complementary literature

- D. Eiteman et al. (2004): Multinational Business Finance, 10. Auflage
Course: Investments

Lecturers: Marliese Uhrig-Homburg

Credit points (CP): 4.5 Hours per week: 2/1

Term: Sommersemester Level: 3

Teaching language: Deutsch

Part of the modules: Essentials of Finance [IW3BWLFBV1] (S. 46)

Learning Control / Examinations

The assessment consists of a written exam (75 min) according to Section 4(2), 1 of the examination regulation. The examination takes place in every semester. Re-examinations are offered at every ordinary examination date. By submitting the exercises (according to Section 4(2), 3 of the examination regulation) up to 4 bonus points can be acquired.

Prerequisites

None.

Conditions

None.

Learning Outcomes

The objective of this course is to become familiar with the basics of investment decisions on stock, bond, and derivatives markets. For that basic economic concepts and models are discussed and applied on introductory level. Interlinkages between markets, different decision making concepts and models are demonstrated.

Content

The lecture deals with investment decisions under uncertainty, where the main emphasis is on investment decisions on stock markets. After a discussion of the basic questions of corporate valuation, the lecture focuses on portfolio theory. After that, risk and return in equilibrium are derived using the Capital Asset Pricing Model and the Arbitrage Pricing Theory, followed by an introduction into derivatives markets, especially forwards and futures. The lecture concludes with investments on bond markets.

Complementary literature

Course: Logistics - Organisation, Design, and Control of Logistic Systems
Course key: [2118078]

Lecturers: Kai Furmans
Credit points (CP): 6 Hours per week: 3/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Supply Chain Management [IW3BWLiSM2] (S. 38)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2), 1 of the examination regulation. The grade of the exam may be improved by passing case studies.

Prerequisites
Required are lectures on “Linear Algebra” and “Stochastic”.

Conditions
None.

Learning Outcomes
After successfully finishing this course, the student is able to plan simple material handling and logistic systems and is able to assign the right models to a certain task. He is able to evaluate the performance of the most important elements of material handling and logistic systems.

Content
Introduction
- historical overview
- lines of development
Structure of logistics systems
Distribution logistics
- location planning
- Vehicle Routing Planning
- distribution centers
Inventory management
- demand forecasting
- Inventory management policies
- Bullwhip effect
Production logistics
- layout planning
- material handling
- flow control
Supply Management
- information flow
- transportation organization
- controlling and development of a logistics system
- co-operation mechanisms
- Lean SCM
- SCOR model
Identification Technologies

Media
Blackboard, LCD projector, in exercises also PCs.

Complementary literature
- Arnold/Isermann/Kuhn/Tempelmeier. Handbuch Logistik, Springer Verlag, 2002 (Neuausgabe in Arbeit)
- Domschke. Logistik, Rundreisen und Touren, Oldenbourg Verlag, 1982
- Domschke/Drexel. Logistik, Standorte, Oldenbourg Verlag, 1996
- Gudehus. Logistik, Springer Verlag, 2007
- Tempelmeier. Bestandsmanagement in Supply Chains, Books on Demand 2006
Remarks
Formerly, the course was known as Logistics.
Course: Quantitative Methods for Supply Chain Risk Management Course key: [2118090]

Lecturers: Cardeneo
Credit points (CP): 6 Hours per week: 3/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Supply Chain Management [IW3BWLISM2] (S. 38)

Learning Control / Examinations
The assessment consists of an oral exam according to §4 (2), 2 of the examination regulation. It may be a written exam (according to §4 (2), 1 of the examination regulation) in the case of large number of participants.

Prerequisites
Knowledge in Logistics and Operations Research are recommended (linear and mixed integer optimization, simple graph theory, and basic knowledge of statistics).

Conditions
None.

Learning Outcomes
The student
- identifies, analyzes and assigns risks of logistic systems
- plans location and transport decisions under uncertainty
- knows risk-relevant elements and knows adequate countermeasures for planning processes (regarding procurement, demand, infrastructure, continuity management)

Content
The planning and the operation of logistics systems are strongly connected with uncertainty: It is the unknown demand, varying transportation times, unexpected delays, irregularly production yield or volatile rates of exchange: Quantities, times, qualities and prices are uncertain values. Therefore it is necessary to deal with particular these uncertain values to avoid negative effects. In this lecture we mostly work with mathematical models and methods to control the various kinds of risks.

Basic literature
Will be announced in the lecture.
Course: Algorithms for Visualization of Graphs

Lecturers: Dorothea Wagner, Martin Nöllenburg
Credit points (CP): 3 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Algorithm Design [IW3INALGT] (S. 72)

Learning Control / Examinations

Prerequisites
Lecture Algorithmentechnik [24079] is recommended.

Conditions
None.

Learning Outcomes
The students acquire a systematic understanding of algorithmic problems and solutions in the area of graph visualization, which builds upon existing knowledge in graph theory and algorithmics. The problems at hand are reduced to their algorithmic core and are subsequently solved efficiently – if possible from the complexity point-of-view. The students learn to apply the presented methods and techniques autonomously to related questions. They are enabled to work on current research questions in graph drawing.

Content
Networks are relational data that increasingly occur in various applications. Examples range from physical networks, for example, transport or supply networks, to abstract networks, for example, social networks. Network visualization is a basic tool to explore and understand such networks.

Mathematically, networks are modeled as graphs and the visualization problem reduces to the algorithmic core problem of finding a suitable graph layout, that is, determining the positions of vertices and edges in the plane. Depending on the application and the properties of the graph at hand different constraints and optimization criteria apply. The corresponding research area of graph drawing uses approaches from algorithmics, graph theory, and computational geometry.

In the course of the lecture, a representative selection of visualization algorithms is presented.

Media
Slides.

Complementary literature

• Di Battista, Eades, Tamassia, Tollis: Graph Drawing, Prentice Hall 1999
• Kaufmann, Wagner: Drawing Graphs, Springer-Verlag, 2001

Remarks
The course is not lectured in the summer term 2010.
Course: Algorithmic Methods for Hard Optimization Problems

Course key: [AlgoMO]

Lecturers: Dorothea Wagner, Peter Sanders
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Algorithm Design [IW3INALGT] (S. 72)

Learning Control / Examinations

Prerequisites
Lecture Algorithmentechnik [24079] is recommended.

Conditions
None.

Learning Outcomes
The goal of this course is to familiarize the students with hard problems and possible approaches to solve them. Online problems may also be part of the course.

Content
There are many practical problems that cannot be solved optimally - some not at all and some not in a reasonable amount of time. An example is the "bin packing problem" where a collection of objects must be packed using a possibly small number of bins. Moreover, problems sometimes arise where knowledge about the future (or even about the present) is incomplete, but a decision is required nevertheless ("online problems"). Regarding bin packing, for example, there must be a point in time when you close the bins and send them away. Even if there are some more objects arriving later.
Course: Fortgeschrittene Objektorientierung

Lecturers: Gregor Snelting
Credit points (CP): 6 Hours per week: 3/2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced object orientation [IW3INFOO] (S. 80)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Participants in this course know the basics of different object oriented programming languages (e.g. Java, C#, Smalltalk, Scala). They know how inheritance and dynamic dispatch work, behave and are implemented, and how these are used in software engineering. They know innovative language constructs in object oriented languages like generics, aspects and traits. The participants know the theoretic foundations of (e.g. type systems), software engineering tools for (e.g. refactoring) and techniques (e.g. points-to analysis) for analysing object oriented programs. They know current trends in research on object oriented programming.

Content
• Behaviour and semantics of dynamic dispatch
• Implementation of single and multiple inheritance
• Genericity, refactoring
• Aspect oriented programming
• Traits and mixins, virtual classes
• Cardelli's type system
• Palsberg-Schwartzbach type inference
• Analyses on the call graph, points-to analyses
• operational semantics, type safety
• bytecode JVM, bytecode verifier, dynamic compilation

Remarks
The course is not lectured in the summer term 2010.
Course: Selling IT-Solutions Professionally

Lecturers: Klemens Böhm, Hellriegel
Credit points (CP): 1 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Information Systems [IW3INGIS] (S. 68)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
At the end of the course, the participants:
1. Have gained knowledge and understanding for the sales process.
2. Have obtained knowledge and understanding for typical roles and tasks.
3. Have gained an insight into practical and application-oriented aspects through an extensive case study and role plays.

Content
One of the key qualifications in IT sales (activities related to the customer) is the understanding of sales mechanisms as well as having the corresponding basic skills. This applies not only to the marketing staff, but also to consultants of customers, project managers and developers. After a short overview of the different types of businesses and the resulting requirements regarding marketing and sales in general, the course focuses in particular on the process of selling IT-solutions professionally.

The topics are structured as follows:

1. Understanding the market: which information regarding the markets of clients and suppliers needs to be obtained and where can such information be found.
2. Knowing the customer: what should a provider know about the customer and its staff? This goes up to the question with which characters one has to deal with.
3. Planning the sales process: sales builds on phases, milestones and formally describable intermediate results.
4. Building a sales team: solutions are developed and sold with a team consisting of "players" having different expertise. How does one play this game?
5. Positioning the solution: obviously, it is necessary to develop a solution which is competitive, both technically and commercially.
6. To contract: what is important at the very last steps: how to convince the customers.

Based on a real-world case study, the students have the opportunity to reflect and practice the learned theory by means of teamwork and role plays. This aims at establishing a first connection to reality. The topics of the course are enriched with many examples from practice.

