Module Handbook
Information Engineering and Management (M.Sc.)
Summer term 2010
Short version
04.03.2010
## Inhaltserzeichnis

Table of Contents

1 Structure of the Master Programme in Information Engineering and Management  
2 Module Handbook - a helpful guide throughout the studies  
3 Actual Changes  
4 Mandatory Modules  
4.1 All Subjects  
4.1.1 IW4WWIW- Information Engineering and Management  
4.1.2 IW4WWOR- Stochastic Models in Information Engineering and Management  
4.1.3 IW4IWSEM- Interdisciplinary Seminar Module  
4.1.4 IW4IWMA THESES- Master Thesis  
5 Elective Modules  
5.1 Business Administration  
5.1.1 IW4BW LIS M1- Advanced CRM  
5.1.2 IW4BW LIS M2- Electronic Markets  
5.1.3 IW4BW LIS M3- Market Engineering  
5.1.4 IW4BW LIS M4- Business & Service Engineering  
5.1.5 IW4BW LIS M5- Communications & Markets  
5.1.6 IW4BW LIS M6- Service Management  
5.1.7 IW4BWLF BV1- F1 (Finance)  
5.1.8 IW4BWLF BV2- F2 (Finance)  
5.1.9 IW4BWLF BV4- Applications of Actuarial Sciences I (BWL)  
5.1.10 IW4BWLF BV6- Insurance Management I  
5.1.11 IW4BWLF BV7- Insurance Management II  
5.1.12 IW4BWLF BV9- Operational Risk Management I  
5.1.13 IW4BWLF BV10- Operational Risk Management II  
5.1.14 IW4BWLM AR1- Marketing Planning  
5.1.15 IW4BWLM AR2- Market Research  
5.1.16 IW4BWLM AR3- Strategy, Innovation and Data Analysis  
5.1.17 IW4BWLM AR4- Behavioral Approaches in Marketing and Data Analysis  
5.1.18 IW4BWLM AR5- Successful Market Orientation  
5.1.19 IW4BWLM AR6- Entrepreneurship, Innovation and International Marketing  
5.1.20 IW4BWLU O1- Strategic Corporate Management and Organization  
5.1.21 IW4BWLU O3- Strategic Decision Making and Organization Theory  
5.1.22 IW4BWLI P2- Industrial Production II  
5.1.23 IW4BWLI P6- Industrial Production III  
5.2 Economics  
5.2.1 IW4VWL2- Applied Strategic Decisions  
5.2.2 IW4VWL7- Allocation and Equilibrium  
5.2.3 IW4VWL8- Macroeconomic Theory  
5.2.4 IW4VWL9- Social Choice Theory  
5.3 Operations Research  
5.3.1 IW4OR1- Quantitative Marketing and OR  
5.3.2 IW4OR4- Operations Research in Supply Chain Management and Health Care Management  
5.3.3 IW4OR6- Mathematical Programming  
5.3.4 IW4OR7- Stochastic Modelling and Optimization  
5.4 Statistics  
5.4.1 IW4STAT1- Mathematical and Empirical Finance
INHALTSVERZEICHNIS

IW4STAT2- Statistical Methods in Risk Management .................................................. 51
IW4STAT3- Risk Management and Econometrics in Finance ........................................ 52

5.5 Informatics ............................................................................................................. 53
IW4INISICH- Computer security .......................................................... 53
IW4INFKRYP- Advanced Topics in Cryptography ................................................. 54
IW4INPKK- Public Key Cryptography .................................................................. 55
IW4INAAALGQA- Advanced Algorithms: Design and Analysis .................. 56
IW4INAAALGQB- Advanced Algorithms: Engineering and Applications ... 57
IW4INEALGTA- Introduction to Algorithmics ............................................. 58
IW4INAWAT- Web Applications and Web Technologies ...................................... 59
IW4INCOMP1- Language Technology and Compiler ............................................. 60
IW4INSWS- Software Systems ............................................................................. 61
IW4INSWM- Software-Methodik ........................................................................... 62
IW4INPWE- Applied Web Engineering .............................................................. 63
IW4INWN- Wireless Networking .......................................................................... 64
IW4INNL- Networking Labs .................................................................................. 65
IW4INFN- Future Networking ............................................................................... 66
IW4INNW- Networking ......................................................................................... 67
IW4INNTP- Networking Security – Theory and Praxis ................................... 68
IW4INIKD- Communication and Database Systems ........................................... 69
IW4INKDI- Innovative Concepts of Data and Information Management ........ 70
IW4INDWMT- Theory and Practice of Data Warehousing and Mining ........ 71
IW4INDBTP- Theory and Practice of Database Techno ....................................... 72
IW4INDITI- Dynamische IT-Infrastrukturen ...................................................... 73
IW4INBSV- Biosignalverarbeitung ...................................................................... 74
IW4INSV- Sprachverarbeitung ............................................................................. 75
IW4INBMML- Motion centered Human-Machine Interface ............................ 76
IW4INKUF- Curves and Surfaces .......................................................................... 77
IW4NACG- Algorithmen der Computergraphik ...................................................... 78
IW4INGAS- Foundations and Application of IT-Security .................................. 79
IW4INPV- Parallelverarbeitung ............................................................................. 80
IW4INAI1- Service Technology ........................................................................... 81
IW4INAI2- Cloud Computing ............................................................................... 82
IW4INAI3- Web Service Engineering ................................................................. 83
IW4INAI4- Web Data Management ................................................................. 84
IW4INAI5- Intelligent Systems and Services ...................................................... 85
IW4INAI6- Semantic Technologies ...................................................................... 86
IW4INAI7- Ubiquitous Computing ...................................................................... 87
IW4INAI8- Organic Computing ......................................................................... 88
IW4INAI8- eCollaboration .................................................................................. 89
IW4INAI10- Development of Distributed Business Information Systems ...... 90

5.6 Law ...................................................................................................................... 91
IW4JURA- Intellectual Property Law .................................................................... 91
IW4JURAS- Private Business Law ....................................................................... 92
IW4JURAE- Public Business Law ....................................................................... 93

6 Appendix: Study- and Examination Regulation (15/04/2009, in German) ...... 95

Index ....................................................................................................................... 109
1 Structure of the Master Programme in Information Engineering and Management

The Master programme in Information Engineering and Management has 4 terms. The terms 1 to 3 of the programme are method–oriented and provide the students with state-of-the-art knowledge in informatics, business administration, operations research, economics, statistics and law. The interdisciplinary approach is especially emphasized in the interdisciplinary seminar.

It is recommended to study the courses in the following sequence:

- The (mandatory) modules in business administration and operations research should be studied in the first two terms of the programme.
- The interdisciplinary seminar should be taken in the third term of the programme.
- The (elective) modules from business administration, economics, operations research, and statistics, from informatics, and from law should be studied in the first three terms of the programme.
- The 4-th term is reserved for the Master Thesis in which the student proves his ability for independent scientific research in informatics, the economic sciences, and law.

Figure 1 shows a summary of this recommendation with the structure of the disciplines and with credit points allocated to the modules of the programme.

Abbildung 1: Structure of the Master Programme in Information Engineering and Management (Recommendation)
2 Module Handbook - a helpful guide throughout the studies

The programme exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself exists of one or more interrelated courses. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the programme, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the programme according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the programme. It describes:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalogue, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

Begin and completion of a module

Every module and every course is allowed to be credited only once. The decision whether the course is assigned to one module or the other (e.g. if a course is selectable in two or more modules) is made by the student at the time of signing in for the corresponding exam. The module is succeeded, if the general exam of the module and/or if all of its relevant partial exams have been passed (grade min 4.0). In order to that the minimum requirement of credits of this module have been met.

General exams and partial exams

The module exam can be taken in a general exam or several partial exams. If the module exam is offered as a general exam, the entire content of the module will be reviewed in a single exam. If the module exam exists of partial exams, the content of each course will be reviewed in corresponding partial exams. The registration for the examinations takes place online via the self-service function for students. The following functions can be accessed on https://studium.kit.edu/meinsemester/Seiten/pruefungsanmeldung.aspx:

- Sign in and sign off exams
- Retrieve examination results
- Print transcript of records

For further and more detailed information also see https://zvwgate.zvw.uni-karlsruhe.de/download/leitfaden_studierende.pdf

Repeating exams

Principally, a failed exam can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. Requests for a second repetition of an exam require the approval of the examination committee. A request for a second repetition has to be made without delay after loosing the examination claim. A counseling interview is mandatory. For further information see http://www.wiwi.kit.edu/serviceHinweise.php.

Bonus accomplishments and additional accomplishments

Bonus accomplishments can be achieved on the basis of entire modules or within modules, if there are alternatives at choice. Bonus accomplishments can improve the module grade and overall grade by taking into account only the best possible combination of all courses when calculating the grades. The student has to declare a Bonus accomplishment as such at the time of registration for the exams. Exams, which have been registered as Bonus accomplishments, are subject to examination regulations. Therefore, a failed exam has to be repeated. Failing the repeat examination implies the loss of the examination claim.

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student.
and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Up to 2 modules with a minimum of 9 CP may appear additionally in the certificate. After the approval of the examination committee, it is also possible to include modules in the certificate, which are not defined in the module handbook. Single additional courses will be recorded in the transcript of records. Courses and modules, which have been declared as bonus accomplishments, can be changed to additional accomplishments.

**Further information**

More detailed information about the legal and general conditions of the programme can be found in the examination regulation of the programme (in the appendix).

**Used abbreviations**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP/CP</td>
<td>Credit Points/ECTS</td>
<td>Leistungspunkte/ECTS</td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td>course</td>
<td>Lehrveranstaltung</td>
<td></td>
</tr>
<tr>
<td>RÜ</td>
<td>computing lab</td>
<td>Rechnerübung</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>summer term</td>
<td>Sommersemester</td>
<td></td>
</tr>
<tr>
<td>Sem.</td>
<td>semester/term</td>
<td>Semester</td>
<td></td>
</tr>
<tr>
<td>ER/SPO</td>
<td>examination regulations</td>
<td>Studien- und Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>KS/SQ</td>
<td>key skills</td>
<td>Schlüsselqualifikationen</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>contact hour</td>
<td>Semesterwochenstunde</td>
<td></td>
</tr>
<tr>
<td>Ü</td>
<td>exercise course</td>
<td>Übung</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>lecture</td>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>winter term</td>
<td>Wintersemester</td>
<td></td>
</tr>
</tbody>
</table>
3 Actual Changes

Important changes are pointed out in this section in order to provide a better orientation. Although this process was done with great care, other/minor changes may exist.

Advanced CRM [IW4BWLISM1] (S. 16)
Anmerkungen
The course Business Dynamics was added to the module.

Electronic Markets [IW4BWLISM2] (S. 17)
Anmerkungen
The course Electronic Markets: Institutions and Market Mechanisms will not be offered any more. An exam will be offered in september 2010.
The courses Business Dynamics and Telecommunication and Internet Economics were added to the module.

Business & Service Engineering [IW4BWLISM4] (S. 19)
Anmerkungen

F2 (Finance) [IW4BWLFBV2] (S. 23)
Anmerkungen

Applications of Actuarial Sciences I (BWL) [IW4BWLFBV4] (S. 24)
Anmerkungen
The course Saving Societies [26340] will irregularly not be held in the summer term 2010.

Anmerkungen
The courses Insurance Marketing [26323], Insurance Production [26324], and Service Management [26327] are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
The course Insurance Contract Law [26360] will not be held any more after winter term 2009/10. There will be no more exams for the course after the exam period of summer term 2010.
The courses Private and Social Insurance, Insurance Risk Management, and Current Issues in the Insurance Industry have been added to the module.

Insurance Management II [IW4BWLFBV7] (S. 26)
Anmerkungen
The courses Insurance Marketing [26323], Insurance Production [26324], and Service Management [26327] are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
The course Risk Controlling in Insurance Groups is not offered in this module.
The course Insurance Contract Law [26360] will not be held any more after winter term 2009/10. There will be no more exams for the course after the exam period of summer term 2010.
The module is offered as an extension module to Insurance Management I from summer term 2010 on. Students that already began this module have been assigned to the module Insurance Management I.

Operational Risk Management I [IW4BWLFBV9] (S. 27)
Anmerkungen
The courses Multidisciplinary Risk Research [26328], Risk Communication [26395], Risk Management of Microfinance and Private Households [26354] and Project Work in Risk Research [26393] are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
The course Public Sector Risk Management [26355] is offered in summer term 2010 for the last time, no further exams will be offered after the two exams for the course of summer term 2010.
The courses Multidisciplinary Risk Research, Risk Management of Microfinance and Private Households, and Project Work in Risk Research have been added to the module.
Operational Risk Management II [IW4BWLFBV10] (S. 28)

Anmerkungen

The courses Multidisciplinary Risk Research [26328], Risk Communication [26395], Risk Management of Microfinance and Private Households [26354] and Project Work in Risk Research [26393] are offered irregularly. For further information, see:
http://insurance.fbv.uni-karlsruhe.de

The course Public Sector Risk Management [26355] is offered in summer term 2010 for the last time, no further exams will be offered after the two exams for the course of summer term 2010.

The module is offered as an extension module to Operational Risk Management I from summer term 2010 on. Students that already began this module have been assigned to the module Operational Risk Management I.

Allocation and Equilibrium [IW4VWL7] (S. 42)

Anmerkungen

The lecture Advanced Topics in Economic Theory [25527] was formerly named Advanced Microeconomic Theory.
4 Mandatory Modules

4.1 All Subjects

Module: Information Engineering and Management

Module key: [IW4WWI IW]

Subject: Business Administration (obligatory)
Module coordination: Christof Weinhardt, Andreas Geyer-Schulz

Credit points (CP): 10

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• understands and analyzes the central role of information as an economic good, a production factor, and a competitive factor,
• identifies, evaluates, prices, and markets information goods,
• evaluates informations flows and the value of information in an interdisciplinary context,
• works out solutions in teams,
• transfers models from Business Administration to situations in business whose basic conditions are changed due to the implementation of information and communication technology,
• applies methods from Business Administration (Decision theory, game theory, operations research, etc.) to questions of Information Engineering and Management,
• analyzes the potential to automize the decision making process in businesses by data bases,
• describes the process to extract relevant data for decision making from operational accounting systems.

Content
The module Information Engineering and Management comprises the lectures Principles of Information Engineering and Management [26450] and Business Administration in Information Engineering and Management [26500].

In the lecture Principles of Information Engineering and Management, a clear distinction of information as a production, competitive, and economic good is introduced. The central role of information is explained through the concept of the “information lifecycle”. The single phases from existence/generation through allocation and evaluation until the distribution and usage of information are analyzed from the business administration perspective and the microeconomic perspective. The state of the art of economic theory is presented throughout the different phases of the information lifecycle. The lecture is complemented by accompanying exercise courses.

In the lecture Business Administration in Information Engineering and Management, classical Business Administration is applied to businesses in an information- and communication technological environment. The process to extract relevant data for decision making from operational accounting systems receives special attention. In order to do so, topics such as activity-based costing and transaction costs models are addressed. The automization of the decision making process in businesses by data bases is another focus of the module. To solve such issues within a company, relevant methods such as decision theory and game theory are lectured. Finally, complex business relevant questions in a dynamically changing environment are adressed by presenting models and methods from system dynamics.

Courses in module Information Engineering and Management [IW4WWI IW]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26450</td>
<td>Principles of Information Engineering and Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business Administration in Information Engineering and Management</td>
<td>2/1 W 5</td>
<td>C. Weinhardt, J. Kraemer, C. van Dinther</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26500</td>
<td></td>
<td>2/1 S 5</td>
<td>A. Geyer-Schulz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks
None.
Module: Stochastic Models in Information Engineering and Management  
Module key: [IW4WWOR]

Subject: Operations Research (obligatory) 
Module coordination: Karl-Heinz Waldmann 
Credit points (CP): 5

Learning Control / Examinations
The assessment of the module is in a written examination according to §4(2), 1 of the examination regulation. In each term (usually in March and July), one examination is held for both courses. The grade of the module corresponds to the grade of this examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques of stochastic modelling. Students are able to properly describe and analyze basic stochastic systems.

Content
Markov chains are no longer a nice theory but an important tool in order to model, analyse, and optimize a stochastic system as it evolves over time. 
Topics overview: Markov chains, Poisson Processes.

Courses in module Stochastic Models in Information Engineering and Management [IW4WWOR]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25679</td>
<td>Markov Decision Models I</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s): K. Waldmann
Module: Interdisciplinary Seminar Module

Module coordination: Studiendekan (Fak. f. Wirtschaftswissenschaften), Martina Zitterbart
Credit points (CP): 6

Learning Control / Examinations
The assessment in this module is regulated by § 4 (2) 3, of the examination regulation for the Master Information Engineering and Management. Further details will be defined for each seminar separately.

Prerequisites
Students should have experience with literature search in informatics, economics, business administration, and law. They should know the methods of scientific work, presentation techniques for scientific presentations, as well as the form requirements of scientific publications (guide line for authors) and review processes for scientific publications. The interdisciplinary seminar should be taken as last course of the compulsory program in the 3rd term of the Master programme.

Conditions
See German version.

Learning Outcomes
• In the interdisciplinary seminar Information Engineering and Management students investigate a recent topic in Information Engineering and Management with the scientific methods of the disciplines of the degree programme.
• They develop interdisciplinary solution approaches on the base of the state-of-the-art in the disciplines.
• They present selected solution approaches and methods on an expert level and they defend and rationalize the selected solution approaches and methods in a discussion with scientific arguments.
• They write a seminar paper whose form is appropriate for a scientific journal.
• They revise their paper taking into account the reviews of their tutors in an appropriate manner.