Complementary literature
Reiner Czichos: Creaktives Account-Management.
Course: Project Management in Practice

Lecturers: Klemens Böhm, Wolfgang Schnober
Credit points (CP): 1
Hours per week: 2
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Foundations of Information Systems [IW3INGIS] (S. 68)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
At the end of the course, the participants:

- Know the principles of project management and are able to make use of them in real-world case studies.
- Have profound knowledge about project phases, principles of project planning, fundamental elements such as project charter & scope definitions, descriptions of project goals, activity planning, milestones, project-structure plans, agenda and cost planning and risk management. Further, they know principle elements of project implementation, crisis management, escalation and, last but not least, project-termination activities.
- Understand and are able to adopt the fundamentals of planning as well as the subjective factors which are relevant in a project. This includes topics such as communication, group processes, teambuilding, leadership, creative solution methods and risk-assessment methods.

The following key skills are taught:

- Project planning
- Project control
- Communication
- Leadership behavior
- Crisis management
- Identification of and solutions of difficult situations
- Team building
- Motivation (of oneself and of others)

Content

- General project conditions
- Project goals / creative methods for identifying project goals and priorities
- Project planning
- Activity planning
- Cost/time/resource planning
- Phase models
- Risk management
- Project control / success control / monitoring
- Crisis management
- Project termination / lessons learned
Course: Computing Lab Information Systems

Course key: [PraBl]

Lecturers: Andreas Oberweis, Detlef Seese, Wolffried Stucky, Rudi Studer

Credit points (CP): 5

Hours per week: 2

Term: Winter-/Sommersemester

Level: 3

Teaching language: Deutsch

Part of the modules: Business Process Engineering [IW3INAIFB6] (S. 66)

Learning Control / Examinations
The assessment of this course are practical work, presentations and a written thesis according to §4(2), 3 of the examination regulation. Practical work, presentations and a written thesis are weighted according to the course.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are able to

- implement a prototype at the computer based on the given topic.
- write the thesis with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
- give presentations in a scientific context in front of an auditorium. These techniques are presented and learn during the course.
- present results of the research in written form generally found in scientific publications.

Content
The lab intensifies and extends specific topics which are discussed within corresponding lectures. Knowledge of these lecture topics is an advantage but not a precondition.

Media
Slides, Access to internet resources

Basic literature
Literature will be given individually.

Remarks
The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre
Course: Special Topics of Enterprise Information Systems

Lecturers: Andreas Oberweis, Wolfrfried Stucky
Credit points (CP): 5 Hours per week: 2/1
Term: Winter-/Sommersemester Level: ???
Teaching language: Deutsch
Part of the modules: Business Processes and Information Systems [IW3INAIFB7] (S. 67)

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are able to handle methods and instruments in a subarea of “Enterprise Information Systems” and to show the capability to be innovative with regard to applied methods.

The course will impart knowledge of basics and methods in the context of their application in practice. Based on the understanding of the imparted concepts and methods students will be able to choose the appropriate methods and apply them in the right way for problems they will face in their professional life.

Students will be enabled to find arguments for solution approaches and to argue for them.

Content
This course is a placeholder for special courses that are offered in an irregular sequence and cover selected topics in the field of enterprise information systems. These topics include in particular the design and the management of database systems, the computer-support of business processes and strategic planning of information systems and their organization.

Basic literature
Will be announced at the beginning of the course.
Course: Seminar Software Systems

Lecturers: Ralf Reussner
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Informatics [IW3SEMINFO] (S. 33)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students can
- conduct literature search for a given topic and can identify, locate, assess and evaluate the relevant literature.
- present the research results in a written form similar to scientific publications.
- write their papers with minimal effort, taking formatting and length requirements, as they are set by all publishers of scientific publications, into consideration.
- learn to cite related work in a scientific way and learn to create auditorium-appropriate presentations in the context of a scientific topic.
- achieve knowledge about techniques and tools for systematic software engineering, such as software design, software architectures, predictions of functional and extra-functional properties of software, documentation, testing, etc.

Content
This course treats cutting-edge research topics from the area of software systems, i.e. software engineering and performance engineering.
Course: Software Engineering II

Lecturers: Ralf Reussner, Walter F. Tichy
Credit points (CP): 6
Hours per week: 3/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Softwaretechnik II [IW3INSWT2] (S. 78)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Seminar Software Engineering

Course key: [SWTSem]

Lecturers: Walter F. Tichy, Ralf Reussner, Gregor Snelting
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Informatics [IW3SEMINFO] (S. 33)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students will
• independently research literature for a given topic. This includes searching and identifying relevant literature as well as evaluating and interpreting its content.
• learn to optimize the time needed to cope with the relevant parts of the concrete topic.
• write a term paper that complies with formatting rules (as they will be enforced by all publishers for common publications).
• prepare a presentation for a scientific topic. We will discuss techniques that help to prepare and present the contents with respect to the targeted audience.
write down the results of their research similar to the form of a scientific publication.

Content
The seminar covers topics of recent research in the field of software engineering.
Course: Seminar in Enterprise Information Systems

Course key: [SemAIFB1]

Lecturers: Rudi Studer, Andreas Oberweis, Wolfried Stucky, Thomas Wolf, Ralf Kneuper

Credit points (CP): 3
Hours per week: 2

Term: Winter-/Sommersemester
Level: 4

Teaching language: Deutsch

Part of the modules: Seminar Module Informatics [IW3SEMINFO] (S. 33), Business Processes and Information Systems [IW3INAIFB7] (S. 67)

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis and a presentation.
The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.
The seminar is for bachelor as well as master students. The differentiation will be made by selection of different topics and different standards of evaluation.

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
Students are able to
- do literature search based on a given topic: identify relevant literature, find, assess and evaluate this literature.
- write the seminar thesis (and later the Bachelor-/Masterthesis) with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
- give presentations in a scientific context in front of an auditorium. These techniques are presented and learned during the seminar.
- present results of the research in written form generally found in scientific publications.

Content
The seminar intensifies and extends specific topics which are discussed within corresponding lectures. Knowledge of these lecture topics is an advantage but not a precondition.
Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre

Basic literature
Literature will be given individually in the specific seminar.
Course: Seminar Knowledge Management

Course key: [SemAIFB4]

Lecturers: Rudi Studer

Credit points (CP): 3 Hours per week: 2

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: Seminar Module Informatics [IW3SEMINFO] (S. 33)

Learning Control / Examinations
The success monitoring is done through a presentation about a research topic from the current topic of the seminar (45-60 minutes) followed by a discussion, a written summary of the main points (approx. 15 pages) and of active participation in discussions (in accordance with §4(2),3 SPO).

The total mark is composed of the graded and weighted success controls (50% lecture, 30% written paper, and 20% participation and discussion.

The seminar can be attended by both bachelor and master students. A differentiation is made by different topic assignment and evaluation standards for seminar paper and presentation.

Prerequisites
See module description.

Conditions
None.

Learning Outcomes
The students will learn to perform literature searches on current topics in computer science as well as preparing and presenting the contents of scientific publications.

During the work on the seminar topics the master students will deepen their skills to autonomously comprehend current scientific knowledge and to convey it to others through oral presentations and written summaries.

Through active participation in the seminar, students acquire skills in critical appraisal of research topics and in oral and written presentation of independently developed research content.

Content
Each year, the seminar will cover topics from a different selected subfield of knowledge management, e.g.:

- Ontology-based knowledge management,
- Information Retrieval and Text Mining,
- Data Mining,
- Personal Knowledge Management,
- Case Based Reasoning (CBR),
- Collaboration and Social Computing.

Media
Slides.

Basic literature

Complementary literature
None.

Remarks
The number of students is limited. Students have to observe the designated registration process.
Course: Seminar in Insurance Management
Course key: [SemFBV1]

Lecturers: Ute Werner
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
The seminar is held within the courses of Insurance Management [IW3BWLFBV4] and [WW4BWLFBV6/7], respectively, but with special forms of working.
A course taken as a seminar cannot be chosen as a part of a course module (and vice versa).
The seminar is well-suited in combination with the bachelor modules Risk and Insurance Management [IW3BWLFBV3] and Insurance Management [IW3BWLFBV4] as well as to the master modules Insurance Management I [WW4BWLFBV6] and Insurance Management II [WW4BWLFBV7]. These modules, though, are not required to be taken.

Learning Outcomes
See German version.

Content
The seminar is offered within the following courses:

• Insurance Marketing
• Insurance Production
• Service Management
For their contents refer to the information given at the referring pages.

Basic literature
Will be announced at the beginning of the lecture period.

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Seminar in Operational Risk Management

Lecturers: Ute Werner
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
The seminar is held within the courses of Operational Risk Management I/II [WW4BWLFBV8/9] but with special forms of working. A course taken as a seminar cannot be chosen as a part of a course module (and vice versa).

The seminar is well-suited in combination with the bachelor module Risk and Insurance Management [IW3BWLFBV3] as well as to the master modules Operational Risk Management I [WW4BWLFBV8] and Operational Risk Management II [WW4BWLFBV9]. These modules, though, are not required to be taken.

Learning Outcomes
See German version.

Content
The seminar is offered within the following courses:
- Enterprise Risk Management
- Multidisciplinary Risk Research
- Risk Communication
- Risk Management of Microfinance and Private Households
- Project Work in Risk Research

For their contents refer to the information given at the referring pages.

Basic literature
Will be announced at the end of the recess period.

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Seminar in Risk Theory and Actuarial Science

Course key: [SemFBV3]

Lecturers: Christian Hipp, N.N.
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
Knowledge of statistics and actuary science is an advantage.
The seminar is a good addition to the Bachelor module Calculation and Control [IW3BWLFBV2] and to the Master modules Applications of Actuarial Sciences I/II [WW4BWLFBV4/5] and Insurance Statistics [WW4BWLFBV8]. However these modules are not a prerequisite for the participation in the seminar.

Learning Outcomes

Content

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Industrial Production

Lecturers: Frank Schultmann, Magnus Fröhling, Michael Hiete
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations
Assessment acc. to §4 (2), No.3 ER by assessing the written seminar thesis (approx. 20 pages), the oral presentation and active participation in public discussions. The final grade will be formed by weighing the individual assessment grades.

Prerequisites
Students should have completed the modules „Industrial Production I“ [IW3BWLIIIP1], „Industrial Production II“ [WW4BWLIIIP2] and/or „Industrial Production III“ [WW3BWLIIIP6].

Conditions
None.

Learning Outcomes
Students shall gain insights into selected research projects of the Institute of Industrial Production (IIP).

- Students shall search for, identify, review and evaluate relevant literature.
- Students shall prepare their seminar thesis (and later on bachelor/master thesis) with a minimum expense in becoming acquainted with their topic and general layout.
- Students shall produce an oral presentation in a scientific context by using the outlined techniques of scientific presentation.
- Students shall learn to present their written results in an adequate form for scientific publishing.

Students in M.Sc. studies will have to put special emphasis on a critical discussion and evaluation of their topic, since they will have to look into actual scientific results in the field of industrial production.

Content
This seminar covers actual topics of industrial production, logistics, environmental science, project management and similar fields.
We recommend a successful attendance of previous IIP modules (not compulsory!).
Actual topics covered in this seminar will be published before the start of semester.
Course: Seminar Information Engineering and Management

Lecturers: Christof Weinhardt
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
Business Engineering/Economics Engineering: Preferably at least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of information engineering and management. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The student learns to present his results in a paper and in front of an audience on a academic level. This process gives him the knowledge and practice for further research work like a master thesis or a doctoral thesis.

Content
In the seminar the student should learn to apply the research methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires an interdisciplinary examination.

Media
• Powerpoint,
• eLearning Platform Ilias
• Software Tools, if necessary

Basic literature
The student will receive the necessary literature for his research topic.

Remarks
• Students from Bachelor and Master Course can visit the seminar. The research topic as well as the evaluation of the work and the presentation will have a different focus between Bachelor and Master Course.
• All the seminars offered at the chair of Prof. Dr. Weinhardt can be chosen. The current topics of the seminars are available at the following homepage: http://www.im.uni-karlsruhe.de/lehre.
Course: Informatics Seminar

Lecturers: Martina Zitterbart
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module Informatics [IW3SEMINFO] (S. 33)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• deals with a well-defined problem in the Informatics domain in detail,
• analyses and discusses the given problems as part of the courses and in the final seminar papers,
• discusses, presents, and defends technical arguments within the given task specifications,
• organises the drafting of the final seminar paper mostly independently.

The competences gained as part of this seminar module serve as a preparation for the Bachelor thesis. Guided by the respective examiner, the student exercises independent scientific work in drafting and presenting the final seminar paper.

Content
The module consists of a seminar, that is related to the research field of informatics. A complete list of available seminars is published in the internet.

Remarks
The mentioned seminars in this module handbook are place holders. For each semester, a complete list of seminars are published in the Vorlesungsverzeichnis or at the web pages of the participating institutes. Often, the seminar topics for a given semester are published at the end of the preceding semester. Some seminars require an early sign-in deadline at the end of the of the preceding semester.
Course: Seminar in Security

Lecturers: Jörn Müller-Quade, Martina Zitterbart
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Informatics [IW3SEMINFO] (S. 33)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- deals with a restricted problem in the field of computer security,
- analyzes and discusses the problems associated to a distinct discipline in the final seminar paper,
- discusses, presents and defends subject-specific arguments within a given task,
- organizes the preparation of the final papers largely independent.

Content
The seminar deals with current topics in the research field of computer security. These are e.g.
- Side channel attacks;
- Network security;
- Communication protocols;
Course: Seminar Stochastic Models

Course key: [SemWIOR1]

Lecturers: Karl-Heinz Waldmann

Credit points (CP): 3 **Hours per week:** 2

Term: Winter-/Sommersemester **Level:** 4

Teaching language: Deutsch

Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations
The assessment of this course is in form of an examination of the written seminar thesis and a presentation. The final mark is the result of both the paper and its presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
In case studies students comprehend stochastic relationships and gain deep knowledge of modelling, evaluation, and optimization of stochastic systems. In group presentations, students learn basic academic presentation and argument skills.

Content
The actual topic as well as the contemporary issues are available online.

Media
Power Point and related presentation techniques.

Basic literature
Will be presented with the actual topic.
Course: Seminar Economic Theory

Lecturers: Clemens Puppe
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IWSEMWI] (S. 34)

Learning Control / Examinations

Prerequisites
See corresponding module information.
At least one of the courses Game Theory I [25525] and Welfare Economics [25517] should have been attended beforehand.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Experimental Economics

Lecturers: Siegfried Berninghaus

Credit points (CP): 3 Hours per week: 2

Term: Winter-/Sommersemester Level: 4

Teaching language: Deutsch

Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations
Term paper and presentation

Prerequisites
See corresponding module information.
A course in the field of Game Theory should be attended beforehand.

Conditions
None.

Learning Outcomes
The seminar wants to deepen the methods of scientific work. Students shall learn to discuss critical the latest research results in Experimental Economics.
Students learn the technical basics of presentation and to argument scientifically. Also rethoric skills shall be amplified.

Content
The seminar’s topic will be announced before the beginning of each semester on the internet (http://www.wior.uni-karlsruhe.de/LS_Berninghaus/Studium/).

Media
Slides.

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Game and Decision Theory
Course key: [SemWIOR4]

Lecturers: Siegfried Berninghaus
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Economic Sciences [IW3SEMWIWI] (S. 34)

Learning Control / Examinations
Term paper and presentation

Prerequisites
Completion of all 1st an 2nd year modules of the Bachelor Program.
See corresponding module information.

Conditions
None.

Learning Outcomes
The seminar wants to deepen the methods of scientific work. Students shall learn to discuss critical the latest research results in game theory.
Procurement of SQs: Students learn the technical basics of presentation and to argument scientifically. Also rheorific skills shall be amplified.

Content
The seminar’s topic will be announced before the beginning of each semester on the internet (http://www.wior.uni-karlsruhe.de/LS_Berninghaus/Studium/).

Media
Slides.

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Cryptography

Lecturers: Jörn Müller-Quade
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Seminar Module Informatics [IW3SEMINFO] (S. 33)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

- deals with a restricted problem in the field of cryptography,
- analyzes and discusses the problems associated to a distinct discipline in the final seminar paper,
- discusses, presents and defends subject-specific arguments within a given task,
- organizes the preparation of the final papers largely independent.

Content
The seminar deals with current topics in the research field of cryptography. These are e.g.

- provable security
- side channel attacks;
- new Public-Key systems;
- quantum cryptography
Course: Deployment of Database Systems

Lecturers: Klemens Böhm

Credit points (CP): 5 Hours per week: 2/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: Foundations of Information Systems [IW3INGIS] (S. 68)

Learning Control / Examinations

It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites

Knowledge about database systems, e.g., from the lecture “Communications and Database Systems”.

Conditions

None.

Learning Outcomes

At the end of the course, the participants should be able to explain and compare database concepts (especially data models and query languages) – in more breadth, compared to database courses at the undergraduate level. They should know and be able to assess the different possibilities to store complex user data using database technology.

Content

This course introduces students to the deployment of modern database technology, in both breadth and depth. ‘Breadth’ is reached by the detailed study and comparison of different data models (especially the relational and the semi-structured/XML data models) and appropriate query languages (SQL, XQuery). ‘Depth’ is reached by the study of several non-trivial applications, such as management of XML or e-commerce data, implementation of retrieval-models using relational database technology, or the usage of SQL for accessing sensor networks. Since all these applications are generic problems themselves, the study of such applications is interesting in itself already.

Media

Slides.

Basic literature

• Alfons Kemper, Andre Eickler: Datenbanksysteme. 6. Aufl., Oldenbourg Verlag, 2006.

Complementary literature

Course: Seminar in Law

Lecturers: Thomas Dreier, Peter Sester, Indra Spiecker genannt Döhmann
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module Law [IW3SEMJURA] (S. 35)

Learning Control / Examinations
Written paper and oral presentation (§4, Abs. 2, 3 of the SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the goal of the seminar to enable students to independent scientific research regarding legal issues in the area of information management and engineering. The seminar covers legal issues of information law and commercial law, from internet law, the law of intellectual property, competition law and data protection law to contract law. The subjects to be discussed comprise issues of national, European and international law. Written papers shall also discuss the information technology issues and economic questions related to the legal problem at issue.

Content
The seminar covers legal issues of information law, from internet law, the law of intellectual property, competition law and data protection law to contract law. The subjects to be discussed comprise issues of national, European and international law. Each seminar focuses on a different set of issues. Written papers shall also discuss the information technology issues and economic questions related to the legal problem at issue. The current topics will be announced before start of term.

Students can participate in all seminars offered by the ZAR/IIR (however, students can participate in seminars of the master study cours, seminars in cooperation with the University of Freiburg and other specially marked seminars if special permission has been granted).