Content
The Students will be coached by a group of tutors which consists in each case of a tutor of informatics, economics and law.
<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26530</td>
<td>Interdisciplinary Seminar in Information Engineering and Management</td>
<td>2 W/S</td>
<td>6</td>
<td></td>
<td>A. Geyer-Schulz, T. Dreier</td>
</tr>
<tr>
<td>26510</td>
<td>Master Seminar in Information Engineering and Management</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>SemIW</td>
<td>Seminar Information Engineering and Management</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>SemIWIP2</td>
<td>Seminar in Industrial Production</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>F. Schultmann, M. Fröhling, M. Hiete</td>
</tr>
<tr>
<td>25195</td>
<td>Master-Seminar Marketing Planning</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25192</td>
<td>Master Seminar in Marketing</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25197</td>
<td>Seminar zum strategischen u. verhaltenswiss. Marketing</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>25193</td>
<td>Master Seminar zu Marktforschung</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25196</td>
<td>Master Seminar in Entrepreneurship, Innovation and International Marketing</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>Gaul</td>
</tr>
<tr>
<td>25194</td>
<td>Master Seminar in Quantitative Marketing and OR</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25191/25916</td>
<td>Seminar: Management and Organization</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25293</td>
<td>Seminar in Finance</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
</tr>
<tr>
<td>SemFBV1</td>
<td>Seminar in Insurance Management</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>U. Werner</td>
</tr>
<tr>
<td>SemFBV2</td>
<td>Seminar in Operational Risk Management</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>U. Werner</td>
</tr>
<tr>
<td>SemFBV3</td>
<td>Seminar in Risk Theory and Actuarial Science</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>C. Hipp, N.N.</td>
</tr>
<tr>
<td>SemWIOR3</td>
<td>Seminar in Experimental Economics</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>SemWIOR4</td>
<td>Seminar in Game and Decision Theory</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>SemWIOR2</td>
<td>Seminar Economic Theory</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>C. Puppe</td>
</tr>
<tr>
<td>25131</td>
<td>Seminar in Continuous Optimization</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>O. Stein</td>
</tr>
<tr>
<td>SemWIOR1</td>
<td>Seminar Stochastic Models</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25491</td>
<td>Seminar in Discrete Optimization</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>S. Nickel</td>
</tr>
<tr>
<td>SemAIFB1</td>
<td>Seminar in Enterprise Information Systems</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>R. Studer, A. Oberweis, W. Stucky, T. Wolf, R. Kneuper</td>
</tr>
<tr>
<td>SemAIFB2</td>
<td>Seminar Efficient Algorithms</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>SemAIFB3</td>
<td>Seminar Complexity Management</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>D. Seege</td>
</tr>
<tr>
<td>SemAIFB4</td>
<td>Seminar Knowledge Management</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>R. Studer</td>
</tr>
<tr>
<td>26470</td>
<td>Seminar Service Science, Management &amp; Engineering</td>
<td>2 W/S</td>
<td>4</td>
<td></td>
<td>S. Tai, C. Weinhardt, G. Satzger, R. Studer</td>
</tr>
<tr>
<td>rechtsem</td>
<td>Seminar in Law</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>T. Dreier, P. Sester, I. Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24793</td>
<td>Recht der Informationsordnung</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
</tbody>
</table>
Module: Master Thesis

Module coordination: Martina Zitterbart, Studiendekan (Fak. f. Wirtschaftswissenschaften), Vorsitzender des Prüfungsausschusses

Credit points (CP): 30

Learning Control / Examinations

Examination by two examiners from the two faculties. For details refer to examination regulation. The examiner has to be involved in the degree programme. Involved in the degree programme are the persons that coordinate a module or a lecture of the degree programme.

Prerequisites

None.

Conditions

Regulated in §11 of the examination regulation. The requirements for the examiner are described in §14 (2) of the examination regulation.

Learning Outcomes

The student

- investigates a topic in Information Engineering and Management autonomously in a scientific manner at the state-of-the-art of the research in the field.
- shows a comprehensive understanding of the methods and approaches relevant for the investigation of the topic chosen.
- selects appropriate scientific methods and he uses them in a correct way. If necessary, he modifies methods in a suitable way or he develops them.
- compares his results with competing approaches critically and he evaluates his results.
- communicates his results clearly and in a scientific form in his master thesis.

Content

- The master thesis shows that the candidate can autonomously investigate a problem from his discipline with scientific methods according to the state-of-the-art of the discipline within a specified time period.
- The master thesis can be written in German or English.
- The topic of a master thesis can be accepted or chosen by each of the examiners according to examination regulation. The examiner accepting a topic for a master thesis acts as the first supervisor of this thesis.
- Writing a master thesis with a supervisor who is not a member of the two faculties participating in the degree programme (Faculty of Informatics, Faculty of Economics and Business Engineering) requires acceptance by the examination board of the degree programme. The candidate must have an opportunity to make suggestions for the topic of the master thesis.
- Candidates can write a master thesis in teams. However, this requires that the contribution and performance of each candidate to the thesis is identifiable according to objective criteria which allow a unique delineation of each candidate's contribution. The contribution of each candidate regarded in isolation must fulfill the requirements a individual master thesis.
- In exceptional cases and upon request of the candidate, the chairman of the examination board chooses a supervisor and requests that this supervisor provides the candidate with a topic for the master thesis within 4 weeks after the request. In this case, the candidate is informed by the chairman of the examination board about the topic selected.
- Topic, specification of research tasks and the volume of the master thesis should be limited by the supervisor, so that the master thesis can be written with the assigned workload of 30 credits (750-900h).
- The master thesis must contain the following declaration of the candidate: “I truthfully assure that I have autonomously written this master thesis. I have quoted all sources used precisely and completely. I have labelled everything which has been taken from the work of others with or without change.” A master thesis without this declaration will not be accepted.
- The date of the assignment of the topic to a candidate as well as the date of delivery of the master thesis should be registered at the examination board. The candidate can return a topic for the master thesis only one time and only within a period of two month after he has received the topic. Upon a request of the candidate with reasons supporting an extension, the examination board may extend the deadline for the delivery of the master thesis by a maximum of three months. A master thesis not delivered within time is graded as “fail” except when the candidate is not responsible for this delay (e.g. protection of motherhood).
- The master thesis is reviewed and graded by the supervisor and the additional examiner. The team of supervisor and examiner must represent both faculties participating in the degree programme (Faculty of Informatics, Faculty of Economics and Business Engineering). At least one of the two must be professor or junior professor. If the grades of the supervisor and the examiner differ, the examination board sets the mark within this limit.
- Reviewing and grading should be done within 8 weeks after delivery of the master thesis.
5 Elective Modules

5.1 Business Administration

Module: Advanced CRM

Module key: [IW4BWLISM1]

Subject: Business Administration
Module coordination: Andreas Geyer-Schulz
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- understand service competition as a sustainable competitive strategy and understand the effects of service competition on the design of markets, products, processes and services,
- models, analyzes and optimizes the structure and dynamics of complex business applications,
- develops and realizes personalized services, especially in the field of recommendation services,
- analyzes social networks and knows their application field in CRM,
- works in teams.

Content
Besides the foundations of modern customer oriented and service oriented management, developments of CRM systems are lectured together with tools for analysis and optimization of such systems.

An overview of general aspects and concepts of personalization and their importance for service provider and customers is given. Then, different categories of recommendation systems are presented: Ranging from explizit recommendation services like reviews to implicit services like the calculation of recommendations based on the historic data about products and/or customers. There exist a trend towards viewing economic systems and social systems as networks. This approach allows for the application of different methods from mathematics, economic sciences, sociology and physics. In CRM, net work analyses may provide benefits calculating customer network values.

CRM processes and marketing campaigns are just two examples of dynamic systems that are characterized by feedback loops between different process steps. By means of the tools of business dynamics such processes can be modelled. Simulations of complex systems allow the analysis and optimization of business processes, marketing campaigns, and organizations.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26508</td>
<td>Customer Relationship Management</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26506</td>
<td>Personalization and Recommender Systems</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26518</td>
<td>Social Network Analysis in CRM</td>
<td>2/1</td>
<td>W/S</td>
<td>4.5</td>
<td>B. Hoser</td>
</tr>
<tr>
<td>26531</td>
<td>Business Dynamics</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>A. Neumann</td>
</tr>
</tbody>
</table>

Remarks
The course Business Dynamics was added to the module.
Module: Electronic Markets

Subject: Business Administration
Module coordination: Andreas Geyer-Schulz
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
- knows coordination and motivation methods and analyzes them regarding their efficiency,
- classifies markets and describes the roles of the participants in a formal way,
- knows the conditions for market failure and knows and develops countermeasures,
- knows institutions and market mechanisms, their fundamental theories and empirical research results,
- knows the design criteria of market mechanisms and a systematical approach for creating new markets,
- models, analyzes and optimizes the structure and dynamics of complex business applications.

Content
What are the conditions that make electronic markets develop and how can one analyse and optimize such markets?
In this module, the selection of the type of organization as an optimization of transaction costs is treated. Afterwards, the efficiency of electronic markets (price, information and allocation efficiency) as well as reasons for market failure are described. Finally, motivational issues like bounded rationality and information asymmetries (private information and moral hazard), as well as the development of incentive schemes, are presented. Regarding the market design, especially the interdependencies of market organization, market mechanisms, institutions and products are described and theoretical foundations are lectured.

Electronic markets are dynamic systems that are characterized by feedback loops between many different variables. By means of the tools of business dynamics such markets can be modelled. Simulations of complex systems allow the analysis and optimization of markets, business processes, policies, and organizations.

Topics include:
- classification, analysis, and design of markets
- simulation of markets
- auction methods and auction theory
- automated negotiations
- nonlinear pricing
- continuous double auctions
- market-maker, regulation, control

Courses in module Electronic Markets [IW4BWLISM2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>26502</td>
<td>Electronic Markets (Principles)</td>
<td>2/1 W</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26504</td>
<td>Electronic Markets: Institutions and Market Mechanisms</td>
<td>2/1 S</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions</td>
<td>2/1 S</td>
<td>4,5</td>
<td>C. Weinhardt, J. Kraemer, C. van Dinther</td>
</tr>
<tr>
<td>26232</td>
<td>Telecommunication and Internet Economics</td>
<td>2/1 W</td>
<td>4,5</td>
<td>K. Mitsusch</td>
</tr>
<tr>
<td>26531</td>
<td>Business Dynamics</td>
<td>2/1 S</td>
<td>4,5</td>
<td>A. Neumann</td>
</tr>
</tbody>
</table>

Remarks
The course Electronic Markets: Institutions and Market Mechanisms will not be offered any more. An exam will be offered in september 2010.
The courses Business Dynamics and Telecommunication and Internet Economics were added to the module.
Module: Market Engineering

Subject: Business Administration
Module coordination: Christof Weinhardt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The course Market Engineering: Information in Institutions [26460] has to be attended.

Learning Outcomes
The students
- know the design criterias of market mechanisms and the systematic approach to create new markets,
- understand the basics of the mechanism design and auction theory,
- analyze and evaluate existing markets regarding the missing incentives and the optimal solution of a given market mecha-
nism, respectively,
- develop solutions in teams.

Content
This module explains the dependencies between the design von markets and their success. Markets are complex interaction of different institution and participants in a market behave strategically according to the market rules. The development and the design of markets or market mechanisms has a strong influence on the behavior of the participants. A systematic approach and a thorough analysis of existing markets is inevitable to design, create and operate a market place successfully. the approaches for a systematic analysis are explained in the mandatory course Market Engineering [26460] by discussing theories about mechanism design and institutional economics. The student can deepen his knowledge about markets in a second course.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>C. Weinhardt, J. Kraemer, C. van Dinther</td>
</tr>
<tr>
<td>25408</td>
<td>Auction Theory</td>
<td>2/2</td>
<td>W</td>
<td>4,5</td>
<td>K. Ehrhart, S. Seifert</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. Weinhardt, R. Riordan</td>
</tr>
<tr>
<td>26458</td>
<td>Computational Economics</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>C. van Dinther</td>
</tr>
<tr>
<td>25373</td>
<td>Experimental Economics</td>
<td>2/2</td>
<td>S</td>
<td>4,5</td>
<td>S. Berninghaus, Kroll</td>
</tr>
</tbody>
</table>
Module: Business & Service Engineering  
Module key: [IW4BWLISM4]

Subject: Business Administration  
Module coordination: Christof Weinhardt, Gerhard Satzger  
Credit points (CP): 9

Learning Control / Examinations  
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.  
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites  
None.

Conditions  
None.

Learning Outcomes  
The student should learn to  
- develop and implement new markets with regards to the technological progresses of information and communication technology and the increasing economic networking  
- restructure and develop new business processes in markets under those conditions  
- understand service competition as a sustainable competitive strategy and understand the effects of service competition on the design of markets, products, processes and services.

Content  
This module addresses the challenges of creating new kinds of products, processes, services, and markets from a service perspective in the context of new developed information and communication technologies and the globalization process. The module describes service competition as a business strategy in the long term that leads to the design of business processes, business models, forms of organization, markets, and competition. This will be shown by actual examples from personalized services, recommender services and social networks.

Courses in module Business & Service Engineering [IW4BWLISM4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26456</td>
<td>Business Models in the Internet: Planning and Implementation</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Weinhardt, C. Holtmann, C. van Dinther</td>
</tr>
<tr>
<td>26478</td>
<td>Special Topics in Information Engineering &amp; Management</td>
<td>3</td>
<td>W/S</td>
<td>4.5</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>26506</td>
<td>Personalization and Recommender Systems</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26468</td>
<td>Service Innovation</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>G. Satzger, A. Neus</td>
</tr>
</tbody>
</table>

Remarks
Module: Communications & Markets

Subject: Business Administration
Module coordination: Christof Weinhardt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The course Communications Economics [26462] has to be attended.

Learning Outcomes
The student is able to
- understand the game theoretic basics of Industrial Economics
- understand the relationship between incentive mechanisms and the network economy
- analyse and evaluate markets and auction mechanisms using methods from game theory
- elaborate solutions in a team

Content
The module has a focus on applied game-theoretic analysis of information exchange and incentive mechanisms. Single participants in a market make decisions concerning their products, the price determination and competitive position, which can change the situation in a market. These changes inflict a change in corporate policy. Approaches from game-theory in industrial economics and mechanism design are offering analytic tools by which one can systematically deduce strategic decisions for businesses, given a certain market situation.

Courses in module Communications & Markets [IW4BWLISM5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26462</td>
<td>Communications Economics</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>S. Seifert, J. Kraemer</td>
</tr>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>C. Weinhardt, J. Kraemer, C. van Dinther</td>
</tr>
<tr>
<td>25408</td>
<td>Auction Theory</td>
<td>2/2</td>
<td>W</td>
<td>4,5</td>
<td>K. Ehrhart, S. Seifert</td>
</tr>
<tr>
<td>26478</td>
<td>Special Topics in Information Engineering &amp; Management</td>
<td>3</td>
<td>W/S</td>
<td>4,5</td>
<td>C. Weinhardt</td>
</tr>
</tbody>
</table>

Remarks
The lecture Special Topics in Information Engineering & Management [26478] is first offered in the winter term 2009/10. All practical Seminars offered at the IM can be chosen for this course. Please update yourself on www.iism.kit.edu/im/lehre.
Module: Service Management

Subject: Business Administration
Module coordination: Gerhard Satzger, Christof Weinhardt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The course Business and IT Service Management [26484] is obligatory.
The course eServices [26466] can only be chosen, if it was not attended in the Bachelor programme.

Learning Outcomes
The students
• understand the basics of developing and managing IT-based services,
• understand and apply OR methods in service management,
• analyze and develop supply chain and business networks,
• understand and analyze innovation processes in corporations

Content
The module service management addresses the basics of developing and managing IT-based services. The lectures contained in this module teach the basics of developing and managing IT-based services and the application of OR methods in the field of service management. Moreover, students learn to analyze and develop supply chain networks as well as to understand and analyze innovation processes in corporations. Current examples from research and industry demonstrate the relevance of the topics discussed in this module.

Courses in module Service Management [IW4BWLISM6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26484</td>
<td>Business and IT Service Management</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>G. Satzger</td>
</tr>
<tr>
<td>26452</td>
<td>Management of Business Networks</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>C. Weinhardt, J. Kraemer</td>
</tr>
<tr>
<td>26468</td>
<td>Service Innovation</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>G. Satzger, A. Neus</td>
</tr>
<tr>
<td>26466</td>
<td>eServices</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Weinhardt, G. Satzger</td>
</tr>
</tbody>
</table>
Module: F1 (Finance)  

Subject: Business Administration  
Module coordination: Marliese Uhrig-Homburg, Martin E. Ruckes  
Credit points (CP): 9

Learning Control / Examinations  
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.  
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites  
None.

Conditions  
None.

Learning Outcomes  
The student  
- has core skills in economics and methodology in the field of finance  
- assesses corporate investment projects from a financial perspective  
- is able to make appropriate investment decisions on financial markets

Content  
The courses of this module equip the students with core skills in economics and methodology in the field of modern finance. Securities which are traded on financial and derivative markets are presented, and frequently applied trading strategies are discussed. A further focus of this module is on the assessment of both profits and risks in security portfolios and corporate investment projects from a financial perspective.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26550</td>
<td>Derivatives</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>25212</td>
<td>Valuation</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>26555</td>
<td>Asset Pricing</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
</tr>
</tbody>
</table>
Module: F2 (Finance)  

Subject: Business Administration  

Module coordination: Marliese Uhrig-Homburg, Martin E. Ruckes  

Credit points (CP): 9  

Learning Control / Examinations  

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.  

Prerequisites  

None.  

Conditions  

It is obligatory to attend the module F1 (Finance) [IW4BWLFBV1]. The courses Asset Pricing [VLAP], Valuation [25212] and Derivatives [26550] can only be chosen if they have not been chosen in the module F1 (Finance) [IW4BWLFBV1] already.  