Basic literature
Tba in the lecture.
Course: Algorithm Engineering

Lecturers: Peter Sanders, Dorothea Wagner
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Algorithm Design [IW3INALGT] (S. 72)

Learning Control / Examinations
Prerequisites
Lecture Algorithmentechnik

Conditions
None.

Learning Outcomes
The students come to know the methodology of algorithm engineering. Moreover, examples of well done algorithm engineering are presented.

Content
• What is algorithm engineering, why is it interesting, ...?
• Realistic models of machines and applications
• Practice-oriented design of algorithms
• Implementation techniques
• Experimental methods
• Analysis of measured data

The above skills are taught using concrete examples. In the past the following topics from the area of fundamental algorithms and data structures have been used for example:
• linked lists without special cases
• Sorting: parallel, external, superscalar, ...
• Priority queues (cache efficiency, ...)
• Search trees for integer keys
• Full-text indexing
• Graph algorithms: minimum spanning trees (external, ...), route planning

The best practical and theoretical techniques known are considered. In most cases, these techniques are very different from the methods taught in a beginner's course.

Media
Slides, Scriptum, papers, source codes

Complementary literature
• K. Mehlhorn, P. Sanders, Algorithms and Data Structures - The Basic Toolbox, Springer 2008
Course: Practical Course Information Services in Networks

Course key: [xIDLp]

Lecturers: Hartmut Schmeck, Stefan Tai, Wilfried Juling, Walter F. Tichy, Rudi Studer, Hannes Hartenstein

Credit points (CP): 4 Hours per week: 4

Term: Winter-/Sommersemester Level: 3

Teaching language: Deutsch

Part of the modules: Information Services in Networks [IW3INAIFB4] (S. 64)

Learning Control / Examinations

Prerequisites

None.

Conditions

the advanced lab may offered by any of the lecturers participating in this module

Learning Outcomes

Students can,

• carry out a literature search based on a given topic, and then identify, find, evaluate and analyze the relevant literature.
• produce their seminar work (and later the bachelor- / masters thesis) without much initial delay for familiarizing with the topic, while obeying format requirements, like the ones provided by publishers in the publication of documents.
• devise presentations as part of a scientific context. For that techniques will be presented which allow the preparation and presentation of the content to be presented in a manner that is adequate for the audience.
• present the results of the research in written form in a manner that is generally used in scientific publications.

Content

The seminar deals with specific topics that were partly mentioned in the respective lecture, and deepens them. A previous visit to the respective lecture is helpful, but not a prerequisite for attendance.
Course: Seminar Information Services in Networks

Lecturers: Hartmut Schmeck, Stefan Tai, Wilfried Juling, Rudi Studer, Hannes Hartenstein, Walter F. Tichy
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Seminar Module Informatics [IW3SEMINFO] (S. 33)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Students can,
• carry out a literature search based on a given topic, and then identify, find, evaluate and analyze the relevant literature.
• produce their seminar work (and later the bachelor-/ masters thesis) without much initial delay for familiarizing with the topic, while obeying format requirements, like the ones provided by publishers in the publication of documents.
• devise presentations as part of a scientific context. For that techniques will be presented which allow the preparation and presentation of the content to be presented in a manner that is adequate for the audience.
• present the results of the research in written form in a manner that is generally used in scientific publications.

Content
The seminar deals with specific topics that were partly mentioned in the respective lecture, and deepens them. A previous visit to the respective lecture is helpful, but not a prerequisite for attendance.
Studien- und Prüfungsordnung der Universität Karlsruhe (TH)
für den Bachelorstudiengang Informationswirtschaft

vom 15. April 2009

Aufgrund von § 34 Abs. 1 Satz 1 des Landeshochschulgesetzes (LHG) vom 1. Januar 2005 hat
die beschließende Senatskommission für Prüfungsordnungen der Universität Karlsruhe (TH) am
13. Februar 2009 die folgende Studien- und Prüfungsordnung für den Bachelorstudiengang
Informationswirtschaft beschlossen.
Der Rektor hat seine Zustimmung am 15. April 2009 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
§ 1 Geltungsbereich, Zweck der Prüfung
§ 2 Akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Aufbau der Prüfungen
§ 5 Anmeldung und Zulassung zu den Prüfungen
§ 6 Durchführung von Prüfungen und Erfolgskontrollen
§ 7 Bewertung von Prüfungen und Erfolgskontrollen
§ 8 Orientierungsprüfungen, Wiederholung von Prüfungen und Erfolgskontrollen, Erlöschen des
Prüfungsanspruchs
§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
§ 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 11 Bachelorarbeit
§ 12 Berufspraktikum
§ 13 Zusatzleistungen und Zusatzmodule
§ 14 Prüfungsausschuss
§ 15 Prüfer und Beisitzer
§ 16 Anrechnung von Studienzeiten, Anerkennung von Studien- und Prüfungsleistungen

II. Bachelorprüfung
§ 17 Umfang und Art der Bachelorprüfung
§ 18 Nachweise für die Bachelorprüfung
§ 19 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
§ 20 Bachelorzeugnis, Bachelorurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen
§ 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
§ 22 Ungültigkeit der Bachelorprüfung, Aberkennung des Bachelorgrades
§ 23 Einsicht in die Prüfungsakten
§ 24 In-Kraft-Treten
Die Universität Karlsruhe (TH) hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss der Studierendenausbildung an der Universität Karlsruhe (TH) der Mastergrad stehen soll. Die Universität Karlsruhe (TH) sieht daher die an der Universität Karlsruhe (TH) angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

Aus Gründen der Lesbarkeit ist in dieser Satzung nur die männliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Zweck der Prüfung
(1) Diese Bachelorprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Bachelorstudiengang Informationswirtschaft an der Universität Karlsruhe (TH).
(2) Die Bachelorprüfung (§ 17 – 20) bildet den berufsfähigenden Abschluss dieses Studiengangs, der gemeinsam von der Fakultät für Informatik und der Fakultät für Wirtschaftswissenschaften an der Universität Karlsruhe (TH) angeboten wird. Durch die Bachelorprüfung soll festgestellt werden, ob der Studierende die für den Übergang in die Berufspraxis grundlegenden wissenschaftlichen Fachkenntnisse besitzt und die Zusammenhänge des Faches Informationswirtschaft überblickt.

§ 2 Akademischer Grad
Aufgrund der bestandenen Bachelorprüfung wird der akademische Grad „Bachelor of Science“ (abgekürzt: „B.Sc.“) für den Studiengang Informationswirtschaft (englischsprachig: Information Engineering and Management) verliehen.

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
(1) Die Regelstudienzeit beträgt sechs Semester. Sie umfasst neben den Lehrveranstaltungen ein Berufspraktikum, Prüfungen und die Bachelorarbeit.
(2) Die im Studium zu absolvierenden Lehrinhalte sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren, thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Der Studienplan beschreibt Art, Umfang und Zuordnung der Module zu einem Fach sowie die Möglichkeiten, Module untereinander zu kombinieren. Die Fächer und ihr Umfang werden in § 17 definiert.
(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 180 Leistungspunkte.
(5) Die Verteilung der Leistungspunkte im Studienplan auf die Semester hat in der Regel gleichmäßig zu erfolgen.
(6) Lehrveranstaltungen können in englischer Sprache angeboten werden.

§ 4 Aufbau der Prüfungen

(2) Erfolgskontrollen sind:
1. schriftliche Prüfungen,
2. mündliche Prüfungen oder
3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z.B. Vorträge, Marktstudien, Projekte, Fallstudien, Experimente, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Studienplan ausgewiesen sind.

(3) Mindestens 50 % einer Modulprüfung sind in Form von schriftlichen oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) abzulegen, die restlichen Prüfungen erfolgen durch Erfolgskontrollen anderer Art (§ 4 Abs. 2, Nr. 3). Ausgenommen hiervon sind die Prüfungen nach § 17 Abs. 4.

§ 5 Anmeldung und Zulassung zu den Prüfungen

(1) Um an schriftlichen und/oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) teilnehmen zu können, muss sich der Studierende schriftlich oder per Online-Anmeldung beim Studienbüro anmelden. Hierbei sind die gemäß dem Studienplan für die jeweilige Modulprüfung notwendigen Studienleistungen nachzuweisen. Dies gilt auch für die Anmeldung zur Bachelorarbeit.

(2) Um zu schriftlichen und/oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) in einem bestimmten Modul zugelassen zu werden, muss der Studierende vor der ersten schriftlichen oder mündlichen Prüfung in diesem Modul beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgeben.

(3) Die Zulassung darf nur abgelehnt werden, wenn
1. der Studierende in einem mit der Informationswirtschaft vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung endgültig nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat oder
2. die in § 18 genannte Voraussetzung nicht erfüllt ist.

In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach durchgeführt.

(2) Die Art der Erfolgskontrollen (§ 4 Abs. 2, Nr. 1 - 3) der einzelnen Lehrveranstaltungen wird vom Prüfer der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lehrziele des Moduls festgelegt. Die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung, die Bildung der Lehrveranstaltungsnote und der Modulnote sowie
Prüfer müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im Einvernehmen von Prüfer und Studierendem kann in begründeten Ausnahmefällen die Art der Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Abs. 3 zu berücksichtigen. Hierüber entscheidet der Prüfungsausschuss auf Antrag.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfung auch mündlich oder eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.

(4) Weist ein Studierender nach, dass er wegen länger andauernder oder ständig körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Form abzulegen, kann der zuständige Prüfungsausschuss – in dringenden Angelegenheiten, deren Erledigung nicht bis zu einer Sitzung des Ausschusses aufgeschoben werden kann, dessen Vorsitzender – gestatten, Erfolgskontrollen in einer anderen Form zu erbringen.

(5) Bei Lehrveranstaltungen in englischer Sprache können mit Zustimmung des Studierenden die entsprechenden Erfolgskontrollen in englischer Sprache abgenommen werden.

(7) Mündliche Prüfungen (§ 4 Abs. 2, Nr. 2) sind von mehreren Prüfern (Kollegialprüfung) oder von einem Prüfer in Gegenwart eines Beisitzenden als Gruppen- oder Einzelpersonenprüfungen abzunehmen und zu bewerten. Vor der Festsetzung der Note hört der Prüfer die anderen an der Kollegialprüfung mitwirkenden Prüfer an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten pro Studierenden. Dies gilt auch für die mündliche Nachprüfung gemäß § 8 Abs. 3.

(11) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer verändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

(12) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss neben dem Prüfer ein Beisitzer anwesend sein, der zusätzlich zum Prüfer die Protokolle zeichnet.
§ 7 Bewertung von Prüfungen und Erfolgskontrollen

(1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüfern in Form einer Note festgesetzt.

(2) Im Bachelorzeugnis dürfen nur folgende Noten verwendet werden:

1 : sehr gut (very good) : hervorragende Leistung,
2 : gut (good) : eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,
3 : befriedigend (satisfactory) : eine Leistung, die durchschnittlichen Anforderungen entspricht,
4 : ausreichend (sufficient) : eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,
5 : nicht ausreichend (failed) : eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.

Für die Bachelorarbeit, Modulprüfungen, Modulteilprüfungen und Profilmodule sind zur differenzierten Bewertung nur folgende Noten zugelassen:

1.0, 1.3 : sehr gut
1.7, 2.0, 2.3 : gut
2.7, 3.0, 3.3 : befriedigend
3.7, 4.0 : ausreichend
4.7, 5.0 : nicht ausreichend

Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

(3) Für Erfolgskontrollen anderer Art kann im Studienplan die Benotung mit „bestanden“ (passed) oder „nicht bestanden“ (failed) vorgesehen werden.

(4) Bei der Bildung der gewichteten Durchschnitte der Fachnoten, Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf in demselben Studiengang bzw. einem darauf aufbauenden konsekutiven Masterstudiengang nur einmal angerechnet werden.

(6) Erfolgskontrollen anderer Art dürfen in Modulteilprüfungen oder Modulprüfungen nur eingerechnet werden, wenn die Benotung nicht nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan festgelegt.

(7) Eine Modulteilprüfung ist bestanden, wenn die Note mindestens „ausreichend“ (4.0) ist.

(9) Die Ergebnisse der Bachelorarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.
(10) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein. Eine Fachprüfung ist bestanden, wenn die für das Fach erforderliche Anzahl von Leistungspunkten über die im Studienplan definierten Modulprüfungen nachgewiesen wird.

(11) Die Gesamtnote der Bachelorprüfung, die Fachnoten und die Modulnoten lauten:

- bis 1.5 : sehr gut (very good)
- von 1.6 bis 2.5 : gut (good)
- von 2.6 bis 3.5 : befriedigend (satisfactory)
- von 3.6 bis 4.0 : ausreichend (sufficient)

(12) Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Bachelorprüfung nach folgender Skala vergeben:

<table>
<thead>
<tr>
<th>ECTS-Note</th>
<th>Quote</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>gehört zu den besten 10% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>gehört zu den nächsten 25% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>gehört zu den nächsten 30% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>gehört zu den nächsten 25% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>gehört zu den letzten 10% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>FX</td>
<td></td>
<td>nicht bestanden (failed) - es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden,</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>nicht bestanden (failed) - es sind erhebliche Verbesserungen erforderlich.</td>
</tr>
</tbody>
</table>

Die Quote ist als der Prozentsatz der erfolgreichen Studierenden definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studierende auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig.

§ 8 Orientierungsprüfungen, Wiederholung von Prüfungen und Erfolgskontrollen, Erlöschen des Prüfungsanspruchs

(1) Die Modulprüfungen im Modul Grundlagen der Informatik und im Modul Volkswirtschaftslehre sind bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters abzulegen (Orientierungsprüfungen).

Wer die Orientierungsprüfungen einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters nicht erfolgreich abgelegt hat, verliert den Prüfungsanspruch im Studiengang, es sei denn, dass er die Fristüberschreitung nicht zu vertreten hat;

(2) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Abs. 2, Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ sein.

(3) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Abs. 2, Nr. 2) einmal wiederholen.

(5) Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Abs. 2, Nr. 3) wird im Studienplan geregelt.

(7) Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.

(8) Eine Fachprüfung ist endgültig nicht bestanden, wenn mindestens ein Modul des Faches endgültig nicht bestanden ist.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

(2) Eine Prüfung gilt als mit „nicht ausreichend“ (5.0) bewertet, wenn der Studierende einen Prüfungstermin ohne triftigen Grund versäumt oder wenn er nach Beginn der Prüfung ohne triftigen Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Bachelorarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der Studierende hat die Fristüberschreitung nicht zu vertreten.

(3) Der für den Rücktritt nach Beginn der Prüfung oder das Versäumnis geltend gemachte Grund muss dem Prüfungsausschuss unverzüglich schriftlich angezeigt und glaubhaft gemacht.

(4) Versucht der Studierende, das Ergebnis einer mündlichen oder schriftlichen Prüfung (§ 4 Abs. 2 Nr. 1 und 2) durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Prüfung als mit „nicht ausreichend“ (5.0) bewertet. Für Erfolgskontrollen anderer Art (§ 4 Abs. 2, Nr. 3) gilt dies entsprechend.

(7) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei Prüfungen und Praktika.

§ 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

§ 11 Bachelorarbeit

(1) Voraussetzung für die Zulassung zur Bachelorarbeit ist, dass der Studierende sich in der Regel im 3. Studienjahr befindet und nicht mehr als eine der Fachprüfungen laut § 17 Absatz 2 noch nicht bestanden wurde.

(2) Thema, Aufgabenstellung und Umfang der Bachelorarbeit sind vom Betreuer so zu begrenzen, dass sie mit dem in Absatz 3 festgelegten Arbeitsaufwand bearbeitet werden kann.

(4) Die Bachelorarbeit kann von jedem Prüfer nach § 15 Abs. 2 vergeben und betreut werden. Soll die Bachelorarbeit außerhalb der beiden nach § 1 Abs. 2 Satz 1 beteiligten Fakultäten angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses.

Dem Studierenden ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. Die Bachelorarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsteilung zu bewertende Beitrag des einzelnen Studierenden aufgrund objektiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterscheidbar ist und die Anforderung nach Absatz 1 erfüllt.

(5) Bei der Abgabe der Bachelorarbeit hat der Studierende schriftlich zu versichern, dass er die Arbeit selbstständig verfasst hat und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Bachelorarbeit mit „nicht ausreichend“ (5.0) bewertet.

(8) Die Vorbereitung auf die Bachelorarbeit wird im Rahmen eines der verpflichtenden Seminare (nach § 17 Abs. 4) gewährleistet.
§ 12 Berufspraktikum
(2) Der Studierende setzt sich in eigener Verantwortung mit geeigneten privaten bzw. öffentlichen Einrichtungen in Verbindung, an denen das Praktikum abgeleistet werden kann. Der Studierende wird von einem Prüfer nach § 15 Abs. 2 und einem Firmenbetreuer betreut.
(3) Am Ende des Berufspraktikums ist dem Prüfer ein kurzer Bericht abzugeben und eine Kurzpräsentation der Erfahrungen im Berufspraktikum zu halten.
(4) Das Berufspraktikum ist abgeschlossen, wenn eine mindestens sechswöchige Tätigkeit nachgewiesen wird, der Bericht abgegeben und die Kurzpräsentation gehalten wurde. Die Durchführung des Berufspraktikums ist im Studienplan zu regeln. Das Berufspraktikum geht nicht in die Gesamtnote ein.

§ 13 Zusatzleistungen und Zusatzmodule
(2) Der Studierende hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.
(4) Neben den im Studienplan definierten fachwissenschaftlichen Modulen und Leistungen können die Zusatzleistungen nach Absatz 1 - 3 auch aus dem Lehrangebot anderer Fakultäten und Einrichtungen gewählt werden.

§ 14 Prüfungsausschuss
(1) Für den Bachelorstudiengang Informationswirtschaft wird ein Prüfungsausschuss gebildet. Er besteht aus sechs stimmberechtigten Mitgliedern, die jeweils zur Hälfte von der Fakultät für Informatik und der Fakultät für Wirtschaftswissenschaften bestellt werden: vier Professoren, Juniorprofessoren, Hochschul- oder Privatdozenten, zwei Vertretern der Gruppe der akademischen Mitarbeiter nach § 10 Abs. 1 Satz 2 Nr. 2 LHG und einem Vertreter der Studierenden mit beratender Stimme. Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelor- und den Masterstudiengang Informationswirtschaft erhöht sich die Anzahl der Vertreter der Studierenden auf zwei Mitglieder mit beratender Stimme, wobei je ein Vertreter aus dem Bachelor- und ein Vertreter aus dem Masterstudiengang stammt. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr.
(2) Der Vorsitzende, sein Stellvertreter, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter werden von den jeweiligen Fakultätsräten bestellt, die Mitglieder der Gruppe der akademischen Mitarbeiter nach § 10 Abs. 1 Satz 2 Nr. 2 LHG und der Vertreter der Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Der Vorsitzende und dessen Stellvertreter müssen Professor oder Juniorprofessor aus einer der beteiligten Fakultäten sein. Der Vorsitz wechselt zwischen den Fakultäten alle zwei Jahre. Der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch die Prüfungssekretariate unterstützt.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben in dringenden Angelegenheiten und für alle Regelfälle auf den Vorsitzenden des Prüfungsausschusses übertragen.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolviere Prüfungsfähigkeit beinhalten, ist auf Antrag eines Mitgliedes des Prüfungsausschusses ein fachlich zuständiger und von der betroffenen Fakultät zu nennder Professor, Juniorprofessor, Hochschul- oder Privatdozent hinzuziehen. Er hat in diesem Punkt Stimmrecht.