Learning Outcomes  

The student has advanced skills in economics and methodology in the field of modern finance.  

Content  

The module F2 (Finance) is based on the module F1 (Finance). The courses of this module equip the students with advanced skills in economics and methodology in the field of modern finance on a broad basis.  

Courses in module F2 (Finance) [IW4BWLFBV2]  

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26560</td>
<td>Fixed Income Securities</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>25214</td>
<td>Corporate Financial Policy</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>25240</td>
<td>Market Microstructure</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>26565</td>
<td>Credit Risk</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>25210</td>
<td>Management Accounting</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>26555</td>
<td>Asset Pricing</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
</tr>
<tr>
<td>25212</td>
<td>Valuation</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>26550</td>
<td>Derivatives</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>26570</td>
<td>International Finance</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>M. Uhrig-Homburg, Walter</td>
</tr>
<tr>
<td>25299</td>
<td>Business Strategies of Banks</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>W. Müller</td>
</tr>
<tr>
<td>25296</td>
<td>Exchanges</td>
<td>1</td>
<td>S</td>
<td>1.5</td>
<td>J. Franke</td>
</tr>
<tr>
<td>25232</td>
<td>Financial Intermediation</td>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>M. Ruckes</td>
</tr>
</tbody>
</table>

Remarks
Module: Applications of Actuarial Sciences I (BWL) Module key: [IW4BWLFBV4]

Subject: Business Administration
Module coordination: Christian Hipp
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Knowledge in statistics and the module Insurance: Calculation and Control [WW3BWLFBV2] is an advantage, but not a requirement.

Conditions
Two courses out of Life and Pensions [26310], Reinsurance [26312], Insurance Optimisation [26316] and Saving Societies [26340] have to be chosen.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26310</td>
<td>Life and Pensions</td>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>M. Vogt, Besserer</td>
</tr>
<tr>
<td>26312</td>
<td>Reinsurance</td>
<td>4</td>
<td>S</td>
<td>4.5</td>
<td>C. Hipp, Stöckbauer, Schwehr</td>
</tr>
<tr>
<td>26316</td>
<td>Insurance Optimisation</td>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>C. Hipp</td>
</tr>
<tr>
<td>26340</td>
<td>Saving Societies</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>N.N.</td>
</tr>
</tbody>
</table>

Remarks
The course Saving Societies [26340] will irregularly not be held in the summer term 2010.
Module: Insurance Management I

Subject: Business Administration
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

If the contents were not part of the Bachelor programme and there is no professional experience in the insurance industry so far, the student has to pass a test to proof sufficient prior knowledge in the first third of the term.

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Courses in module Insurance Management I [IW4BWLFBV6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26323</td>
<td>Insurance Marketing</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26320</td>
<td>Insurance Accounting</td>
<td>3/0</td>
<td>W</td>
<td>4.5</td>
<td>F. Ludwig</td>
</tr>
<tr>
<td>26324</td>
<td>Insurance Production</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26327</td>
<td>Service Management</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26360</td>
<td>Insurance Contract Law</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>H. Schwebler</td>
</tr>
<tr>
<td>25050</td>
<td>Private and Social Insurance</td>
<td>2/0</td>
<td>W</td>
<td>2.5</td>
<td>W. Heilmann, Besserer</td>
</tr>
<tr>
<td>26350</td>
<td>Current Issues in the Insurance Industry</td>
<td>2/0</td>
<td>S</td>
<td>2.5</td>
<td>W. Heilmann</td>
</tr>
<tr>
<td>26335</td>
<td>Insurance Risk Management</td>
<td>2/0</td>
<td>S</td>
<td>2.5</td>
<td>H. Maser</td>
</tr>
</tbody>
</table>

Remarks
The courses Insurance Marketing [26323], Insurance Production [26324], and Service Management [26327] are offered irregularly.
For further information, see: http://insurance.fbv.uni-karlsruhe.de

The course Insurance Contract Law [26360] will not be held any more after winter term 2009/10. There will be no more exams for this course after the exam period of summer term 2010.

The courses Private and Social Insurance, Insurance Risk Management, and Current Issues in the Insurance Industry have been added to the module.
Module: Insurance Management II

Module key: [IW4BWLFBV7]

Subject: Business Administration
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
If the contents were not part of the Bachelor programme and there is no professional experience in the insurance industry so far, the student has to pass a test to proof sufficient prior knowledge in the first third of the term.

Conditions
The module may only be chosen together with the module Insurance Management I.

Learning Outcomes
See German version.

Content
See German version.

Courses in module Insurance Management II [IW4BWLFBV7]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26323</td>
<td>Insurance Marketing</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td></td>
<td>U. Werner</td>
</tr>
<tr>
<td>26320</td>
<td>Insurance Accounting</td>
<td>3/0 W</td>
<td>4.5</td>
<td></td>
<td>F. Ludwig</td>
</tr>
<tr>
<td>26324</td>
<td>Insurance Production</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td></td>
<td>U. Werner</td>
</tr>
<tr>
<td>26327</td>
<td>Service Management</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td></td>
<td>U. Werner</td>
</tr>
<tr>
<td>26360</td>
<td>Insurance Contract Law</td>
<td>3/0 S</td>
<td>4.5</td>
<td></td>
<td>H. Schwebler</td>
</tr>
<tr>
<td>25050</td>
<td>Private and Social Insurance</td>
<td>2/0 W</td>
<td>2.5</td>
<td></td>
<td>W. Heilmann, Besserer</td>
</tr>
<tr>
<td>26350</td>
<td>Current Issues in the Insurance Industry</td>
<td>2/0 S</td>
<td>2.5</td>
<td></td>
<td>W. Heilmann</td>
</tr>
<tr>
<td>26335</td>
<td>Insurance Risk Management</td>
<td>2/0 S</td>
<td>2.5</td>
<td></td>
<td>H. Maser</td>
</tr>
</tbody>
</table>

Remarks
The courses Insurance Marketing [26323], Insurance Production [26324], and Service Management [26327] are offered irregularly.
For further information, see: http://insurance.fbv.uni-karlsruhe.de
The course Risk Controlling in Insurance Groups is not offered in this module.
The course Insurance Contract Law [26360] will not be held any more after winter term 2009/10. There will be no more exams for this course after the exam period of summer term 2010.
The module is offered as an extension module to Insurance Management I from summer term 2010 on. Students that already began this module have been assigned to the module Insurance Management I.
Module: Operational Risk Management I

Subject: Business Administration
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Interest in interdisciplinary research is assumed.
Knowledge in social science disciplines, GIS or Finance is an advantage.
Knowledge in risk management (for example gained in the Bachelor programme) is an advantage.

Conditions
It is only possible to choose the course Enterprise Risk Management [26326] if it was not attended in the Bachelor programme.
It is only possible to choose the course International Risk Transfer [26353] if it was not attended in the Bachelor programme.

Learning Outcomes
See German version.

Content
Operational risks of institutions resulting from the interaction of human, technical, and organisational factors (internal risks) as well as from external natural, technical, social or political incidents; specific requirements, legal and economic framework of various risk carriers (private and public households, small and major enterprises), design of strategies and risk management instruments for coping with risks.
Risks of private households in industrialized and developing countries as well as those of emerging markets on the one hand and the state as all-embracing actor in those countries on the other one.

### Courses in module Operational Risk Management I [IW4BWLFBV9]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26326</td>
<td>Enterprise Risk Management</td>
<td>3/0 W</td>
<td>4.5</td>
<td>U. Werner</td>
<td></td>
</tr>
<tr>
<td>26328</td>
<td>Multidisciplinary Risk Research</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td>U. Werner</td>
<td></td>
</tr>
<tr>
<td>26353</td>
<td>International Risk Transfer</td>
<td>2/0 S</td>
<td>2.5</td>
<td>W. Schwehr</td>
<td></td>
</tr>
<tr>
<td>26355</td>
<td>Public Sector Risk Management</td>
<td>2/0 W/S</td>
<td>2.5</td>
<td>R. Mechler</td>
<td></td>
</tr>
<tr>
<td>26395</td>
<td>Risk Communication</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td>U. Werner</td>
<td></td>
</tr>
<tr>
<td>26354</td>
<td>Risk Management of Microfinance and Private Households</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td>U. Werner</td>
<td></td>
</tr>
<tr>
<td>26393</td>
<td>Project Work in Risk Research</td>
<td>3 W/S</td>
<td>4.5</td>
<td>U. Werner</td>
<td></td>
</tr>
</tbody>
</table>

Remarks
The courses Multidisciplinary Risk Research [26328], Risk Communication [26395], Risk Management of Microfinance and Private Households [26354] and Project Work in Risk Research [26393] are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
The course Public Sector Risk Management [26355] is offered in summer term 2010 for the last time, no further exams will be offered after the two exams for the course of summer term 2010.
The courses Multidisciplinary Risk Research, Risk Management of Microfinance and Private Households, and Project Work in Risk Research have been added to the module.
Module: Operational Risk Management II

Subject: Business Administration
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 2 or 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Interest in interdisciplinary research is assumed.
Knowledge in social science disciplines, GIS or Finance is an advantage.
Knowledge in risk management (for example gained in the Bachelor programme) is an advantage.

Conditions
The module may only be chosen together with the module Operational Risk Management I.

Learning Outcomes
See German version.

Content
Operational risks of institutions resulting from the interaction of human, technical, and organisational factors (internal risks) as well as from external natural, technical, social or political incidents; specific requirements, legal and economic framework of various risk carriers (private and public households, small and major enterprises), design of strategies and risk management instruments for coping with risks.
Risks of private households in industrialized and developing countries as well as those of emerging markets on the one hand and the state as all-embracing actor in those countries on the other one.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26326</td>
<td>Enterprise Risk Management</td>
<td>3/0</td>
<td>W</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26328</td>
<td>Multidisciplinary Risk Research</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26355</td>
<td>Public Sector Risk Management</td>
<td>2/0</td>
<td>W/S</td>
<td>2.5</td>
<td>R. Mechler</td>
</tr>
<tr>
<td>26353</td>
<td>International Risk Transfer</td>
<td>2/0</td>
<td>S</td>
<td>2.5</td>
<td>W. Schwehr</td>
</tr>
<tr>
<td>26395</td>
<td>Risk Communication</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26354</td>
<td>Risk Management of Microfinance and Private Households</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26393</td>
<td>Project Work in Risk Research</td>
<td>3</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
</tbody>
</table>

Remarks
The courses Multidisciplinary Risk Research [26328], Risk Communication [26395], Risk Management of Microfinance and Private Households [26354] and Project Work in Risk Research [26393] are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de

The course Public Sector Risk Management [26355] is offered in summer term 2010 for the last time, no further exams will be offered after the two exams for the course of summer term 2010.
The module is offered as an extension module to Operational Risk Management I from summer term 2010 on. Students that already began this module have been assigned to the module Operational Risk Management I.
Module: Marketing Planning

Module key: [IW4BWLMAR1]

Subject: Business Administration
Module coordination: Wolfgang Gaul
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 120 min. and contains topics from at least one of the main lectures [25156] und [25158] as well as from the chosen lectures. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absolved within one year.

The overall grade for the module is the average of the grades for each course weighted by the credits of the course. It is recommended, to attend more lectures than required to fulfill 9 Credit Points as it is possible to examine in these additional lectures and influence the final grade positively.

Prerequisites
None.

Conditions
The courses Marketing and Operations Research [25156] and Corporate Planning and Operations Research [25158] have to be chosen.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25156</td>
<td>Marketing and Operations Research</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business &amp; electronic Marketing</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
</tbody>
</table>
Module: Market Research

Module key: [IW4BWLMAR2]

Subject: Business Administration
Module coordination: Wolfgang Gaul
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 120 min. and contains topics from at least one of the main lectures [25154] and [25171] as well as from the chosen lectures. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absolved within one year.

The overall grade for the module is the average of the grades for each course weighted by the credits of the course. It is recommended, to attend more lectures than required to fulfill 9 Credit Points as it is possible to examine in these additional lectures and influence the final grade positively.

Prerequisites
None.

Conditions
The courses Modern Market Research [25154] oder Data Analysis and Operations Research [25171] have to be chosen.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business &amp; electronic Marketing</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
</tbody>
</table>
Module: Strategy, Innovation and Data Analysis

Module key: [IW4BWLMAR3]

Subject: Business Administration
Module coordination: Bruno Neibecker
Credit points (CP): 9

Learning Control / Examinations
Assessment consist of a written module exam according to §4(2), 1 SPO. The module exam has a duration of 120 min. and contains topics from the main lecture [25166] as well as from one of the chosen lectures [25154] and [25162]. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
- The lecture Strategic and Innovative Decision Making in Marketing [25166] has to be attended.
- From the lectures Modern Market Research [25154] and Information Technology and Business Information [25162], one must be attended.
- At least 9 CP must be achieved.

Learning Outcomes
Students have learned the following outcomes and competences:
- To specify the key terms in strategic management and innovation research, based on methodological and behavioral approaches
- To apply statistical tools to analyze and interpret case specific problems in marketing
- To indentify the main research trends
- To analyze and interpret high level academic articles
- To learn interactive skills to work in teams and to follow a goal-oriented approach
- To gain understanding of methodological research to develop concrete plans for marketing decision-making

Content
The core product is everything a customer or business consumer receives. Marketers must understand what it takes to develop a new product successfully. It is important to understand that innovations differ in their degree of newness (up to radical innovations). This helps to determine how quickly the products will be adopted by a target market. Market orientation is on the front side of the medal, the reverse side includes meeting the needs of diverse stakeholders. To find out the critical success factors a deep understanding of analytical and statistical methods is essential. As a result, the developing of an effective marketing strategy is discussed as an empirical, scientific process.

Courses in module Strategy, Innovation and Data Analysis [IW4BWLMAR3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25166</td>
<td>Strategic and Innovative Decision Making in Marketing</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>25154</td>
<td>Modern Market Research</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>B. Neibecker</td>
</tr>
</tbody>
</table>
Module: Behavioral Approaches in Marketing and Data Analysis

Subject: Business Administration
Module coordination: Bruno Neibecker
Credit points (CP): 9

Learning Control / Examinations
Assessment consist of a written module exam according to §4(2), 1 SPO. The module exam has a duration of 120 min. and contains topics from the main lecture [25167] as well as from one of the chosen lectures [25154] and [25162]. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
- The lecture Behavioral Approaches in Marketing [25167] has to be attended.
- From the lectures Modern Market Research [25154] and Information Technology and Business Information [25162], one must be attended.
- At least 9 CP must be achieved.

Learning Outcomes
Students have learned the following outcomes and competences:
- To specify the key terms in marketing and communication management
- To identify and define theoretical constructs in marketing communication, based on behavioral theory
- To indentify the main research trends
- To analyze and interpret high level academic articles
- To learn interactive skills to work in teams and to follow a goal-oriented approach
- To gain understanding of methodological research to develop concrete plans for marketing decision-making

Content
Consumer behavior approaches in Marketing are seen as an important research area with a consumer-based perspective including a strong interdisciplinary and empirical orientation. My goal was to create a marketing module that presents a balanced coverage of both qualitative and quantitative material. That is, a practical, managerial perspective is discussed in relation to psychological, sociological and physiological (neuromarketing) approaches. It is examined how the individual receives information from his or her environment and how this material is learned, stored in memory, and used to form attitudes and to make decisions. A comprehensive understanding of marketing research and marketing data analysis is provided throughout the module, as for example in market segmentation or the definition of a target market a company decides to pursue.

Courses in module Behavioral Approaches in Marketing and Data Analysis [IW4BWLMAR4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25167</td>
<td>Behavioral Approaches in Marketing</td>
<td>2/1</td>
<td>W 4.5</td>
<td></td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>25154</td>
<td>Modern Market Research</td>
<td>2/1</td>
<td>S 4.5</td>
<td></td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information</td>
<td>2/1</td>
<td>S 4.5</td>
<td></td>
<td>B. Neibecker</td>
</tr>
</tbody>
</table>
Module: Successful Market Orientation

Subject: Business Administration
Module coordination: Wolfgang Gaul
Credit points (CP): 18

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 240 min. and contains topics from at least two of four main lectures [25154], [25156], [25158] and [25171] as well as from the chosen lectures. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absolved within one year.

The overall grade for the module is the average of the grades for each course weighted by the credits of the course. It is recommended, to attend more lectures than required to fulfill 18 Credit Points as it is possible to examine in these additional lectures and influence the final grade positively.

Prerequisites
None.

Conditions
At least two courses out of Modern Market Research [25154], Marketing and Operations Research [25156] and Corporate Planning and Operations Research [25171] have to be chosen.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business &amp; electronic Marketing</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation</td>
<td>1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing</td>
<td>1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25166</td>
<td>Strategic and Innovative Decision Making in Market</td>
<td>2</td>
<td>S</td>
<td>4.5</td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>25167</td>
<td>Behavioral Approaches in Marketing</td>
<td>2</td>
<td>W</td>
<td>4.5</td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information</td>
<td>2</td>
<td>S</td>
<td>4.5</td>
<td>B. Neibecker</td>
</tr>
</tbody>
</table>
Module: Entrepreneurship, Innovation and International Marketing

Module key: [IW4BWLMAR6]

Subject: Business Administration
Module coordination: Wolfgang Gaul
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 120 min. and contains topics from at least two of the main lectures [25164], [25165] and [25170] as well as from the chosen lectures. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absolved within one year.

The overall grade for the module is the average of the grades for each course weighted by the credits of the course. It is recommended, to attend more lectures than required to fulfill 9 Credit Points as it is possible to examine in these additional lectures and influence the final grade positively.

Prerequisites
None.

Conditions
At least two courses out of International Marketing [25164], Marketing and Innovation [25165] and Entrepreneurship and Marketing [25170] have to be chosen.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business &amp; electronic Marketing</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
</tbody>
</table>
Module: Strategic Corporate Management and Organization  

Subject: Business Administration  
Module coordination: Hagen Lindstädt  
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
One of the following courses have to be attended: Managing Organizations [25902], Management and Strategy [25900].