(7) Belastende Entscheidungen des Prüfungsausschusses sind schriftlich mitzuteilen. Sie sind zu begründen und mit einer Rechtsbehelfsbelehrung zu versehen. Widersprüche gegen Entscheidungen des Prüfungsausschusses sind innerhalb eines Monats nach Zugang der Entscheidung schriftlich oder zur Niederschrift beim Rektorat der Universität Karlsruhe (TH) einzureichen.

§ 15 Prüfer und Beisitzer

(1) Der Prüfungsausschuss bestellt die Prüfer und die Beisitzenden. Er kann die Bestellung dem Vorsitzenden übertragen.

(2) Prüfer sind Hochschullehrer und habilitierte Mitglieder sowie akademische Mitarbeiter der jeweiligen Fakultät, denen die Prüfungsbefugnis übertragen wurde. Bestellt werden darf nur, wer mindestens die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat. Bei der Bewertung der Bachelorarbeit muss ein Prüfer Hochschullehrer sein.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zum Prüfer bestellt werden, wenn die jeweilige Fakultät ihnen eine diesbezügliche Prüfungsbefugnis erteilt hat.

(4) Zum Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem Studiengang der Informationswirtschaft, Informatik, Rechtswissenschaften, Wirtschaftswissenschaften oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 16 Anrechnung von Studienzeiten, Anerkennung von Studien- und Prüfungsleistungen

(1) Studienzeiten im gleichen Studiengang werden angerechnet. Studien- und Prüfungsleistungen, die in gleichen oder anderen Studiengängen an der Universität Karlsruhe (TH) oder an anderen Hochschulen erbracht wurden, werden angerechnet, soweit Gleichwertigkeit besteht. Gleichwertigkeit ist festzustellen, wenn Leistungen in Inhalt, Umfang und in den Anforderungen
denjenigen des Studiengangs im Wesentlichen entsprechen. Dabei ist kein schematischer Ver-
gleich, sondern eine Gesamtbetrachtung vorzunehmen. Bezüglich des Umfangs einer zur Aner-
kennung vorgelegten Studien- und Prüfungsleistung werden die Grundsätze des ECTS heran-
gezogen; die inhaltliche Gleichwertigkeitsprüfung orientiert sich an den Qualifikationszielen des
Moduls.

(2) Werden Leistungen angerechnet, können die Noten – soweit die Notensysteme vergleichbar
sind – übernommen werden und in die Berechnung der Modulnoten und der Gesamtnote einbe-
zogen werden. Liegen keine Noten vor, muss die Leistung nicht anerkannt werden. Der Studie-
rende hat die für die Anrechnung erforderlichen Unterlagen vorzulegen.

(3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studien- und Prüfungsleis-
tungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkon-
ferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Ab-
sprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(4) Absatz 1 gilt auch für Studienzeiten, Studien- und Prüfungsleistungen, die in staatlich aner-
kannten Fernstudien- und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder
staatlich anerkannten Berufsschulen sowie an Fach- und Ingenieurschulen erworben wurden.

(5) Die Anerkennung von Teilen der Bachelorprüfung kann versagt werden, wenn in einem Stu-
diengang mehr als 80 Leistungspunkte und/oder die Bachelorarbeit anerkannt werden sollen. Dies gilt
insbesondere bei einem Studienangestellten sowie bei einem Studienortwechsel.

(6) Zuständig für die Anrechnungen ist der Prüfungsausschuss. Vor Feststellungen über die
Gleichwertigkeit sind die zuständigen Fachvertreter zu hören. Der Prüfungsausschuss entschei-
det in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen
über die Einstufung in ein höheres Fachsemester.

(7) Erbringt ein Studierender Studienleistungen an einer ausländischen Universität, soll die
Gleichwertigkeit vorab durch einen Studienvertrag nach den ECTS-Richtlinien festgestellt und
nach diesem verfahren werden.

II. Bachelorprüfung

§ 17 Umfang und Art der Bachelorprüfung

(1) Die Bachelorprüfung besteht aus den Fachprüfungen nach Absatz 2 - 4 sowie der Bachelor-
arbeit (§ 11).

(2) In den ersten beiden Studienjahren sind Fachprüfungen aus folgenden Fächern durch den
Nachweis von Leistungspunkten in einem oder mehreren Modulen abzulegen:

1. Betriebswirtschaftslehre im Umfang von 16 Leistungspunkten,
2. Volkswirtschaftslehre im Umfang von 5 Leistungspunkten,
3. Informatik im Umfang von 37 Leistungspunkten,
4. Mathematik im Umfang von 16 Leistungspunkten,
5. Operations Research im Umfang von 9 Leistungspunkten,
6. Statistik im Umfang von 10 Leistungspunkten,

Die Module, die ihnen zugeordneten Leistungspunkte und die Zuordnung der Module zu den
Fächern sind im Studienplan festgelegt. Zur entsprechenden Modulprüfung kann nur zugelassen
werden, wer die Anforderungen nach § 5 erfüllt.
Im dritten Studienjahr sind Fachprüfungen
1. aus dem Fach Informatik durch Module im Umfang von 18 Leistungspunkten,
2. aus wirtschaftswissenschaftlichen Fächern durch Module im Umfang von 18 Leistungspunkten sowie
3. aus dem Fach Recht durch Module im Umfang von 6 Leistungspunkten

Ferner ist im dritten Studienjahr in zwei unterschiedlichen Fächern jeweils ein Seminar im Umfang von je 3 Leistungspunkten zu absolvieren. Das Seminar wird dabei in die Fachnote des Faches eingerechnet, dem das Seminar zugeordnet ist. Die Zuordnung der Seminare zu den Fächern ist im Studienplan festgelegt.

Im dritten Studienjahr ist als eine weitere Prüfungsleistung eine Bachelorarbeit gemäß § 11 anzufertigen.

§ 18 Nachweise für die Bachelorprüfung
Voraussetzung für die Anmeldung zur letzten Modulprüfung der Bachelorprüfung ist die Bescheinigung über das erfolgreich abgeleistete Berufspraktikum nach § 12. In Ausnahmefällen, die der Studierende nicht zu vertreten hat, kann der Prüfungsausschuss die nachträgliche Vorlage dieses Nachweises genehmigen.

§ 19 Bestehen der Bachelorprüfung, Bildung der Gesamtnote
(1) Die Bachelorprüfung ist bestanden, wenn alle in § 17 genannten Prüfungsleistungen mindestens mit „ausreichend“ bewertet wurden.
(2) Die Gesamtnote der Bachelorprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt. Dabei werden die Noten des dritten Studienjahres (§ 17 Abs. 3 und 4) und der Bachelorarbeit doppelt gewichtet.
(3) Hat der Studierende die Bachelorarbeit mit der Note 1.0 und die Bachelorprüfung mit einer Gesamtnote von 1.2 oder besser abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen.

§ 20 Bachelorzeugnis, Bachelorurkunde, Transcript of Records und Diploma Supplement
Diploma Supplement enthält eine Abschrift der Studiendaten des Studierenden (Transcript of Records).

(5) Die Bachelorurkunde, das Bachelorzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.

III. Schlussbestimmungen

§ 21 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen

(1) Der Bescheid über die endgültig nicht bestandene Bachelorprüfung wird dem Studierenden durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.

(2) Hat der Studierende die Bachelorprüfung endgültig nicht bestanden, wird ihm auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 22 Ungültigkeit der Bachelorprüfung, Aberkennung des Bachelorgrades

(1) Hat der Studierende bei einer Prüfung getäuscht und wird diese Tatsache erst nach der Aushändigung des Zeugnisses bekannt, so kann der Prüfungsausschuss nachträglich die Noten für diejenigen Prüfungsleistungen, bei deren Erbringung der Studierende getäuscht hat, entsprechend berichtigen und die Prüfung ganz oder teilweise für „nicht bestanden“ erklären.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat der Studierende die Zulassung vorsätzlich zu Unrecht erworben, so kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Bachelorprüfung für „nicht bestanden“ erklärt werden.

(3) Dem Studierenden ist vor einer Entscheidung nach Absatz 1 und Absatz 2 Satz 2 Gelegenheit zur Äußerung zu geben.

(5) Eine Entscheidung nach Absatz 1 oder Absatz 2 Satz 2 ist nach einer Frist von fünf Jahren ab dem Datum des Prüfungszeugnisses ausgeschlossen.

(6) Die Aberkennung des akademischen Bachelorgrades richtet sich nach den gesetzlichen Bestimmungen.
§ 23 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Bachelorprüfung wird dem Studierenden auf Antrag innerhalb eines Jahres Einsicht in seine Bachelorarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der Prüfer bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 24 In-Kraft-Treten

(1) Diese Satzung tritt am 1. Oktober 2009 in Kraft.

Karlsruhe, den 15. April 2009

Professor Dr. sc. tech. Horst Hippler
(Rektor)
Index

A

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Civil Law</td>
<td>105</td>
</tr>
<tr>
<td>Advanced object orientation (Modul)</td>
<td>80</td>
</tr>
<tr>
<td>Advanced Topics in Economic Theory</td>
<td>176</td>
</tr>
<tr>
<td>Aktuelle Fragen des Datenschutzes</td>
<td>140</td>
</tr>
<tr>
<td>Algorithm Design</td>
<td>116</td>
</tr>
<tr>
<td>Algorithm Design (Modul)</td>
<td>72</td>
</tr>
<tr>
<td>Algorithm Engineering</td>
<td>265</td>
</tr>
<tr>
<td>Algorithmic Methods for Hard Optimization Problems</td>
<td>240</td>
</tr>
<tr>
<td>Algorithms and Applications (Modul)</td>
<td>65</td>
</tr>
<tr>
<td>Algorithms for Internet Applications</td>
<td>184</td>
</tr>
<tr>
<td>Algorithms for Planar Graphs</td>
<td>138</td>
</tr>
<tr>
<td>Algorithms for Visualization of Graphs</td>
<td>239</td>
</tr>
<tr>
<td>Algorithms I</td>
<td>87</td>
</tr>
<tr>
<td>Algorithms I (Modul)</td>
<td>18</td>
</tr>
<tr>
<td>Algorithms II (Modul)</td>
<td>73</td>
</tr>
<tr>
<td>Analytical CRM</td>
<td>231</td>
</tr>
<tr>
<td>Applications of Operations Research (Modul)</td>
<td>58</td>
</tr>
<tr>
<td>Applied Game Theory (Modul)</td>
<td>53</td>
</tr>
<tr>
<td>Applied Informatics</td>
<td>21</td>
</tr>
<tr>
<td>Applied Informatics I - Modelling</td>
<td>91</td>
</tr>
<tr>
<td>Applied Informatics II - IT Systems for e-Commerce</td>
<td>92</td>
</tr>
<tr>
<td>Applied Telematics</td>
<td>131</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor Seminar in Foundations of Marketing</td>
<td>156</td>
</tr>
<tr>
<td>Bachelor Seminar in Information Engineering and Management</td>
<td>232</td>
</tr>
<tr>
<td>Bachelor Thesis (Modul)</td>
<td>36</td>
</tr>
<tr>
<td>Basic Notions of Computer Science</td>
<td>85</td>
</tr>
<tr>
<td>Brand Management</td>
<td>155</td>
</tr>
<tr>
<td>Business Administration (Modul)</td>
<td>23</td>
</tr>
<tr>
<td>Business Administration and Management Science B</td>
<td>96</td>
</tr>
<tr>
<td>Business Administration and Management Science C</td>
<td>97</td>
</tr>
<tr>
<td>Business Process Engineering (Modul)</td>
<td>66</td>
</tr>
<tr>
<td>Business Process Modelling</td>
<td>190</td>
</tr>
<tr>
<td>Business Processes and Information Systems (Modul)</td>
<td>67</td>
</tr>
<tr>
<td>Business Strategies of Banks</td>
<td>162</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capability maturity models for software and systems engineering</td>
<td>198</td>
</tr>
<tr>
<td>Civil Law for Beginners</td>
<td>104</td>
</tr>
<tr>
<td>Cloud Computing</td>
<td>196</td>
</tr>
<tr>
<td>Commercial and Corporate Law</td>
<td>106</td>
</tr>
<tr>
<td>Commercial Law (Modul)</td>
<td>28</td>
</tr>
<tr>
<td>Communication and Database Systems (Modul)</td>
<td>69</td>
</tr>
<tr>
<td>Competition in Networks</td>
<td>210</td>
</tr>
<tr>
<td>Computer Engineering (Modul)</td>
<td>20</td>
</tr>
<tr>
<td>Computer Organization</td>
<td>90</td>
</tr>
<tr>
<td>Computing Lab Information Systems</td>
<td>244</td>
</tr>
<tr>
<td>Constitutional and Administrative Law (Modul)</td>
<td>29</td>
</tr>
<tr>
<td>Consulting in Practice</td>
<td>126</td>
</tr>
<tr>
<td>Corporate Planning and Operations Research</td>
<td>154</td>
</tr>
<tr>
<td>CRM and Service Management (Modul)</td>
<td>40</td>
</tr>
<tr>
<td>Current Issues in the Insurance Industry</td>
<td>214</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Relationship Management</td>
<td>228</td>
</tr>
<tr>
<td>Data Mining</td>
<td>169</td>
</tr>
<tr>
<td>Data Privacy Protection in Interconnected Information Systems</td>
<td>137</td>
</tr>
<tr>
<td>Data Protection Law</td>
<td>112</td>
</tr>
<tr>
<td>Data Warehousing and Mining</td>
<td>121</td>
</tr>
<tr>
<td>Database Systems</td>
<td>132</td>
</tr>
<tr>
<td>Deployment of Database Systems</td>
<td>263</td>
</tr>
<tr>
<td>Derivatives</td>
<td>233</td>
</tr>
<tr>
<td>Design, Construction and Assessment of Green Buildings I</td>
<td>221</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>eBusiness and Servicemanagement (Modul)</td>
<td>37</td>
</tr>
<tr>
<td>Economics (Modul)</td>
<td>24</td>
</tr>
<tr>
<td>Economics I: Microeconomics</td>
<td>101</td>
</tr>
<tr>
<td>Economics III: Introduction in Econometrics</td>
<td>142</td>
</tr>
<tr>
<td>Economics of Uncertainty</td>
<td>165</td>
</tr>
<tr>
<td>Efficient Algorithms</td>
<td>182</td>
</tr>
<tr>
<td>eFinance (Modul)</td>
<td>39</td>
</tr>
<tr>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>224</td>
</tr>
<tr>
<td>Energiebewusste Betriebssysteme (Modul)</td>
<td>81</td>
</tr>
<tr>
<td>Energy Economics (Modul)</td>
<td>44</td>
</tr>
<tr>
<td>Energy Policy</td>
<td>205</td>
</tr>
<tr>
<td>Enterprise Architecture Management</td>
<td>197</td>
</tr>
<tr>
<td>Enterprise Risk Management</td>
<td>213</td>
</tr>
<tr>
<td>eServices</td>
<td>225</td>
</tr>
<tr>
<td>Essentials of Finance (Modul)</td>
<td>46</td>
</tr>
<tr>
<td>Exchanges</td>
<td>161</td>
</tr>
<tr>
<td>Exercises in Civil Law</td>
<td>107</td>
</tr>
<tr>
<td>Experimental Economics</td>
<td>168</td>
</tr>
</tbody>
</table>

F

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>170</td>
</tr>
<tr>
<td>Financial Accounting and Cost Accounting</td>
<td>93</td>
</tr>
<tr>
<td>Financial Intermediation</td>
<td>159</td>
</tr>
<tr>
<td>Financial Management</td>
<td>158</td>
</tr>
<tr>
<td>Fortgeschrittene Objektorientierung</td>
<td>241</td>
</tr>
<tr>
<td>Foundations in Business Administration (Modul)</td>
<td>22</td>
</tr>
<tr>
<td>Foundations in Informatics (Modul)</td>
<td>17</td>
</tr>
<tr>
<td>Foundations of Information Systems (Modul)</td>
<td>68</td>
</tr>
<tr>
<td>Foundations of Marketing (Modul)</td>
<td>42</td>
</tr>
<tr>
<td>Fundamentals of Production Management</td>
<td>204</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game Theory I</td>
<td>175</td>
</tr>
<tr>
<td>Game Theory II</td>
<td>166</td>
</tr>
<tr>
<td>Global Optimization I</td>
<td>149</td>
</tr>
<tr>
<td>Global Optimization II</td>
<td>150</td>
</tr>
</tbody>
</table>