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25904</td>
<td>Organization Theory</td>
<td>2/1 W</td>
<td>6</td>
<td></td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25902</td>
<td>Managing Organizations</td>
<td>2/0 W</td>
<td>4</td>
<td></td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25908</td>
<td>Modeling Strategic Decision Making</td>
<td>2/1 S</td>
<td>6</td>
<td></td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25912</td>
<td>Value-Based Instruments of Corporate Strategy</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>U. Pidun, M. Wolff</td>
</tr>
<tr>
<td>25900</td>
<td>Management and Strategy</td>
<td>2/0 S</td>
<td>4</td>
<td></td>
<td>H. Lindstädt</td>
</tr>
</tbody>
</table>
Module: Strategic Decision Making and Organization Theory  Module key: [IW4BWLWUO3]

Subject: Business Administration  
Module coordination: Hagen Lindstädt  
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25904</td>
<td>Organization Theory</td>
<td>2/1</td>
<td>W</td>
<td>6</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25908</td>
<td>Modeling Strategic Decision Making</td>
<td>2/1</td>
<td>S</td>
<td>6</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25912</td>
<td>Value-Based Instruments of Corporate Strategy</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>U. Pidun, M. Wolff</td>
</tr>
</tbody>
</table>
Module: Industrial Production II

Subject: Business Administration

Module key: [IW4BWLIIP2]

Module coordination: Frank Schultmann

Credit points (CP): 9

Learning Control / Examinations

The examination will be in form of individual written exams acc. to §4(2), 1 ER, covering the chosen courses which sum up to minimum requirements. Exams are offered in every semester and can be re-examined at every ordinary examination date. The overall modular grade is calculated by weighing the individual grades with the according credit points. The grade will be truncated after the first decimal. Additional results may be considered on request.

Prerequisites

Skills learned in the compulsory B.Sc. modules of business administration, engineering, operations research and informatics.

Conditions

The course “Planning and Management of Industrial Plants” [25952] and one additional activity have to be chosen. Each course may only be taken in one module, i.e. no course can be applied to two different modules. The courses are set up in a way that they can be taken independently from each other; therefore it is possible to start this module at any time.

We recommend combining this module with “Industrial Production I” [WW3BWLIIP] (Bachelor) and “Industrial Production III” [IW4BWLIIP6] (Master).

Learning Outcomes

• Students shall be able to describe the tasks of tactical production management with special attention drawn upon industrial plants.
• Students shall understand the relevant tasks in plant management (projection, realisation and supervising tools for industrial plants).
• Students shall be able to describe the special need of a techno-economic approach to solve problems in the field of tactical production management.
• Students shall be proficient in using selected techno-economic methods like investment and cost estimates, plant layout, capacity planning, evaluation principles of production techniques, production systems as well as methods to design and optimize production systems.
• Students shall be able to evaluate techno-economical approaches in planning tactical production management with respect to their efficiency, accuracy and relevance for industrial use.

Content

• Planning and Management of Industrial Plants: Basics, circulation flow starting from projecting to techno-economic evaluation, construction and operating up to plant dismantling.
• Additional courses cover project management principles and discussion of how decisions in an industrial environment (politics, environment protection, etc.) might affect plant design and operation.

Courses in module Industrial Production II [IW4BWLIIP2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecture(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25952</td>
<td>Planning and Management of Industrial Plants</td>
<td>2/2</td>
<td>W</td>
<td>5.5</td>
<td>F. Schultmann</td>
</tr>
<tr>
<td>25962</td>
<td>Emissions into the Environment</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>U. Karl</td>
</tr>
<tr>
<td>25995</td>
<td>Material Flow Analysis and Life Cycle Assessment</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>L. Schebek</td>
</tr>
</tbody>
</table>
Module: Industrial Production III

Subject: Business Administration
Module coordination: Frank Schultmann
Credit points (CP): 9

Learning Control / Examinations
The examination will be in form of individual written exams acc. to §4(2), 1 ER, covering the chosen courses which sum up to minimum requirements. Exams are offered in every semester and can be re-examined at every ordinary examination date. The overall modular grade is calculated by weighing the individual grades with the according credit points. The grade will be truncated after the first decimal.

Prerequisites
Skills learned in the compulsory B.Sc. modules of business administration, engineering, operations research and informatics.

Conditions
The course Production and Logistics Management [25954] and one additional activity have to be chosen. Each course may only be taken in one module, i.e. no course can be applied to two different modules. The courses are set up in a way that they can be taken independently from each other; therefore it is possible to start this module at any time. We recommend combining this module with “Industrial Production I” [WW3BWLIIP] (Bachelor) and “Industrial Production II” [IW4BWLIIP2] (Master).

Learning Outcomes
- Students shall be able to describe the tasks concerning general problems of an operative production and logistics management.
- Students shall be able to describe the planning tasks of supply chain management.
- Students shall be proficient in using approaches to solve general planning problems.
- Students shall consider the existing interdependencies between planning tasks and applied methods.
- Students shall be able to describe the mail goals and set-up of software supporting tools in production and logistics management (i.e. APS, PPS-, ERP- and SCM Systems).
- Students shall be able to discuss the scope of these software tools and their general disadvantages.

Content
- Planning tasks and exemplary methods of production planning and control in supply chain management.
- Supporting software tools in production and logistics management (APS, PPS- and ERP Systems).

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25954</td>
<td>Production and Logistics Management</td>
<td>2/2 S 5.5</td>
<td></td>
<td></td>
<td>M. Fröhling, F. Schultmann</td>
</tr>
<tr>
<td>25975</td>
<td>Computer-based Production Planning and Control, Process Simulation and Supply Chain Management</td>
<td>2/0 S 2</td>
<td></td>
<td></td>
<td>M. Fröhling, F. Schultmann</td>
</tr>
<tr>
<td>25963</td>
<td>The Management of R&amp;D Projects with Case Studies</td>
<td>2/2 W/S 3.5</td>
<td></td>
<td></td>
<td>H. Schmied</td>
</tr>
<tr>
<td>25961</td>
<td>Supply Chain Management with Advanced Planning Systems</td>
<td>2 S 2</td>
<td></td>
<td></td>
<td>M. Göbelt, C. Sürie</td>
</tr>
</tbody>
</table>

Remarks
The tutorial to „Production and Logistics Management“ [25954] will be offered in summer 2010. For interim regulations, please contact the institute.
Module: Basics of Liberalised Energy Markets

Subject: Business Administration
Module coordination: Wolf Fichtner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25998</td>
<td>Basics of Liberalised Energy Markets</td>
<td>2/1</td>
<td>W</td>
<td>3.5</td>
<td>W. Fichtner</td>
</tr>
<tr>
<td>26020</td>
<td>Energy Trade and Risk Management</td>
<td>2/1</td>
<td>S</td>
<td>3.5</td>
<td>K. Hufendiek</td>
</tr>
<tr>
<td>25959</td>
<td>Energy Policy</td>
<td>2/0</td>
<td>S</td>
<td>3.5</td>
<td>M. Wietschel</td>
</tr>
<tr>
<td>26022</td>
<td>Gas-Markets</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>A. Pustisek</td>
</tr>
<tr>
<td>26025</td>
<td>Simulation Game in Energy Economics</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>W. Fichtner</td>
</tr>
<tr>
<td>28234</td>
<td>Regulation Theory and Practice</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>K. Mitusch</td>
</tr>
</tbody>
</table>
Module: Energy Industry and Technology

Module key: [IW4BWL1P5]

Subject: Business Administration
Module coordination: Wolf Fichtner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Energy Industry and Technology [IW4BWL1P5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26003</td>
<td>Energy and Environment</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>U. Karl, n.n.</td>
</tr>
<tr>
<td>25958</td>
<td>Stragetical Aspects of Energy Economy</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>A. Ardone</td>
</tr>
<tr>
<td>26000</td>
<td>Technological Change in Energy Industry</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>M. Wietschel</td>
</tr>
<tr>
<td>26001</td>
<td>Heat Economy</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>W. Fichtner</td>
</tr>
<tr>
<td>26002</td>
<td>Energy Systems Analysis</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>D. Möst</td>
</tr>
</tbody>
</table>
5.2 Economics
Module: Applied Strategic Decisions
Module key: [IW4VWL2]

Subject: Economics
Module coordination: Siegfried Berninghaus, Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
The student should have basic knowledge of game theory.

Conditions
The course Game Theory II [25369] is obligatory. Exception: This lecture was completed in the Bachelor study programme.

Learning Outcomes
The student
• knows and analyzes complex strategic decisions, knows advanced formal solution concepts and how to apply them,
• knows basic solution concepts for simple strategic decisions and is able to apply them to concrete problems,
• knows the experimental method from design of an experiment to evaluation of data and applies them.

Content
The module offers various possibilities of application of game theoretic methods. The main focus is on strategic bargaining and behavior in auctions. Also empirical aspects are taken into account.

Courses in module Applied Strategic Decisions [IW4VWL2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25369</td>
<td>Game Theory II</td>
<td>2/2 W</td>
<td>4.5</td>
<td></td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>25525</td>
<td>Game Theory I</td>
<td>2/2 S</td>
<td>4.5</td>
<td></td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>25408</td>
<td>Auction Theory</td>
<td>2/2 W</td>
<td>4.5</td>
<td></td>
<td>K. Ehrhart, S. Seifert</td>
</tr>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>C. Weinhardt, J. Kraemer, C. van Dinther</td>
</tr>
<tr>
<td>25373</td>
<td>Experimental Economics</td>
<td>2/2 S</td>
<td>4.5</td>
<td></td>
<td>S. Berninghaus, Kroll</td>
</tr>
</tbody>
</table>
Module: Allocation and Equilibrium

Module key: [IW4VWL7]

Subject: Economics
Module coordination: Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module, there might be taken optional term paper in the field of economics (i.e., on the chairs Puppel, or at Berninghaus resp. at the IWW) within the module (according to Section 4(2), 3 of the examination regulation). The submission of the term paper is only admitted until the end of the following semester in which the last exam of the Economics-Module was absolved. It does not apply for term papers which are already taken in the Seminar Module. For more information, please visit the homepage of the Chair (http://vwl1.ets.kit.edu/).

Prerequisites
Micro- and macroeconomic knowledge corresponding to the content of the economical courses of the Bachelor Programme is assumed.

Conditions
None.

Learning Outcomes

Content

Courses in module Allocation and Equilibrium [IW4VWL7]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25527</td>
<td>Advanced Topics in Economic Theory</td>
<td>2/T</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe, M. Hillebrand, K. Mitusch</td>
</tr>
<tr>
<td>25517</td>
<td>Welfare Economics</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>25549</td>
<td>Theory of Business Cycles</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Hillebrand</td>
</tr>
</tbody>
</table>

Remarks
The lecture Advanced Topics in Economic Theory [25527] was formerly named Advanced Microeconomic Theory.
Module: Macroeconomic Theory

Subject: Economics
Module coordination: Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module, there might be taken optional term paper in the field of economics (i.e., on the chairs Puppel, or at Berninghaus resp. at the IWW) within the module (according to Section 4(2), 3 of the examination regulation). The submission of the term paper is only admitted until the end of the following semester in which the last exam of the Economics-Module was absolved. It does not apply for term papers which are already taken in the Seminar Module. For more information, please visit the homepage of the Chair (http://vwl1.ets.kit.edu/).

Prerequisites
Grundlegende mikro- und makroökonomische Kenntnisse, wie sie beispielsweise in den Veranstaltungen Volkswirtschaftslehre I (Mikroökonomie) [25012] und Volkswirtschaftslehre II (Makroökonomie) [25014] vermittelt werden, werden vorausgesetzt.

Aufgrund der inhaltlichen Ausrichtung der Veranstaltung wird ein Interesse an quantitativ-mathematischer Modellierung vorausgesetzt.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25543</td>
<td>Theory of Economic Growth</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Hillebrand</td>
</tr>
<tr>
<td>25549</td>
<td>Theory of Business Cycles</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Hillebrand</td>
</tr>
</tbody>
</table>
Module: Social Choice Theory

Subject: Economics
Module coordination: Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single
courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment
procedures are described for each course of the module separately.
The overall grade of the the module is the average of the grades for each course weighted by the credits and truncated after the
first decimal.
To improve the overall grade of the module, there might be taken optional term paper in the field of economics (ie, on the chairs
Puppel, or at Berninghaus resp. at the IWW) within the module (according to Section 4(2), 3 of the examination regulation). The
submission of the term paper is only admitted until the end of the following semester in which the last exam of the Economics-
Module was absolved. It does not apply for term papers which are already taken in the Seminar Module. For more information,
please visit the homepage of the Chair (http://vwl1.ets.kit.edu/).

Prerequisites
Micro- and macroeconomical knowledge corresponding to the content of the economical courses of the Bachelor Programme is
assumed.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25517</td>
<td>Welfare Economics</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>25525</td>
<td>Game Theory I</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>25537</td>
<td>Decision Theory and Objectives in Applied Politics</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Tangian</td>
</tr>
<tr>
<td>25539</td>
<td>Mathematical Theory of Democracy</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Tangian</td>
</tr>
</tbody>
</table>
5.3 Operations Research

Module: Quantitative Marketing and OR  
Module key: [IW4OR1]

Subject: Operations Research
Module coordination: Wolfgang Gaul
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 120 min. and contains topics from the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absolved within one year.
The overall grade for the module is the average of the grades for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
</tbody>
</table>
Module: Operations Research in Supply Chain Management and Health Care Management
Module key: [IW4OR4]

Subject: Operations Research
Module coordination: Stefan Nickel
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
In agreement with the module coordinator, a course from the modules Mathematical optimization [WW4OR6] or Stochastic Modelling and Optimization [WW4OR7] or one of the courses Game Theory I [25525] and Game Theory II [25369] can be acknowledged.

Learning Outcomes
The student
- is familiar with basic concepts and terms of Supply Chain Management,
- knows the different areas of SCM and their respective optimization problems,
- is acquainted with classical location problem models (in planes, in networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
- is familiar with general procedures and characteristics of Health Care Management and the possibilities for adapting mathematical models for non-profit organizations,
- is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.

This module considers several areas of SCM. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of Supply Chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of supply chain management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.

Health Care Management addresses specific Supply Chain Management problems in the health sector. Important applications arise in scheduling and internal logistics of hospitals.
<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25486</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25488</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>2/1 W</td>
<td>4.5</td>
<td></td>
<td>S. Nickel</td>
</tr>
<tr>
<td>n.n.</td>
<td>Operations Research in Supply Chain Management</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25495</td>
<td>Operations Research in Health Care Management</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25498</td>
<td>Practical seminar: Health Care Management (with Case Studies)</td>
<td>2/1/2 W/S</td>
<td>7</td>
<td></td>
<td>S. Nickel, Hansis</td>
</tr>
<tr>
<td>25497</td>
<td>Software Laboratory: OR Models II</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>S. Nickel</td>
</tr>
<tr>
<td>n.n.</td>
<td>Software Laboratory: Simulation</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>S. Nickel</td>
</tr>
<tr>
<td>n.n.</td>
<td>Software Laboratory: SAP APO</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25494</td>
<td>Production Planning and Scheduling</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>J. Kalcsics</td>
</tr>
</tbody>
</table>

**Remarks**
Some lectures and courses are offered irregularly.
The planned lectures and courses for the next three years are announced online.
Module: Mathematical Programming

Subject: Operations Research
Module coordination: Oliver Stein
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
Upon consultation with the module coordinator, alternatively one lecture from the modules Operations Research in Supply Chain Management and Health Care Management [WW4OR5] and Stochastic Modeling and Optimization [WW4OR7] or one of the lectures Game Theory I [25525] and Game Theory II [25369] may be accepted.

Learning Outcomes
The student
• names and describes basic notions for advanced optimization methods, in particular from continuous and mixed integer programming, location theory, and graph theory,
• knows the indispensable methods and models for quantitative analysis,
• models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
• validates, illustrates and interprets the obtained solutions,
• identifies drawbacks of the solution methods and, if necessary, is able to makes suggestions to adapt them to practical problems.

Content
The modul focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous and mixed integer decision variables, for location problems and for problems on graphs.

Courses in module Mathematical Programming [IW4OR6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25138</td>
<td>Mixed Integer Programming I</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25140</td>
<td>Mixed Integer Programming II</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25128</td>
<td>Special Topics in Optimization I</td>
<td>2/1</td>
<td>W/S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25126</td>
<td>Special Topics in Optimization II</td>
<td>2/1</td>
<td>W/S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>n.n.</td>
<td>Location Theory</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>n.n.</td>
<td>Graph Theory</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25497</td>
<td>Software Laboratory: OR Models II</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25111</td>
<td>Nonlinear Optimization I</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25113</td>
<td>Nonlinear Optimization II</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25134</td>
<td>Global Optimization I</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25136</td>
<td>Global Optimization II</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
</tbody>
</table>

Remarks
The lectures are partly offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
Module: Stochastic Modelling and Optimization

Module key: [IW4OR7]

Subject: Operations Research
Module coordination: Karl-Heinz Waldmann
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student knows and understands stochastic relationships and has a competent knowledge in modelling, analyzing and optimizing stochastic systems in economics and engineering.

Content
see courses

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25679</td>
<td>Markov Decision Models I</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25682</td>
<td>Markov Decision Models II</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25674</td>
<td>Quality Control I</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25659</td>
<td>Quality Control II</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25687</td>
<td>Optimization in a Random Environment</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25665</td>
<td>Simulation II</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25688</td>
<td>OR-oriented modeling and analysis of real problems</td>
<td>1/0/3</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>
### 5.4 Statistics

**Module: Mathematical and Empirical Finance**  
**Module key:** [IW4STAT1]

**Subject:** Statistics  
**Module coordination:** Svetlozar Rachev  
**Credit points (CP):** 9

#### Learning Control / Examinations

The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

#### Prerequisites

None.

#### Conditions

The lecture *Stochastic Calculus and Finance* [25331] is mandatory.

#### Learning Outcomes

#### Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25331</td>
<td>Stochastic Calculus and Finance</td>
<td>2/1 W</td>
<td>4.5</td>
<td></td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25359</td>
<td>Financial Time Series and Econometrics</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25381</td>
<td>Advanced Econometrics of Financial Markets</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25357</td>
<td>Portfolio and Asset Liability Management</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25350/1</td>
<td>Bank Management and Financial Markets, Applied</td>
<td>2/2 W</td>
<td>5</td>
<td></td>
<td>K. Vollmer</td>
</tr>
<tr>
<td></td>
<td>Econometrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25355</td>
<td>Finance and Banking</td>
<td>2/2 S</td>
<td>5</td>
<td></td>
<td>K. Vollmer</td>
</tr>
</tbody>
</table>
Module: Statistical Methods in Risk Management

Module key: [IW4STAT2]

Subject: Statistics
Module coordination: Svetlozar Rachev
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions

Learning Outcomes

Content

Courses in module Statistical Methods in Risk Management [IW4STAT2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25353</td>
<td>Statistical Methods in Financial Risk Management</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25337</td>
<td>Stochastic and Econometric Models in Credit Risk Management</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25357</td>
<td>Portfolio and Asset Liability Management</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25342</td>
<td>Operational Risk and Extreme Value Theory</td>
<td>2/2</td>
<td>W/S</td>
<td>5</td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25375</td>
<td>Data Mining</td>
<td>2</td>
<td>W</td>
<td>5</td>
<td>G. Nakhaeizadeh</td>
</tr>
<tr>
<td>25317</td>
<td>Multivariate Methods</td>
<td>2/2</td>
<td>S</td>
<td>5</td>
<td>W. Heller</td>
</tr>
</tbody>
</table>
Module: Risk Management and Econometrics in Finance

Module key: [IW4STAT3]

Subject: Statistics
Module coordination: Svetlozar Rachev
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Profound knowledge in the area of probability theory, estimation theory and test theory is recommended.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25353</td>
<td>Statistical Methods in Financial Risk Management</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25359</td>
<td>Financial Time Series and Econometrics</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25381</td>
<td>Advanced Econometrics of Financial Markets</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>S. Rachev</td>
</tr>
</tbody>
</table>
5.5 Informatics

Module: Computer security

**Module coordination:** Jörn Müller-Quade

**Credit points (CP):** 9

**Learning Control / Examinations**

**Prerequisites**
None.

**Conditions**
None.

**Learning Outcomes**

The student

- knows and understands the basic commonly used algorithms, their design, correctness and efficiency analysis, implementation, documentation and application,
- can handle new algorithmic problems, using this understanding,
- can apply the mathematical approaches learned in the basic computer science and mathematics courses to solve problems.

Main topics are formal correctness arguments and a mathematical analysis of efficiency.
- deals with a restricted problem in the field of computer security within the seminar,
- analyzes and discusses the problems associated to a distinct discipline in the lectures and in the final seminar paper,
- discusses, presents and defends subject-specific arguments within a given task,
- organizes the preparation of the final papers largely independent.

**Content**

Theoretical and practical aspects of computer security

- Development of safety goals and classification of threats
- Presentation and comparison of different formal access control models
- Formal description of authentication systems, presentation and comparison of different authentication methods (passwords, biometrics, challenge-response protocols)
- Analysis of typical vulnerabilities in programs and web applications and development of appropriate protective methods / avoidance strategies
- Overview of opportunities for side channel attacks
- Introduction to key management and Public Key Infrastructure
- Presentation and comparison of current safety certifications
- Block ciphers, hash functions, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (eg, Diffie-Hellman)
- Presentation of combinations of cryptographic modules using currently used protocols such as Secure Shell (SSH) and Transport Layer Security (TLS)

**Courses in module Computer security [IW4INSICH]**

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24941</td>
<td>Security</td>
<td>3/1</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Seminar in Security</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
</tr>
<tr>
<td>24137</td>
<td>Signals and Codes</td>
<td>2</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>24629</td>
<td>Symmetric encryption</td>
<td>2</td>
<td>S</td>
<td>3</td>
</tr>
</tbody>
</table>

**Responsible Lecturer(s)**

J. Müller-Quade
J. Müller-Quade, M. Zitterbart
J. Müller-Quade
J. Müller-Quade
Module: Advanced Topics in Cryptography
Module key: [IW4INFKRYP]

Subject: Informatics
Module coordination: Jörn Müller-Quade
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• will be familiar with the theoretical foundations and the basic mechanisms of computer security and cryptography.
• can understand and explain the methods of computer security and cryptography,
• will be able to read and understand the latest scientific papers,
• will be able to critically assess appropriate security solutions, and identify weaknesses / threats,
• can design an own security solution to a given problem, (eg. later in the a master's thesis).
• learns to transform theoretical concepts into practice (eg. in a Praktikum)

Content
The module is intended to provide depth theoretical and practical aspects of IT security and cryptography.
• Development of safety goals and classification of threats.
• Formal description of authentication systems.
• Analysis of typical vulnerabilities in programs and web applications and development of appropriate protective methods / avoidance strategies
• Overview of opportunities for side channel attacks
• Introduction to key management and Public Key Infrastructure
• Presentation and comparison of current safety certifications.
• The current research issues from some of the following areas are covered:
  – Block ciphers, hash functions,
  – Public-key encryption, digital signature, key exchange.
  – Basic security protocols such as fair coin toss over the phone, Byzantine Agreement, Dutch Flower Auctions, Zero Knowledge.
  – Threat models and security definitions.
  – Modular design and protocol composition.
  – Security definitions of simulatability.
  – Universal Composability.
  – Deniability as an additional safety feature.
  – Electronic Voting.

Courses in module Advanced Topics in Cryptography [IW4INFKRYP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrakKry1</td>
<td>Laboratory in Cryptography</td>
<td>4</td>
<td>W/S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24623</td>
<td>Selected topics in Cryptography</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>SemiKryp3</td>
<td>Seminar in Cryptography</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>WSUW</td>
<td>How statistics begins to understand the difference between cause and effect</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>D. Janzing</td>
</tr>
<tr>
<td>24137</td>
<td>Signals and Codes</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24629</td>
<td>Symmetric encryption</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24656</td>
<td>Embedded Security</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24652</td>
<td>Computational complexity theory, with a view towards cryptography</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>J. Müller-Quade</td>
</tr>
</tbody>
</table>
Module: Public Key Cryptography

Subject: Informatics
Module coordination: Jörn Müller-Quade
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

- will learn the methods and mechanisms of cryptography in practice as well as the theoretical foundations of cryptography.
- should be able to critically assess algorithms and protocols and to identify vulnerabilities / threats.
- deals with a restricted problem in the field of cryptography within the seminar,
- analyzes and discusses the problems associated to a distinct discipline in the lectures and in the final seminar paper,
- discusses, presents and defends subject-specific arguments within a given task,
- organizes the preparation of the final papers largely independent.

Content

- The most important primitives of cryptography will be covered, as there are: one-way function, hash function, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (eg, Diffie-Hellman) with their strengths and weaknesses.
- In addition to public-key systems, the module provides knowledge about number-theoretic algorithms for solving problems such as primality testing, factoring large numbers and computing discrete logarithms in finite groups. Thus the choice of parameters and the related level of security of a cryptographic system can be estimated.
- Furthermore, an introduction to provable security is provided, which presents some of the key security concepts (eg, IND-CCA).
- The combination of cryptographic modules will be treated using the example of currently used protocols such as Secure Shell (SSH), Transport Layer Security (TLS) and anonymous digital money.

Courses in module Public Key Cryptography [IW4INPKK]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKK</td>
<td>Public Key Cryptography</td>
<td>3 W 6</td>
<td></td>
<td></td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>SemiKryp2</td>
<td>Seminar in Cryptography</td>
<td>2 W/S 2</td>
<td></td>
<td></td>
<td>J. Müller-Quade</td>
</tr>
</tbody>
</table>
Module: Advanced Algorithms: Design and Analysis

Subject: Informatics
Module coordination: Dorothea Wagner
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

- knows advanced methodical approaches with respect to the design and analysis of algorithms,
- can comment on theoretical aspects of algorithmics in a qualified and well-structured manner,
- identifies algorithmic problems from different areas and can formulate these formally,
- can analyze and judge the computational complexity of algorithmic problems from different areas,
- can recognize and design suitable algorithmic techniques to solve algorithmic problems.

Content
This module conveys profound knowledge concerning theoretical aspects of algorithmics. Its focus is on the design and analysis of advanced algorithms, particularly, on algorithms for graphs, randomized algorithms, parallel algorithms and algorithms for NP-hard problems.

Courses in module Advanced Algorithms: Design and Analysis [IW4INAALGOA]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24171</td>
<td>Randomized Algorithms</td>
<td>2 W 3</td>
<td></td>
<td></td>
<td>T. Worsch</td>
</tr>
<tr>
<td>24109</td>
<td>Parallel Algorithms</td>
<td>2 W/S 3</td>
<td></td>
<td></td>
<td>P. Sanders</td>
</tr>
<tr>
<td>xAlgoEng</td>
<td>Algorithm Engineering</td>
<td>2 W/S 3</td>
<td></td>
<td></td>
<td>P. Sanders, D. Wagner</td>
</tr>
<tr>
<td>24614</td>
<td>Algorithms for Planar Graphs</td>
<td>2/1 S 3/5</td>
<td></td>
<td></td>
<td>D. Wagner</td>
</tr>
<tr>
<td>24622</td>
<td>Algorithms in Cellular Automata</td>
<td>2/1 W/S 3</td>
<td></td>
<td></td>
<td>T. Worsch</td>
</tr>
<tr>
<td>24079s</td>
<td>Seminar in Algorithm Design</td>
<td>2 S 3</td>
<td></td>
<td></td>
<td>D. Wagner</td>
</tr>
<tr>
<td>AlgVG</td>
<td>Algorithms for Visualization of Graphs</td>
<td>2/1 S 3/5</td>
<td></td>
<td></td>
<td>D. Wagner, M. Nöllenburg</td>
</tr>
<tr>
<td>25706</td>
<td>Nature-inspired Optimisation</td>
<td>2/1 W 5</td>
<td></td>
<td></td>
<td>S. Mostaghim, P. Shukla</td>
</tr>
<tr>
<td>24079p</td>
<td>Practical Course in Algorithm Design</td>
<td>4 W/S 5</td>
<td></td>
<td></td>
<td>P. Sanders, D. Wagner, M. Krug</td>
</tr>
<tr>
<td>24638</td>
<td>Algorithms for Routing</td>
<td>2/1 S 3/5</td>
<td></td>
<td></td>
<td>D. Wagner</td>
</tr>
<tr>
<td>AlgAS</td>
<td>Algorithms for Ad-Hoc and Sensor Networks</td>
<td>2 S 3</td>
<td></td>
<td></td>
<td>B. Katz</td>
</tr>
</tbody>
</table>
### Module: Advanced Algorithms: Engineering and Applications  
**Module key:** [IW4INAALGOB]

**Subject:** Informatics  
**Module coordination:** Dorothea Wagner  
**Credit points (CP):** 9

### Learning Outcomes

**The Student**
- knows advanced methodical approaches concerning the design of algorithms and their applications,  
- can comment on the practical aspects of algorithmics in a qualified and well-structured manner,  
- identifies algorithmic problems from different areas of application and can formulate these formally,  
- can judge the computational complexity of algorithmic problems,  
- recognizes suitable algorithmic techniques for solving these problems and can transfer and apply knowledge of these techniques to new problems,  
- can implement solutions based on algorithmic techniques for practical problems and can evaluate these

### Content

This module conveys profound knowledge concerning practical aspects of algorithmics and covers applications of algorithms for practical problems. Its focus is on the design, the practical implementation and the evaluation of algorithms, particularly, algorithms for graphs, parallel algorithms, algorithms for NP-hard problems, optimization algorithms inspired by nature, as well as algorithms from various areas of application.

### Courses in module Advanced Algorithms: Engineering and Applications [IW4INAALGOB]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24079p</td>
<td>Practical Course in Algorithm Design</td>
<td>4 W/S</td>
<td>5</td>
<td></td>
<td>P. Sanders, D. Wagner, M. Krug</td>
</tr>
<tr>
<td>xAlgoEng</td>
<td>Algorithm Engineering</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>P. Sanders, D. Wagner</td>
</tr>
<tr>
<td>25704</td>
<td>Organic Computing</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>H. Schmeck, S. Mostaghim</td>
</tr>
<tr>
<td>25706</td>
<td>Nature-inspired Optimisation</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>S. Mostaghim, P. Shukla</td>
</tr>
<tr>
<td>24638</td>
<td>Algorithms for Routing</td>
<td>2/1 S</td>
<td>3/5</td>
<td></td>
<td>D. Wagner</td>
</tr>
<tr>
<td>24109</td>
<td>Parallel Algorithms</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>P. Sanders</td>
</tr>
<tr>
<td>AlgVG</td>
<td>Algorithms for Visualization of Graphs</td>
<td>2/1 S</td>
<td>3/5</td>
<td></td>
<td>D. Wagner, M. Nöllenburg</td>
</tr>
<tr>
<td>24079s</td>
<td>Seminar in Algorithm Design</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>D. Wagner</td>
</tr>
<tr>
<td>24614</td>
<td>Algorithms for Planar Graphs</td>
<td>2/1 S</td>
<td>3/5</td>
<td></td>
<td>D. Wagner</td>
</tr>
<tr>
<td>24622</td>
<td>Algorithms in Cellular Automata</td>
<td>2/1 S</td>
<td>3</td>
<td></td>
<td>T. Worsch</td>
</tr>
<tr>
<td>24171</td>
<td>Randomized Algorithms</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>T. Worsch</td>
</tr>
<tr>
<td>AlgAS</td>
<td>Algorithms for Ad-Hoc and Sensor Networks</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>B. Katz</td>
</tr>
</tbody>
</table>
Module: Introduction to Algorithmics  

Module key: [IW4INEALGT]

Subject: Informatics
Module coordination: Dorothea Wagner
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

- gains basic insights into the most important areas of algorithmics,
- identifies algorithmic problems from different areas of application and can formulate these in a formal manner,
- comprehends and determines the running times of algorithms,
- knows basic algorithms and data structures and can transfer this knowledge to new problems.

Content
This module conveys knowledge of basic theoretical and practical aspects of algorithmics. It covers common methods for the design and analysis of basic algorithmic problems as well as the fundamentals of common algorithmic methods such as approximations algorithms, linear programming, randomized algorithms, parallel algorithms and parameterized algorithms.

Courses in module Introduction to Algorithmics [IW4INEALGT]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24079</td>
<td>Algorithm Design</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>D. Wagner, P. Sanders</td>
</tr>
<tr>
<td>24079s</td>
<td>Seminar in Algorithm Design</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>D. Wagner</td>
</tr>
</tbody>
</table>

Module Handbook: Version 04.03.2010  
Information Engineering and Management (M.Sc.)
Module: Web Applications and Web Technologies

Subject: Informatics
Module coordination: Sebastian Abeck
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
To understand the architecture of multi-layered and service-oriented applications.
To be able to model the software architecture of a Web application.
To understand the major principles of traditional application development and the corresponding development process.
To comprehend how high-level process models are systematically refined in order to be mapped to a service oriented architecture.
The technologies and development tools can be applied to support exemplary scenarios.
Using document templates the obtained results can be clearly described.
The results can be vividly presented and supported in discussions.

Content
This module comprises at first the lecture “Advanced Web Applications”. The lecture deals with the model-driven development of service-oriented Web applications which support business processes. These processes must be modeled in a way that it can be mapped to a Service-oriented Architecture (SOA).
The lecture is completed by a practical course. Each participant is integrated in one of the current project teams of the research group. The practical course consists of two parts: (i) An introduction into traditional and advanced service-oriented software development which takes about 4 to 5 weeks (ii) The solution (and its documentation) of an individual problem that is derived from one of the projects conducted by the project team.