I

<table>
<thead>
<tr>
<th>Course</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Organization</td>
<td>167</td>
</tr>
<tr>
<td>Industrial Production I (Modul)</td>
<td>45</td>
</tr>
<tr>
<td>Industrial Property and Copyright Law</td>
<td>113</td>
</tr>
<tr>
<td>Course Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Informatics Seminar</td>
<td>256</td>
</tr>
<tr>
<td>Information Services in Networks (Modul)</td>
<td>64</td>
</tr>
<tr>
<td>Insurance Contract Law</td>
<td>216</td>
</tr>
<tr>
<td>Insurance Game</td>
<td>217</td>
</tr>
<tr>
<td>Insurance Marketing</td>
<td>212</td>
</tr>
<tr>
<td>Insurance Markets and Management (Modul)</td>
<td>50</td>
</tr>
<tr>
<td>Insurance Models</td>
<td>211</td>
</tr>
<tr>
<td>Insurance: Calculation and Control (Modul)</td>
<td>48</td>
</tr>
<tr>
<td>Intellectual Property and Data Protection (Modul)</td>
<td>83</td>
</tr>
<tr>
<td>Intelligent Systems in Finance</td>
<td>193</td>
</tr>
<tr>
<td>International Finance</td>
<td>234</td>
</tr>
<tr>
<td>International Risk Transfer</td>
<td>215</td>
</tr>
<tr>
<td>Internship (Modul)</td>
<td>32</td>
</tr>
<tr>
<td>Introduction in Computer Networks</td>
<td>134</td>
</tr>
<tr>
<td>Introduction to Civil Law (Modul)</td>
<td>27</td>
</tr>
<tr>
<td>Introduction to Energy Economics</td>
<td>208</td>
</tr>
<tr>
<td>Introduction to Information Engineering and Management</td>
<td>94</td>
</tr>
<tr>
<td>Introduction to Operations Research (Modul)</td>
<td>25</td>
</tr>
<tr>
<td>Introduction to Operations Research I</td>
<td>99</td>
</tr>
<tr>
<td>Introduction to Operations Research II</td>
<td>100</td>
</tr>
<tr>
<td>Investments</td>
<td>235</td>
</tr>
<tr>
<td>Knowledge Management</td>
<td>191</td>
</tr>
<tr>
<td>Logistics - Organisation, Design, and Control of Logistic Systems</td>
<td>236</td>
</tr>
<tr>
<td>Logistics and Supply Chain Management</td>
<td>207</td>
</tr>
<tr>
<td>Macroeconomic Theory (Modul)</td>
<td>56</td>
</tr>
<tr>
<td>Management Accounting</td>
<td>157</td>
</tr>
<tr>
<td>Management and Strategy</td>
<td>200</td>
</tr>
<tr>
<td>Management of Business Networks</td>
<td>223</td>
</tr>
<tr>
<td>Management of Business Networks (Introduction)</td>
<td>227</td>
</tr>
<tr>
<td>Managing Organizations</td>
<td>201</td>
</tr>
<tr>
<td>Marketing and Consumer Behavior</td>
<td>151</td>
</tr>
<tr>
<td>Marketing and Operations Research</td>
<td>153</td>
</tr>
<tr>
<td>Markov Decision Models I</td>
<td>181</td>
</tr>
<tr>
<td>Material and Energy Flows in the Economy</td>
<td>206</td>
</tr>
<tr>
<td>Mathematics I (Modul)</td>
<td>30</td>
</tr>
<tr>
<td>Mathematics I for Information Engineering and Management</td>
<td>110</td>
</tr>
<tr>
<td>Mathematics II (Modul)</td>
<td>31</td>
</tr>
<tr>
<td>Mathematics II for Information Engineering and Management</td>
<td>111</td>
</tr>
<tr>
<td>Methodical Foundations of OR (Modul)</td>
<td>59</td>
</tr>
<tr>
<td>Microeconomic Theory (Modul)</td>
<td>55</td>
</tr>
<tr>
<td>Mobile Communications</td>
<td>139</td>
</tr>
<tr>
<td>Modern Market Research</td>
<td>152</td>
</tr>
<tr>
<td>Multimedia Communications</td>
<td>125</td>
</tr>
<tr>
<td>Nature-inspired Optimisation</td>
<td>187</td>
</tr>
<tr>
<td>Network and IT-Security Management</td>
<td>127</td>
</tr>
<tr>
<td>Network Security: Architectures and Protocols</td>
<td>136</td>
</tr>
<tr>
<td>Networked IT-Infrastructures</td>
<td>114</td>
</tr>
<tr>
<td>Nonlinear Optimization I</td>
<td>146</td>
</tr>
<tr>
<td>Nonlinear Optimization II</td>
<td>147</td>
</tr>
<tr>
<td>Organic Computing</td>
<td>185</td>
</tr>
<tr>
<td>Operative CRM</td>
<td>229</td>
</tr>
<tr>
<td>Parallel Algorithms</td>
<td>119</td>
</tr>
<tr>
<td>Power Management</td>
<td>123</td>
</tr>
<tr>
<td>Power Management Praktikum</td>
<td>129</td>
</tr>
<tr>
<td>Practical Course in Algorithm Design</td>
<td>117</td>
</tr>
<tr>
<td>Practical Course Information Services in Networks</td>
<td>266</td>
</tr>
<tr>
<td>Praktikum Algorithmentechnik (Modul)</td>
<td>74</td>
</tr>
<tr>
<td>Principles of Insurance Management</td>
<td>144</td>
</tr>
<tr>
<td>Private and Social Insurance</td>
<td>143</td>
</tr>
<tr>
<td>Programming</td>
<td>86</td>
</tr>
<tr>
<td>Programming Paradigms</td>
<td>130</td>
</tr>
<tr>
<td>Project Management in Practice</td>
<td>79</td>
</tr>
<tr>
<td>Public Key Cryptography (Modul)</td>
<td>243</td>
</tr>
<tr>
<td>Public Law I - Basic Principles</td>
<td>108</td>
</tr>
<tr>
<td>Public Law II - Public Economic Law</td>
<td>109</td>
</tr>
<tr>
<td>Randomized Algorithms</td>
<td>128</td>
</tr>
<tr>
<td>Real Estate Management (Modul)</td>
<td>52</td>
</tr>
<tr>
<td>Real Estate Management I</td>
<td>219</td>
</tr>
<tr>
<td>Real Estate Management II</td>
<td>218</td>
</tr>
<tr>
<td>Rechnerstrukturen</td>
<td>135</td>
</tr>
<tr>
<td>Rechnerstrukturen (Modul)</td>
<td>82</td>
</tr>
<tr>
<td>Renewable Energy Sources - Technologies and Potentials</td>
<td>209</td>
</tr>
<tr>
<td>Risk and Insurance Management (Modul)</td>
<td>49</td>
</tr>
<tr>
<td>Security</td>
<td>141</td>
</tr>
<tr>
<td>Security (Modul)</td>
<td>75</td>
</tr>
<tr>
<td>Selling IT-Solutions Professionanly</td>
<td>242</td>
</tr>
<tr>
<td>Semantic Knowledge Management (Modul)</td>
<td>62</td>
</tr>
<tr>
<td>Semantic Web and Applications (Modul)</td>
<td>63</td>
</tr>
<tr>
<td>Semantic Web Technologies I</td>
<td>192</td>
</tr>
<tr>
<td>Seminar Economic Theory</td>
<td>259</td>
</tr>
<tr>
<td>Seminar in Algorithm Design</td>
<td>118</td>
</tr>
<tr>
<td>Seminar in Applied Informatics</td>
<td>145</td>
</tr>
<tr>
<td>Seminar in Continuous Optimization</td>
<td>148</td>
</tr>
<tr>
<td>Seminar in Cryptography</td>
<td>262</td>
</tr>
<tr>
<td>Seminar in Discrete Optimization</td>
<td>173</td>
</tr>
<tr>
<td>Seminar in Enterprise Information Systems</td>
<td>249</td>
</tr>
<tr>
<td>Seminar in Experimental Economics</td>
<td>280</td>
</tr>
<tr>
<td>Seminar in Finance</td>
<td>160</td>
</tr>
<tr>
<td>Seminar in Game and Decision Theory</td>
<td>261</td>
</tr>
<tr>
<td>Seminar in Industrial Production</td>
<td>254</td>
</tr>
<tr>
<td>Seminar in Insurance Management</td>
<td>251</td>
</tr>
<tr>
<td>Seminar in Law</td>
<td>264</td>
</tr>
<tr>
<td>Seminar in Operational Risk Management</td>
<td>252</td>
</tr>
<tr>
<td>Seminar in Risk Theory and Actuarial Science</td>
<td>253</td>
</tr>
<tr>
<td>Seminar in Security</td>
<td>257</td>
</tr>
<tr>
<td>Seminar in Telematics</td>
<td>115</td>
</tr>
<tr>
<td>Seminar Information Engineering and Management</td>
<td>255</td>
</tr>
<tr>
<td>Seminar Information Services in Networks</td>
<td>267</td>
</tr>
</tbody>
</table>
Seminar Knowledge Management 250
Seminar Module Economic Sciences (Modul) 34
Seminar Module Informatics (Modul) 33
Seminar Module Law (Modul) 35
Seminar Software Engineering 248
Seminar Software Systems ... 246
Seminar Stochastic Models .. 258
Seminar: Management and Organization 203
Service Oriented Computing I 195
Simulation I ... 179
Simulation II .. 180
Software Engineering I ... 133
Software Engineering I (Modul) 77
Software Engineering II ... 247
Software Laboratory: OR Models I 172
Software Technology: Quality Management 189
Softwaretechnik II (Modul) 78
Special Topics in Information Engineering & Management 226
Special Topics in Management: Management and IT 202
Special Topics of Efficient Algorithms 183
Special Topics of Enterprise Information Systems 245
Special Topics of Knowledge Management 199
Specialization in Customer Relationship Management (Modul) 41
Statistical Applications of Financial Risk Management (Modul) 57
Statistics (Modul) .. 26
Statistics and Econometrics in Business and Economics 163
Statistics I .. 102
Statistics II .. 103
Stochastic Methods and Simulation (Modul) 60
Strategic Games (Modul) .. 54
Strategy and Organization (Modul) 43
Supply Chain Management (Modul) 38
Sustainability Assessment of Construction Works 220
Sustainable Construction (Modul) 51

T

Tactical and Operational Supply Chain Management 171
Telematics ... 124
Telematics (Modul) .. 70
Telematics II (Modul) .. 71
Theoretical Foundation of Computer Science 89
Theoretical Informatics (Modul) 19
Theory of Business Cycles 178
Theory of Economic Growth 177
Topics in Finance I (Modul) 47
Topics of Sustainable Management of Housing and Real Estate 222

W

Web Engineering .. 122
Web Information Systems (Modul) 61
Welfare Economics .. 174
Workflow-Management .. 188
Workflowmanagement-Systems 120