Courses in module Web Applications and Web Technologies [IW4INWAWT]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24153/24604</td>
<td>Advanced Web Applications</td>
<td>2/0</td>
<td>W/S</td>
<td>4</td>
<td>S. Abeck</td>
</tr>
<tr>
<td>24304/24873</td>
<td>Practical Course Web Technologies</td>
<td>2/0</td>
<td>W/S</td>
<td>5</td>
<td>S. Abeck, Gebhart, Hoyer, Link, Pansa</td>
</tr>
</tbody>
</table>
Module: Language Technology and Compiler

Subject: Informatics
Module coordination: Gregor Snelting
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

- knows the importance of language and compiler technologies in other areas of computer science
- learns the theoretical foundations and practical methods which form the foundation for the compiler passes: lexical analysis, syntactic analysis, semantic analysis, code generation and code optimization
- has received an overview over the state of the art in compiler construction
- is able to apply his knowledge in practice when constructing a compiler (e.g. In the compiler lab)
- is able to follow advanced courses (e.g. Compiler 2)

Content
- Structure of a compiler
- Lexical analysis
- Syntactic analysis
- Semantic analysis
- Code generation
- Code optimization
- Specific technologies: LL-Parser, LR/LALR-Parser, attributed grammars, instruction selection, register allocation, runtime mechanisms, memory management, static single assignment form and its usage in optimization

Courses in module Language Technology and Compiler [IW4INCOMP1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24134</td>
<td>Sprachtechnologie und Compiler</td>
<td>4/2</td>
<td>W</td>
<td>8</td>
<td>G. Snelting</td>
</tr>
</tbody>
</table>
Module: Software Systems

Module key: [IW4INSWS]

Subject: Informatics
Module coordination: Ralf Reussner
Credit points (CP): 9

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Content

Courses in module Software Systems [IW4INSWS]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K6SWA</td>
<td>Component Based Software Architecture</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>R. Reussner, M. Kuperberg, K. Krogmann</td>
</tr>
<tr>
<td>24660</td>
<td>Software Development for modern, parallel platforms</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>W. Tichy, Pankratius, Otto</td>
</tr>
<tr>
<td>24112</td>
<td>Multicore Computers and Computer Clusters</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>W. Tichy, Pankratius, Victor</td>
</tr>
<tr>
<td>24125/24673</td>
<td>Reading Group</td>
<td>1</td>
<td>W/S</td>
<td>1</td>
<td>R. Reussner, K. Krogmann, M. Kuperberg</td>
</tr>
<tr>
<td>24654</td>
<td>Component Based Software Engineering</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>R. Reussner, M. Kuperberg, K. Krogmann</td>
</tr>
<tr>
<td>24126</td>
<td>Specification and Verification of Software</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>B. Beckert</td>
</tr>
<tr>
<td>24293/24649</td>
<td>Multicore Programming in Practice: Tools, Models, Languages</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>V. Pankratius, W. Tichy</td>
</tr>
</tbody>
</table>
Module: Software-Methodik

**Subject:** Informatics  
**Module coordination:** Ralf Reussner  
**Credit points (CP):** 9

### Learning Control / Examinations

**Prerequisites**
None.

**Conditions**
None.

### Learning Outcomes

**Content**

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KbSWA</td>
<td>Component Based Software Architecture</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>R. Reussner, M. Kuperberg, K. Krogmann</td>
</tr>
<tr>
<td>24156</td>
<td>Empirical Software Engineering</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>W. Tichy</td>
</tr>
<tr>
<td>24634</td>
<td>Moderne Entwicklungsumgebung am Beispiel von .NET</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>W. Tichy, Gelhausen, Ladani</td>
</tr>
<tr>
<td>SWSich</td>
<td>Software Security</td>
<td>2/1 W/S</td>
<td>3</td>
<td></td>
<td>G. Snelting</td>
</tr>
<tr>
<td>24636</td>
<td>Performance Engineering of Enterprise Software Systems</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>R. Reussner, S. Kounev</td>
</tr>
<tr>
<td>24625</td>
<td>Model Driven Software Development</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>R. Reussner, S. Becker</td>
</tr>
<tr>
<td>24125/24673</td>
<td>Reading Group</td>
<td>1 W/S</td>
<td>1</td>
<td></td>
<td>R. Reussner, K. Krogmann, M. Kupperberg</td>
</tr>
<tr>
<td>24654</td>
<td>Component Based Software Engineering</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>R. Reussner, M. Kuperberg, K. Krogmann</td>
</tr>
<tr>
<td>SWT2</td>
<td>Software Engineering II</td>
<td>3/1 W</td>
<td>6</td>
<td></td>
<td>R. Reussner, W. Tichy</td>
</tr>
</tbody>
</table>
Module: Applied Web Engineering

Module key: [IW4INPWE]

Subject: Informatics
Module coordination: Wilfried Juling
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

• Students know the fundamentals as well as current methodologies and techniques in the field of Web Engineering and can apply them in practice. They have gained insights and first experiences in managing Web projects as well as in analyzing, structuring and describing problems in the field of Web Engineering.
• Students have acquired knowledge about state-of-the-art Web-based concepts, technologies and frameworks. They have developed a fundamental understanding of server- and client-side technologies and their interaction.
• Students have the ability to design Web-based systems autonomously with regard to the aspects data, interaction, navigation, presentation, communication and processing.
• Students are able to understand and interpret scientific papers and standard specifications and are confident in using the domain-specific language.

Content

The module is designed as an introduction to the discipline of Web Engineering, covering both theory and practice. The focus is on approaches and methods fostering a systematic construction of Web-based applications and systems. The different phases and aspects of the Web application lifecycle are examined as well. It helps students to look at the Web phenomenon from different perspectives - e.g. as a Web designer, analyst, architect, component engineer, program manager, product manager or CIO. Methods for dealing with requirements, design, architecture, implementation and management are discussed and applied in a project.

The module will convey practical knowledge of the Web’s fundamental languages and technologies, like (X)HTML/CSS and XML/XSL. Furthermore component-based Web engineering approaches and frameworks are applied in the software project. Another thematic focus of the course is on Web services as a fundamental building block for constructing service-oriented applications. By realizing a software project, the structured and disciplined application of the learnt technologies is emphasized.

Courses in module Applied Web Engineering [IW4INPWE]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24124</td>
<td>Web Engineering</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Nußbaumer</td>
</tr>
<tr>
<td>24880</td>
<td>Practical Course Web Engineering</td>
<td>2/0</td>
<td>W/S</td>
<td>5</td>
<td>W. Juling, M. Nußbaumer, M. Keller, F. Majer</td>
</tr>
</tbody>
</table>
Module: Wireless Networking

Subject: Informatics
Module coordination: Martina Zitterbart
Credit points (CP): 8

Learning Control / Examinations
The assessment of this module consists of oral exams of approx. 20 min. following § 4 Abs. 2 Nr. 2 SPO on the selected courses. The overall grade is computed by weighting the grade of each course with its credits and computing the average of the weighted grades.
It is recommended to take the exams at the same time.

Prerequisites
Knowledge on the contents of the lecture Introduction into Computer Networks [24519] or Networked IT-Infrastructures [24074] is recommended.

Conditions
The lecture Telematics [24128] must be selected if it has not been passed yet.

Learning Outcomes
Each student should be able

- to learn and use the concepts and principals of wireless network design
- to identify the flaws and benefits of wireless communication systems
- to judge the performance of protocols, wireless networks and architectures
- master advanced protocols, architectures and algorithms of wireless communication systems

Content
This module details selected aspects of wireless communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.

Courses in module Wireless Networking [IW4INWN]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24148</td>
<td>Traffic Telematics</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>J. Härr, H. Hartenstein</td>
</tr>
<tr>
<td>24104</td>
<td>Wireless Sensor-Actuator-Networks</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24669</td>
<td>Simulation of Computer Networks</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24643</td>
<td>Mobile Communications</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>O. Waldhorst</td>
</tr>
<tr>
<td>24146</td>
<td>Ubiquitous Computing</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>W. Juling</td>
</tr>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>M. Schöller</td>
</tr>
<tr>
<td>24128</td>
<td>Telematics</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
</tbody>
</table>
Module: Networking Labs

Subject: Informatics
Module coordination: Martina Zitterbart
Credit points (CP): 9

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Each student should be able

- to learn and apply the concepts and principals of wireless network design
- to identify the flaws and benefits of wireless communication systems
- to judge the performance of protocols, wireless networks and architectures
- master advanced protocols, architectures and algorithms of wireless communication systems

Content
This module details and applies selected aspects of communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24674</td>
<td>Next Generation Internet</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>R. Bless</td>
</tr>
<tr>
<td>24104</td>
<td>Wireless Sensor-Actuator-Networks</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>PrakATM</td>
<td>Lab Advanced Telematics</td>
<td>2</td>
<td>W/S</td>
<td>5</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24669</td>
<td>Simulation of Computer Networks</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24878</td>
<td>Praktikum Simulation von Rechnernetzen</td>
<td>0/2</td>
<td>S</td>
<td>5</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>M. Schöller</td>
</tr>
<tr>
<td>24643</td>
<td>Mobile Communications</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>O. Waldhorst</td>
</tr>
</tbody>
</table>
Module: Future Networking

Subject: Informatics
Module coordination: Martina Zitterbart
Credit points (CP): 8

Learning Control / Examinations
The assessment of this module consists of oral exams of approx. 20 min. following § 4 Abs. 2 Nr. 2 SPO on the selected courses. The overall grade is computed by weighting the grade of each course with its credits and computing the average of the weighted grades.
It is recommended to take the exams at the same time.

Prerequisites
Knowledge on the contents of the lecture Introduction into Computer Networks [24519] or Networked IT-Infrastructures [24074] is recommended.

Conditions
The lecture Telematics [24128] must be selected if it has not been passed yet.

Learning Outcomes
Each student should be able
- to learn and use the concepts and principals of future network design
- to identify the flaws and benefits of future communication systems
- to judge the performance of protocols, future networks and architectures
- master advanced protocols, architectures and algorithms of future communication systems

Content
This module details selected aspects of future communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.

Courses in module Future Networking [IW4INFN]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24674</td>
<td>Next Generation Internet</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>R. Bless</td>
</tr>
<tr>
<td>24132</td>
<td>Multimedia Communications</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>R. Bless</td>
</tr>
<tr>
<td>24643</td>
<td>Mobile Communications</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>O. Waldhorst</td>
</tr>
<tr>
<td>24104</td>
<td>Wireless Sensor-Actuator-Networks</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24128</td>
<td>Telematics</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24148</td>
<td>Traffic Telematics</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>J. Härr, H. Hartenstein</td>
</tr>
</tbody>
</table>
Module: Networking

Subject: Informatics  
Module coordination: Martina Zitterbart  
Credit points (CP): 8

Learning Control / Examinations
The assessment of this module consists of oral exams of approx. 20 min. following § 4 Abs. 2 Nr. 2 SPO on the selected courses. The overall grade is computed by weighting the grade of each course with its credits and computing the average of the weighted grades.
It is recommended to take the exams at the same time.

Prerequisites
Knowledge on the contents of the lecture Introduction into Computer Networks [24519] or Networked IT-Infrastructures [24074] is recommended.

Conditions
The lecture Telematics [24128] must be selected if it has not been passed yet.

Learning Outcomes
Each student should be able

- to learn and use the concepts and principals of wired network design
- to identify the flaws and benefits of wired communication systems
- to judge the performance of protocols, wired networks and architectures
- master advanced protocols, architectures and algorithms of wired communication systems

Content
This module details selected aspects of wired communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.

Courses in module Networking [IW4INNW]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24128</td>
<td>Telematics</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24110</td>
<td>High Performance Communication</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24674</td>
<td>Next Generation Internet</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>R. Bless</td>
</tr>
<tr>
<td>24669</td>
<td>Simulation of Computer Networks</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24132</td>
<td>Multimedia Communications</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>R. Bless</td>
</tr>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>M. Schöller</td>
</tr>
</tbody>
</table>
Module: Networking Security – Theory and Praxis

Subject: Informatics
Module coordination: Martina Zitterbart
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Each student should be able
- to recall the basic security mechanisms and theoretical foundations of networking security and cryptography
- to read and understand actual academic papers
- to judge the security level of actual security solutions
- to identify possible attacks on security solutions

Content
This module details selected aspects of networking security and cryptography in theory and praxis.

Courses in module Networking Security – Theory and Praxis [IW4INNTP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols</td>
<td>2/0 S</td>
<td></td>
<td>4</td>
<td>M. Schöller</td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management</td>
<td>2/1 W</td>
<td></td>
<td>5</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>SemiKryp2</td>
<td>Seminar in Cryptography</td>
<td>2 W/S</td>
<td></td>
<td>2</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24629</td>
<td>Symmetric encryption</td>
<td>2 S</td>
<td></td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24941</td>
<td>Security</td>
<td>3/1 S</td>
<td></td>
<td>6</td>
<td>J. Müller-Quade</td>
</tr>
</tbody>
</table>
Module: Communication and Database Systems

Subject: Informatics
Module coordination: Klemens Böhm, Martina Zitterbart
Credit points (CP): 8

Learning Control / Examinations
The assessment consists of a 90 minutes written exam following §4, Abs. 2, 1 of the Prüfungsordnung. The grade is the grade of the written exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students will

• have learned fundamentals of data communication as well as the design of communication systems,
• be familiar with the composition of the different protocols and their mechanisms and be able to design simple protocols on their own,
• have understood the relationships between the different communication layers,
• be able to explain the benefits of database technology at the end of the course,
• have understood the development of database applications and be able to set up and access simple databases,
• be familiar with the terminology and the underlying database theory.

Content
Distributed information systems are worldwide information repositories which are accessible by everybody at any place of the world at any time. The physical distance is bridged by telecommunication systems, while database management technology manages and coordinates data for arbitrary periods of time. In order to understand globally running processes, one has to understand both data transmission techniques and database technology. Besides the telecommunication and database technologies on their own, an understanding of their cooperation is required, too.

Courses in module Communication and Database Systems [IW4INKD]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24516</td>
<td>Database Systems</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24519</td>
<td>Introduction in Computer Networks</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
</tbody>
</table>
Module: Innovative Concepts of Data and Information Management

Module key: [IW4INIKDI]

Subject: Informatics
Module coordination: Klemens Böhm
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
It is recommended to take the module Communication and Database Systems in advance.

Conditions
If the Seminar Information Systems is selected, the lectures Selling IT-Solutions Professionally [PLV], Consulting in Practice [24147] and Project Management in Practice [PMP] cannot be taken.

Learning Outcomes
The students
- know the research area of information systems in its various facets and are able to do scientific work in this area,
- are able to develop complex information systems on their own,
- are able to structure and manage complex projects in the field of information systems with unpredictable difficulties,
- are able to explain and to discuss complex aspects of the topics covered by this module with both experts and informed outsiders.

Content
This module aims at exposing students to modern information management, both, in ‘breadth’ and ‘depth’. We achieve ‘breadth’ by means of a close inspection and comparison of different systems and their respective aims. We achieve ‘depth’ by means of an extensive examination of the underlying concepts and design alternatives, their assessment as well as by discussing applications.

Courses in module Innovative Concepts of Data and Information Management [IW4INIKDI]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24118</td>
<td>Data Warehousing and Mining</td>
<td>2/1 W 5</td>
<td></td>
<td></td>
<td>K. Böhm</td>
</tr>
<tr>
<td>db_impl</td>
<td>Database Implementation and Tuning</td>
<td>2/1 S 5</td>
<td></td>
<td></td>
<td>K. Böhm</td>
</tr>
<tr>
<td>db_e</td>
<td>Deployment of Database Systems</td>
<td>2/1 W 5</td>
<td></td>
<td></td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24114</td>
<td>Distributed Data Management</td>
<td>2/1 W 5</td>
<td></td>
<td></td>
<td>K. Böhm</td>
</tr>
<tr>
<td>MOD</td>
<td>Moving Objects Databases</td>
<td>2 W 3</td>
<td></td>
<td></td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24111</td>
<td>Workflowmanagement-Systems</td>
<td>2 W 3</td>
<td></td>
<td></td>
<td>J. Müller</td>
</tr>
<tr>
<td>24141</td>
<td>Information Integration and Web Portals</td>
<td>2 W 3</td>
<td></td>
<td></td>
<td>J. Müller</td>
</tr>
<tr>
<td>24605</td>
<td>Data Privacy Protection in Interconnected Information Systems</td>
<td>2 S 3</td>
<td></td>
<td></td>
<td>Buchmann</td>
</tr>
<tr>
<td>PLV</td>
<td>Selling IT-Solutions Professionally</td>
<td>2 S 1</td>
<td></td>
<td></td>
<td>K. Böhm, Hellriegel</td>
</tr>
<tr>
<td>24147</td>
<td>Consulting in Practice</td>
<td>2 W/S 1</td>
<td></td>
<td></td>
<td>K. Böhm, Dürr</td>
</tr>
<tr>
<td>PMP</td>
<td>Project Management in Practice</td>
<td>2 S 1</td>
<td></td>
<td></td>
<td>K. Böhm, W. Schnober</td>
</tr>
</tbody>
</table>
Module: Theory and Practice of Data Warehousing and Mining
Module key: [IW4INDWMTP]

Subject: Informatics
Module coordination: Klemens Böhm
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of an oral exam of approx. 20 minutes following § 4 Abs. 2 Nr. 2 Study and Examination Regulation on the contents of the selected lecture.
The practical course requires an additional certificate following § 4 Abs. 2 Nr. 3.
The grade of the module is the grade of the oral exam.

Prerequisites
None.

Conditions
The practical course on Data Warehousing and Mining [24874] must be taken.
It is recommended to take the lecture Data Warehousing and Mining [24118] if it has not been taken yet.

Learning Outcomes
The students
• know the research area of information systems in its various facets and are able to do scientific work in this area,
• are able to explain and to discuss complex aspects of the topics covered by this module with both experts and informed outsiders,
• know the concepts, algorithms, techniques and selected tools in the areas of data warehousing and data mining,
• are familiar with the practical challenges of data analysis and are able to develop respective solutions on their own.

Content
This module aims at exposing students to modern information management, both, in ‘breadth´ and ‘depth´. We achieve ‘breadth´ by means of a close inspection and comparison of different systems and their respective aims. We achieve ‘depth´ by means of an extensive examination of the underlying concepts and design alternatives, their assessment as well as by discussing applications. In particular, we look at data warehousing and mining techniques not only from a theoretical point of view but deploy and realise such technologies in a practical course.

Courses in module Theory and Practice of Data Warehousing and Mining [IW4INDWMTP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24874</td>
<td>Practical Course Data Warehousing and Mining</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24118</td>
<td>Data Warehousing and Mining</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>db</td>
<td>Deployment of Database Systems</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>db_impl</td>
<td>Database Implementation and Tuning</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24114</td>
<td>Distributed Data Management</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
</tbody>
</table>

Remarks
The courses of this module are offered irregularly. Nonetheless, it is guaranteed that the module can be passed anytime.
Module: Theory and Practice of Database Techno

Module key: [IW4INDBTP]

Subject: Informatics
Module coordination: Klemens Böhm
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of an oral exam of approx. 20 minutes following § 4 Abs. 2 Nr. 2 Study and Examination Regulation on the contents of the selected lecture.
The practical course requires an additional certificate following § 4 Abs. 2 Nr. 3.
The grade of the module is the grade of the oral exam.

Prerequisites
It is recommended to

- combine the Practical Course Databases with the lecture Deployment of Database Systems [24647].
- combine the Practical Course Distributed Data Management with the lecture Distributed Data Management [24114].

Conditions
One of the practical courses must be taken.

Learning Outcomes
The students

- know the research area of information systems in its various facets and are able to do scientific work in this area,
- are able to develop complex information systems on their own,
- are able to explain and to discuss complex aspects of the topics covered by this module with both experts and informed outsiders,
- are able to deploy (distributed) databases and are familiar with the relevant technologies.

Content
This module aims at exposing students to modern information management, both, in ‘breadth’ and ‘depth’. We achieve ‘breadth’ by means of a close inspection and comparison of different systems and their respective aims. We achieve ‘depth’ by means of an extensive examination of the underlying concepts and design alternatives, their assessment as well as by discussing applications. In particular, we look at the topics of this module not only from a theoretical point of view but deploy and realise the respective technologies in a practical course.

Courses in module Theory and Practice of Database Techno [IW4INDBTP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbprakt</td>
<td>Practical Course Database Systems</td>
<td>2</td>
<td>W 4</td>
<td></td>
<td>K. Böhm</td>
</tr>
<tr>
<td>praktvd</td>
<td>Practical Course Distributed Data Management</td>
<td>2</td>
<td>W 4</td>
<td></td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24114</td>
<td>Distributed Data Management</td>
<td>2/1</td>
<td>W 5</td>
<td></td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24118</td>
<td>Data Warehousing and Mining</td>
<td>2/1</td>
<td>W 5</td>
<td></td>
<td>K. Böhm</td>
</tr>
<tr>
<td>db</td>
<td>Deployment of Database Systems</td>
<td>2/1</td>
<td>W 5</td>
<td></td>
<td>K. Böhm</td>
</tr>
<tr>
<td>db_impl</td>
<td>Database Implementation and Tuning</td>
<td>2/1</td>
<td>S 5</td>
<td></td>
<td>K. Böhm</td>
</tr>
</tbody>
</table>

Remarks
The courses of this module are offered irregularly. Nonetheless, it is guaranteed that the module can be passed anytime.
Module: Dynamische IT-Infrastrukturen

Subject: Informatics
Module coordination: Hannes Hartenstein
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Dynamische IT-Infrastrukturen [IW4INDITI]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>24124</td>
<td>Web Engineering</td>
<td>2/0 W</td>
<td></td>
<td></td>
<td>M. Nußbaumer</td>
</tr>
<tr>
<td>24669</td>
<td>Simulation of Computer Networks</td>
<td>2/0 S</td>
<td></td>
<td></td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24146</td>
<td>Ubiquitous Computing</td>
<td>2/0 W</td>
<td></td>
<td></td>
<td>W. Juling</td>
</tr>
<tr>
<td>24878</td>
<td>Praktikum Simulation von Rechnernetzen</td>
<td>0/2 S</td>
<td></td>
<td></td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24074</td>
<td>Networked IT-Infrastructures</td>
<td>2/1 W</td>
<td></td>
<td></td>
<td>W. Juling</td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management</td>
<td>2/1 W</td>
<td></td>
<td></td>
<td>H. Hartenstein</td>
</tr>
</tbody>
</table>
Module: Biosignalverarbeitung

Module key: [IW4INBSV]

Subject: Informatics
Module coordination: Tanja Schultz
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Biosignalverarbeitung [IW4INBSV]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24105</td>
<td>Biosignale und Benutzerschnittstellen</td>
<td>4/0</td>
<td>W</td>
<td>6</td>
<td>T. Schultz, Wand</td>
</tr>
<tr>
<td>24600</td>
<td>Multilinguale Mensch-Maschine-Kommunikation</td>
<td>4/0</td>
<td>S</td>
<td>6</td>
<td>T. Schultz, Putze</td>
</tr>
<tr>
<td>24119</td>
<td>Analysis and modeling of human motion se-</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>A. Wörner, T. Schultz</td>
</tr>
<tr>
<td></td>
<td>quences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24905</td>
<td>Praktikum Biosignale</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>T. Schultz, Wand</td>
</tr>
<tr>
<td>24612</td>
<td>Kognitive Modellierung</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>T. Schultz, Putze</td>
</tr>
</tbody>
</table>
Module: Sprachverarbeitung

Subject: Informatics
Module coordination: Tanja Schultz
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Sprachverarbeitung [IW4INSV]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24145</td>
<td>Principles of Automatic Speech Recognition</td>
<td>4</td>
<td>W</td>
<td>6</td>
<td>A. Waibel, Stüker</td>
</tr>
<tr>
<td>24600</td>
<td>Multilinguale Mensch-Maschine-Kommunikation</td>
<td>4/0</td>
<td>S</td>
<td>6</td>
<td>T. Schultz, Putze</td>
</tr>
<tr>
<td>SemAKTSV</td>
<td>Seminar Aktuelle Themen der Sprachverarbeitung</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>T. Schultz</td>
</tr>
<tr>
<td>24298</td>
<td>Praktikum Automatic Speech Recognition</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>A. Waibel, Stüker</td>
</tr>
<tr>
<td>24280</td>
<td>Praktikum Multilingual Speech Processing</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>T. Schultz</td>
</tr>
<tr>
<td>24612</td>
<td>Kognitive Modellierung</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>T. Schultz, Putze</td>
</tr>
</tbody>
</table>
Module: Motion centered Human-Machine Interface

Subject: Informatics
Module coordination: Annika Wörner
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
The module should be started in winter term

Conditions
None.

Learning Outcomes
- Within the module the student should be introduced to the basics of data processing of captured image sequences and should take the relation of the different processing steps.
- A general overview should be given relating to the discussed working field. The theoretical learned knowledge should be implemented in practice during the integrated practice.
- The students should be able to apply the learned methods and are able to convert and adapt them to related problems.
- Within the seminar the students should especially learn the analysing, structuring and the formal description of subproblems of the research field of motion capturing, motion recognition and the motion synthesis. The students should be able to realise the learned methods due to further self-studying in practical examples.

Content
The content of the whole module is described within the description of the different courses.

Courses in module Motion centered Human-Machine Interface [IW4INBMMI]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24119</td>
<td>Analysis and modeling of human motion sequences</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>A. Wörner, T. Schultz</td>
</tr>
<tr>
<td>24373</td>
<td>Seminar Vom Mensch zum Roboter</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>A. Wörner, Feldmann, Köhler</td>
</tr>
<tr>
<td>24288/24893</td>
<td>Motion based machine interface</td>
<td>4</td>
<td>W/S</td>
<td>3</td>
<td>A. Wörner, Köhler, Schulz</td>
</tr>
<tr>
<td>24905</td>
<td>Praktikum Biosignale</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>T. Schultz, Wand</td>
</tr>
</tbody>
</table>
Module: Curves and Surfaces

Module key: [IW4INKUF]

Subject: Informatics
Module coordination: Hartmut Prautzsch
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Gaining knowledge and deeper understanding in the area of Computer Aided Geometric Design (CAGD) and Geometric Computing.
Further, this module should enable the students to master typical CAGD tasks and to work on a master's thesis, in particular.

Content
Technics and algorithms for generating, representing, reconstructing, modifying, animating and analyzing free form geometries (curves, surfaces and bodies).

Courses in module Curves and Surfaces [IW4INKUF]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24670</td>
<td>Curves ans surfaces in CAD I</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>H. Prautzsch, Umlauf</td>
</tr>
<tr>
<td>KFCAD2</td>
<td>Curves and Surfaces in CAD II</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>KFCAD3</td>
<td>Curves and Surfaces in CAD III</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>24624</td>
<td>Rationale Splines</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>24122</td>
<td>Subdivision algorithm</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>24175</td>
<td>Meshes and point clouds</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>ADG</td>
<td>Applied Differential Geometry</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
</tbody>
</table>
Module: Algorithmen der Computergraphik

Module key: [IW4INACG]

Subject: Informatics
Module coordination: Hartmut Prautzsch
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Algorithmen der Computergraphik [IW4INACG]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG</td>
<td>Einführung in die Computergraphik</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>J. Bender</td>
</tr>
<tr>
<td>24618</td>
<td>Graphisch-geometrische Algorithmen</td>
<td>2/1/0</td>
<td>S</td>
<td>5</td>
<td>A. Schmitt, Umlauf</td>
</tr>
<tr>
<td>24670</td>
<td>Curves ans surfaces in CAD I</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>H. Prautzsch, Umlauf</td>
</tr>
<tr>
<td>KFCAD2</td>
<td>Curves and Surfaces in CAD II</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>24175</td>
<td>Meshes and point clouds</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>GVsem</td>
<td>Seminar Geometric computing</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>24884</td>
<td>Practical course: Geometric Modeling</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>H. Prautzsch, Diziol</td>
</tr>
<tr>
<td>24173</td>
<td>Medical Simulation Systems I</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>R. Dillmann, Röhl, Speidel</td>
</tr>
<tr>
<td>24676</td>
<td>Medical Simulation Systems II</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>R. Dillmann, Unterhinninghofen, Suwelack</td>
</tr>
</tbody>
</table>
Module: Foundations and Application of IT-Security

Subject: Informatics
Module coordination: Jörn Müller-Quade
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows the theoretic background and the basic mechanisms of computer security and cryptography
• understands the mechanisms of computer security and can explain them,
• can read and understand the current scientific papers,
• can evaluate the safety procedures and can recognize hazards,
• can adapt mechanisms of computer security to new environment.
• deals with a restricted problem in the field of cryptography within the seminar,
• analyzes and discusses the problems associated to a distinct discipline in the lectures and in the final seminar paper,
• discusses, presents and defends subject-specific arguments within a given task,
• organizes the preparation of the final papers largely independent.

Content
• Theoretical and practical aspects of computer security
• Development of safety goals and classification of threats
• Presentation and comparison of different formal access control models
• Formal description of authentication systems, presentation and comparison of different authentication methods (passwords, biometrics, challenge-response protocols)
• Analysis of typical vulnerabilities in programs and web applications and development of appropriate protective protection methods / avoidance strategies
• Introduction to key management and Public Key Infrastructure
• Presentation and comparison of current safety certifications
• Block ciphers, hash functions, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (e.g., Diffie-Hellman)
• Furthermore, an introduction to provable security is provided, which presents some of the key security concepts (e.g. IND-CCA).
• Presentation of combinations of cryptographic modules using currently used protocols such as Secure Shell (SSH) and Transport Layer Security (TLS).

Courses in module Foundations and Application of IT-Security [IW4INGAS]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24941</td>
<td>Security</td>
<td>3/1</td>
<td>S</td>
<td>6</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>SemiKryp2</td>
<td>Seminar in Cryptography</td>
<td>2</td>
<td>W/S</td>
<td>2</td>
<td>J. Müller-Quade</td>
</tr>
</tbody>
</table>
Module: Parallelverarbeitung

Subject: Informatics
Module coordination: Wolfgang Karl
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24161</td>
<td>Mikroprozessoren II</td>
<td>2 W 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24117</td>
<td>Heterogene parallele Rechensysteme</td>
<td>2 W 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24660</td>
<td>Software Development for modern, parallel platforms</td>
<td>2 S 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24112</td>
<td>Multicore Computers and Computer Clusters</td>
<td>2 W 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24606</td>
<td>Models of Parallel Processing</td>
<td>3 S 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24622</td>
<td>Algorithms in Cellular Automata</td>
<td>2/1 S 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24293/24649</td>
<td>Multicore Programming in Practice: Tools, Models, Languages</td>
<td>2 W/S 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module: Service Technology

Subject: Informatics
Module coordination: Stefan Tai
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and rounded to the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Service Technology [IW4INAIFB1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25770</td>
<td>Service Oriented Computing 1</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>S. Tai</td>
</tr>
<tr>
<td>25772</td>
<td>Service Oriented Computing 2</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>S. Tai, R. Studer</td>
</tr>
<tr>
<td>25820</td>
<td>Lab Class Web Services</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>S. Tai, R. Studer, G. Satzger, C. Zirpins</td>
</tr>
</tbody>
</table>
Module: Cloud Computing

Module key: [IW4INAIFB2]

Subject: Informatics
Module coordination: Stefan Tai
Credit points (CP): 8

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and rounded to the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student is familiar with the fundamentals of Cloud Computing and has acquired further knowledge through additional seminar studies or through lab practice.

Content
Theory and practice of cloud computing.
Please also refer to the class descriptions.

Courses in module Cloud Computing [IW4INAIFB2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25776</td>
<td>Cloud Computing</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Tai, Kunze</td>
</tr>
<tr>
<td></td>
<td>Seminar eOrganization</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>S. Tai</td>
</tr>
<tr>
<td>25820</td>
<td>Lab Class Web Services</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>S. Tai, R. Studer, G. Satzger, C. Zirpins</td>
</tr>
</tbody>
</table>
Module: Web Service Engineering

Module key: [IW4INAIFB3]

Subject: Informatics
Module coordination: Stefan Tai
Credit points (CP): 8

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and rounded to the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student is familiar with the fundamentals of Web Service Engineering and has acquired further knowledge through additional seminar studies or through lab practice.

Content
Theory and practice of Web service engineering.
Please also refer to the class descriptions.

Courses in module Web Service Engineering [IW4INAIFB3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25774</td>
<td>Web Service Engineering</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Zirpins</td>
</tr>
<tr>
<td></td>
<td>Seminar eOrganization</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>S. Tai</td>
</tr>
<tr>
<td>25820</td>
<td>Lab Class Web Services</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>S. Tai, R. Studer, G. Satzger, C. Zirpins</td>
</tr>
</tbody>
</table>

Module Handbook: Version 04.03.2010  Information Engineering and Management (M.Sc.)
Module: Web Data Management

Subject: Informatics
Module coordination: Rudi Studer
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The lecture Semantic Web Technologies II [25750] is obligatory and has to be absolved.

Learning Outcomes
Students
- develop ontologies for semantic web technologies and choose suitable representation languages,
- are able to provide data and applications via a cloud-based infrastructure
- transfer the methods and technologies of semantic web technologies and cloud computing to new application sectors,
- evaluate the potential of semantic web technologies and the cloud computing approaches for new application sectors.

Content
The module Web Data Management covers the basic principles, methods and applications for intelligent systems in the World Wide Web. Cloud Services are essential for the decentralized, scalable provision of data and applications as well as the methods of semantic web based on the description of data and services via metadata in form of so called ontologies.

Formal principles and practical aspects such as knowledge modeling and available representation language tools for ontologies are covered in detail. Methods for the realization of intelligent systems within the World Wide Web are treated and applications as in Web 2.0 or Service Science are discussed and evaluated.

Furthermore the application of modern Cloud technologies for the use of software and hardware as a service via internet is introduced. Cloud technologies allow the efficient implementation of applications on distributed computer clusters and permit a high scalability as well as new business models in the internet.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25748</td>
<td>Semantic Web Technologies I</td>
<td>2/1 W</td>
<td></td>
<td>5</td>
<td>R. Studer, S. Rudolph</td>
</tr>
<tr>
<td>25750</td>
<td>Semantic Web Technologies II</td>
<td>2/1 S</td>
<td></td>
<td>5</td>
<td>S. Agarwal, S. Grimm, E. Simperl, A. Harth</td>
</tr>
<tr>
<td>25776</td>
<td>Cloud Computing</td>
<td>2/1 W</td>
<td></td>
<td>5</td>
<td>S. Tai, Kunze</td>
</tr>
</tbody>
</table>
Module: Intelligent Systems and Services

Subject: Informatics
Module coordination: Rudi Studer
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students
- know the different machine learning procedures for the supervised as well as the unsupervised learning,
- identify the pros and cons of the different learning methods,
- apply the discussed network learning methods in specific scenarios,
- compare the practicality of methods and algorithms with alternative approaches.

Content
In the broader sense learning systems are understood as biological organisms and artificial systems which are able to change their behavior by processing outside influences. Network learning methods based on symbolic, statistic and neuronal approaches are the focus of Computer Sciences.

In this module the most important network learning methods are introduced and their applicability is discussed with regard to different information sources such as data texts and images considering especially procedures for knowledge acquirement via data and text mining, natural analogue procedures as well as the application of organic learning procedures within the finance sector.

Courses in module Intelligent Systems and Services [IW4INAIFB5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25742</td>
<td>Knowledge Discovery</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>R. Studer</td>
</tr>
<tr>
<td>25762</td>
<td>Intelligent Systems in Finance</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>D. Seese</td>
</tr>
<tr>
<td>25772</td>
<td>Service Oriented Computing 2</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>S. Tai, R. Studer</td>
</tr>
<tr>
<td>25860sem</td>
<td>Special Topics of Knowledge Management</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>R. Studer</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>25724</td>
<td>Database Systems and XML</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>A. Oberweis</td>
</tr>
</tbody>
</table>
Module: Semantic Technologies

Module key: [IW4INAIFB6]

Subject: Informatics
Module coordination: Rudi Studer
Credit points (CP): 8

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Semantic Technologies [IW4INAIFB6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25750</td>
<td>Semantic Web Technologies II</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>S. Agarwal, S. Grimm, E. Simperl, A. Harth</td>
</tr>
<tr>
<td>25070s</td>
<td>Seminar in Applied Informatics</td>
<td>2 W/S</td>
<td>3</td>
<td></td>
<td>A. Oberweis, H. Schmeck, D. Seese, W. Stucky, R. Studer, S. Tai</td>
</tr>
</tbody>
</table>
Module: Ubiquitous Computing

Subject: Informatics
Module coordination: Hartmut Schmeck
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24146</td>
<td>Ubiquitous Computing</td>
<td>2/0 W</td>
<td>4</td>
<td></td>
<td>W. Juling</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>25704</td>
<td>Organic Computing</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>H. Schmeck, S. Mostaghim</td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24146p</td>
<td>Advanced Lab in Ubiquitous Computing</td>
<td>2/0 W/S</td>
<td>4</td>
<td></td>
<td>H. Schmeck</td>
</tr>
</tbody>
</table>
Module: Organic Computing

Subject: Informatics
Module coordination: Hartmut Schmeck
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25704</td>
<td>Organic Computing</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>H. Schmeck, S. Mostaghim</td>
</tr>
<tr>
<td>25706</td>
<td>Nature-inspired Optimisation</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Mostaghim, P. Shukla</td>
</tr>
<tr>
<td>25700sp</td>
<td>Special Topics of Efficient Algorithms</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>25760</td>
<td>Complexity Management</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>D. Seese</td>
</tr>
</tbody>
</table>
Module: eCollaboration

Module key: [IW4INAIFB9]

Subject: Informatics
Module coordination: Andreas Oberweis
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The course Datenbanksysteme und XML [25724] has to be attended

Learning Outcomes
The students
• can use languages and methods for planning and design of eCollaboration,
• know the basics of XML, as well as appropriate data models and are capable of generating XML documents,
• are able to understand the difficulties to manage complex systems and processes,
• know the outer frame of IT in an enterprise and know which functions IT has within an enterprise,
• are able to evaluate, select and to use appropriate tools taking into account the current situation.

Content
ECollaboration covers all forms of cooperation and coordination in electronic networks, and is practiced in many forms. The ubiquitous availability of new information and communication technologies in increasingly becoming smaller and more powerful devices enables new forms of eCollaboration. These will not only change the business world and public administration, but will also change fundamentally the private lives of people. This module teaches methodological foundations of applied computer science for eCollaboration applications covering languages for modelling of structured and unstructured processes of eCollaboration and methods for the design and analysis of eCollaboration scenarios. In addition, this module imparts knowledge of software systems to support eCollaboration (e.g., groupware systems, workflow management systems, document management systems).

Courses in module eCollaboration [IW4INAIFB9]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25724</td>
<td>Database Systems and XML</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>25735</td>
<td>Document Management and Groupware Systems</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>S. Klink</td>
</tr>
<tr>
<td>25788</td>
<td>Strategic Management of Information Technology</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>T. Wolf</td>
</tr>
<tr>
<td>25760</td>
<td>Complexity Management</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>D. Seese</td>
</tr>
<tr>
<td>25784</td>
<td>Management of IT-Projects</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>R. Schätzle</td>
</tr>
</tbody>
</table>
Module: Development of Distributed Business Information Systems  
Module key: [IW4INAIFB10]

Subject: Informatics  
Module coordination: Andreas Oberweis  
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The course *Verteilte Datenbanksysteme: Basistechnologie für eBusiness* [25722] has to be attended

Learning Outcomes
Die Studierenden
- are familiar with the requirements and limitations of distributed database systems,
- can ensure error-free operation and the consistency of distributed databases,
- can master methods and concepts of essential algorithms in distributed systems,
- are able to use methods of IT project management appropriate to current project phases and project contexts,
- can model and analyse an information system and evaluate alternative designs systematically.

Content
An enterprise information system contains the complete application software to store and process data and information in an organisation including design and management of databases, workflow management and strategic information planning. Due to global networking and geographical distribution of enterprises as well as the increasing acceptance of eCommerce the application of distributed information systems becomes particularly important.

This module teaches concepts and methods for design and application of information systems.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25722</td>
<td>Distributed Database Systems: Basic Technology for e-Business</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>25791</td>
<td>n.n.</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>R. Kneuper</td>
</tr>
<tr>
<td>25764</td>
<td>IT Complexity in Practice</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Kreidler</td>
</tr>
<tr>
<td>25774</td>
<td>Web Service Engineering</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Zirpins</td>
</tr>
</tbody>
</table>
5.6 Law

Module: Intellectual Property Law  
Module key: [IW4JURA4]

Subject: Law
Module coordination: Thomas Dreier
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Keine.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24812</td>
<td>Internet Law</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>T. Dreier</td>
</tr>
<tr>
<td>24121</td>
<td>Copyright</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>T. Dreier</td>
</tr>
<tr>
<td>24661</td>
<td>Patent Law</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>N.N.</td>
</tr>
<tr>
<td>24136/24609</td>
<td>Trademark and Unfair Competition Law</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>Y. Matz, P. Sester</td>
</tr>
<tr>
<td>24583</td>
<td>Computer Contract Law</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>M. Bartsch</td>
</tr>
<tr>
<td>24815</td>
<td>Grundlagen des Patentrechts</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>K. Melullis</td>
</tr>
</tbody>
</table>
Module: Private Business Law  
Module key: [IW4JURA5]

Subject: Law
Module coordination: Peter Sester
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
For the courses
- Civil Law for Advanced [24650]
- Law of Contracts [24671],

basic knowledge in civil law as taught in the courses Civil Law for Beginners [24012], Advanced Civil Law [24504], and Commercial and Corporate Law [24011] is required.

Conditions
None.

Learning Outcomes
The student
- has gained in-depth knowledge of German company law, commercial law and civil law;
- is able to analyze, evaluate and solve complex legal and economic relations and problems;
- is well grounded in individual labour law, collective labour law and commercial constitutional law, evaluates and critically assesses clauses in labour contracts;
- recognizes the significance of the parties to collective labour agreements within the economic system and has differentiated knowledge of labour disputes law and the law governing the supply of temporary workers and of social law;
- possesses detailed knowledge of national earnings and corporate tax law and is able to deal with provisions of tax law in a scientific manner and assesses the effect of these provisions on corporate decision-making.

Content

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Law for Advanced</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>Law of Contracts</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>Employment Law I</td>
<td>2</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>Employment Law II</td>
<td>2</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>Tax Law I</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>Tax Law II</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
</tr>
</tbody>
</table>
Module: Public Business Law  

Module key: [IW4JURA6]

Subject: Law  
Module coordination: Indra Spiecker genannt Döhmann  
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>24632</td>
<td>Telecommunications Law</td>
<td>2/0 S</td>
<td>3</td>
<td></td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24082</td>
<td>Public Media Law</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>C. Kirchberg</td>
</tr>
<tr>
<td>24666</td>
<td>European and International Law</td>
<td>2/0 S</td>
<td>3</td>
<td></td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24140</td>
<td>Environmental Law</td>
<td>2 W</td>
<td>4</td>
<td></td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24018</td>
<td>Data Protection Law</td>
<td>2/0 W</td>
<td>3</td>
<td></td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
</tbody>
</table>
Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Masterstudiengang Informationswirtschaft
vom 15. April 2009


Der Rektor hat seine Zustimmung am 15. April 2009 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
§ 1 Geltungsbereich, Zweck der Prüfung
§ 2 Akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Aufbau der Prüfungen
§ 5 Anmeldung und Zulassung zu den Prüfungen
§ 6 Durchführung von Prüfungen und Erfolgskontrollen
§ 7 Bewertung von Prüfungen und Erfolgskontrollen
§ 8 Wiederholung von Prüfungen und Erfolgskontrollen, Erlöschen des Prüfungsanspruchs
§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
§ 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 11 Masterarbeit
§ 12 Zusatzleistungen und Zusatzmodule
§ 13 Prüfungsausschuss
§ 14 Prüfer und Beisitzer
§ 15 Anrechnung von Studienzeiten, Anerkennung von Studien- und Prüfungsleistungen

II. Masterprüfung
§ 16 Umfang und Art der Masterprüfung
§ 17 Bestehen der Masterprüfung, Bildung der Gesamtnote
§ 18 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen
§ 19 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
§ 20 Ungültigkeit der Masterprüfung, Aberkennung des Mastergrades
§ 21 Einsicht in die Prüfungsakten
§ 22 In-Kraft-Treten

Module Handbook: Version 04.03.2010 Information Engineering and Management (M.Sc.)
Die Universität Karlsruhe (TH) hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss der Studiendenausbildung an der Universität Karlsruhe (TH) der Mastergrad stehen soll. Die Universität Karlsruhe (TH) sieht daher die an der Universität Karlsruhe (TH) angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

Aus Gründen der Lesbarkeit ist in dieser Satzung nur die männliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Zweck der Prüfung

(1) Diese Masterprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Masterstudiengang Informationswirtschaft an der Universität Karlsruhe (TH).

(2) Die Masterprüfung (§ 16 – 18) bildet den Abschluss dieses Studiengangs, der gemeinsam von der Fakultät für Informatik und der Fakultät für Wirtschaftswissenschaften an der Universität Karlsruhe (TH) angeboten wird. Durch die Masterprüfung soll festgestellt werden, ob der Studierende die für den Übergang in die Berufspraxis grundlegenden wissenschaftlichen Fachkenntnisse besitzt, die Zusammenhänge des Faches Informationswirtschaft überblickt und die Fähigkeit besitzt, nach wissenschaftlichen Methoden und Grundsätzen selbstständig zu arbeiten.

§ 2 Akademischer Grad


§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Die Regelstudienzeit beträgt vier Semester. Sie umfasst neben den Lehrveranstaltungen Prüfungen und die Masterarbeit.

(2) Die im Studium zu absolvierenden Lehrinhalte sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren, thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Der Studienplan beschreibt Art, Umfang und Zuordnung der Module zu einem Fach sowie die Möglichkeiten, Module untereinander zu kombinieren. Die Fächer und ihr Umfang werden in § 16 definiert.


(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 120 Leistungspunkte.

(5) Die Verteilung der Leistungspunkte im Studienplan auf die Semester hat in der Regel gleichmäßig zu erfolgen.

(6) Lehrveranstaltungen können in englischer Sprache angeboten werden.

§ 4 Aufbau der Prüfungen


(2) Erfolgskontrollen sind:
   1. schriftliche Prüfungen,
   2. mündliche Prüfungen oder
   3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z.B. Vorträge, Marktstudien, Projekte, Fallstudien, Experimente, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Studienplan ausgewiesen sind.

(3) Mindestens 50 % einer Modulprüfung sind in Form von schriftlichen oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) abzulegen, die restlichen Prüfungen erfolgen durch Erfolgskontrollen anderer Art (§ 4 Abs. 2, Nr. 3). Ausgenommen hiervon ist die Prüfung nach § 16 Abs. 3.

§ 5 Anmeldung und Zulassung zu den Prüfungen

(1) Um an schriftlichen und/oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) teilnehmen zu können, muss sich der Studierende schriftlich oder per Online-Anmeldung beim Studienbüro anmelden. Hierbei sind die gemäß dem Studienplan für die jeweilige Modulprüfung notwendigen Studienleistungen nachzuweisen. Dies gilt auch für die Anmeldung zur Masterarbeit.

(2) Um zu schriftlichen und/oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) in einem bestimmten Modul zugelassen zu werden, muss der Studierende vor der ersten schriftlichen oder mündlichen Prüfung in diesem Modul beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgeben.

(3) Die Zulassung darf nur abgelehnt werden, wenn der Studierende in einem mit der Informationswirtschaft vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung endgültig nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat. In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2, Nr. 1 - 3) der einzelnen Lehrveranstaltungen wird vom Prüfer der betreffenden Lehrveranstaltung im Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lehrziele des Moduls festgelegt. Die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung, die Bildung der Lehrveranstaltungsnote und der Modulnote sowie Prüfer müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im Einvernehmen von Prüfer und Studierendem kann in begründeten Ausnahmefällen die Art der
Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Abs. 3 zu berücksichti-
gen. Hierüber entscheidet der Prüfungsausschuss auf Antrag.

(3) Bei unvertretbar hohem Prüfungsaufwand kann eine schriftlich durchzuführende Prüfung auch mündlich oder eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.

(4) Weist ein Studierender nach, dass er wegen länger andauernder oder ständiger körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Form abzulegen, kann der zuständige Prüfungsausschuss – in dringenden Angelegenhei-
ten, deren Erledigung nicht bis zu einer Sitzung des Ausschusses aufgeschoben werden kann, dessen Vorsitzender – gestatten, Erfolgskontrollen in einer anderen Form zu erbringen.

(5) Bei Lehrveranstaltungen in englischer Sprache können mit Zustimmung des Studierenden die entsprechenden Erfolgskontrollen in englischer Sprache abgenommen werden.

(6) Schriftliche Prüfungen (§ 4 Abs. 2, Nr. 1) sind in der Regel von zwei Prüfern nach § 14 Abs. 2 oder 3 zu bewerten. Die Note ergibt sich aus dem arithmetischen Mittel der Einzelbewertungen. Entspricht das arithmetische Mittel keiner der in § 7 Abs. 2 Satz 2 definierten Notenstufen, so ist auf die nächsthöhere Notenstufe zu runden. Bei gleichem Abstand ist auf die nächstniedrigere Notenstufe zu runden. Das Bewertungsverfahren soll sechs Wochen nicht überschreiten. Schrift-
liche Einzelprüfungen dauern mindestens 60 und höchstens 240 Minuten.

(7) Mündliche Prüfungen (§ 4 Abs. 2, Nr. 2) sind von mehreren Prüfern (Kollegialprüfung) oder von einem Prüfer in Gegenwart eines Beisitzenden als Gruppen- oder Einzelprüfungen abzu-
nnehmen und zu bewerten. Vor der Festsetzung der Note hört der Prüfer die anderen an der Kol-
legialprüfung mitwirkenden Prüfer an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten pro Studierenden. Dies gilt auch für die mündliche Nachprü-
fung gemäß § 8 Abs. 3.


(9) Studierende, die sich in einem späteren Prüfungsteil der gleichen Prüfung unterziehen wollen, werden entsprechend den räumlichen Verhältnissen als Zuhörer bei mündlichen Prüfungen zugelassen. Die Zulassung erstreckt sich nicht auf die Beratung und Bekanntgabe der Prü-
fungsergebnisse. Aus wichtigen Gründen oder auf Antrag des zu prüfenden Studierenden ist die Zulassung zu versagen.

(10) Für Erfolgskontrollen anderer Art sind angemessene Bearbeitungsfristen einzuräumen und Abgabetermine festzulegen. Dabei ist durch die Art der Aufgabenstellung und durch entspre-
chende Dokumentation sicherzustellen, dass die erbrachte Studienleistung dem Studierenden zurechenbar ist. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

(11) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen. Die wesentlichen Gegenstän-
de und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

(12) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss neben dem Prüfer ein Bei-
sitzer anwesend sein, der zusätzlich zum Prüfer die Protokolle zeichnet.

§ 7 Bewertung von Prüfungen und Erfolgskontrollen

(1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüfern in Form einer Note fest-
gesetzt.
(2) Im Masterzeugnis dürfen nur folgende Noten verwendet werden:

1: sehr gut (very good) : hervorragende Leistung,
2: gut (good) : eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,
3: befriedigend (satisfactory) : eine Leistung, die durchschnittlichen Anforderungen entspricht,
4: ausreichend (sufficient) : eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,
5: nicht ausreichend (failed) : eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.

Für die Masterarbeit, Modulprüfungen, Modulteilprüfungen und Profilmodule sind zur differenzierten Bewertung nur folgende Noten zugelassen:

1.0, 1.3 : sehr gut
1.7, 2.0, 2.3 : gut
2.7, 3.0, 3.3 : befriedigend
3.7, 4.0 : ausreichend
4.7, 5.0 : nicht ausreichend

Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

(3) Für Erfolgskontrollen anderer Art kann im Studienplan die Benotung mit „bestanden“ (passed) oder „nicht bestanden“ (failed) vorgesehen werden.

(4) Bei der Bildung der gewichteten Durchschnitte der Fachnoten, Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

(5) Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf jeweils nur einmal anrechnet werden. Die Anrechnung eines Moduls, einer Lehrveranstaltung oder einer Erfolgskontrolle ist darüber hinaus ausgeschlossen, wenn das betreffende Modul, die Lehrveranstaltung oder die Erfolgskontrolle bereits in einem grundständigen Bachelorstudiengang angerechnet wurde, auf dem dieser Masterstudiengang konsekutiv aufbaut.

(6) Erfolgskontrollen anderer Art dürfen in Modulprüfungen oder Modulteilprüfungen nur eingerechnet werden, wenn die Benotung nicht nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpften Bedingungen werden im Studienplan festgelegt.

(7) Eine Modulteilprüfung ist bestanden, wenn die Note mindestens „ausreichend“ (4.0) ist.


(9) Die Ergebnisse der Masterarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.

(10) Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein. Eine Fachprüfung ist bestanden, wenn
die für das Fach erforderliche Anzahl von Leistungspunkten über die im Studienplan definierten Modulprüfungen nachgewiesen wird.

(11) Die Gesamtnote der Masterprüfung, die Fachnoten und die Modulnoten lauten:

- bis 1.5 : sehr gut (very good)
- von 1.6 bis 2.5 : gut (good)
- von 2.6 bis 3.5 : befriedigend (satisfactory)
- von 3.6 bis 4.0 : ausreichend (sufficient)

(12) Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Masterprüfung nach folgender Skala vergeben:

<table>
<thead>
<tr>
<th>ECTS-Note</th>
<th>Quote</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>gehört zu den besten 10% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>gehört zu den nächsten 25% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>gehört zu den nächsten 30% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>gehört zu den nächsten 25% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>gehört zu den letzten 10% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
</tbody>
</table>

FX  nicht bestanden (failed) - es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden,

F   nicht bestanden (failed) - es sind erhebliche Verbesserungen erforderlich.

Die Quote ist als der Prozentsatz der erfolgreichen Studierenden definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studierende auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig.


§ 8 Wiederholung von Prüfungen und Erfolgskontrollen, Erlöschen des Prüfungsanspruchs

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Abs. 2, Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Abs. 2, Nr. 2) einmal wiederholen.

(4) Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Abs. 2, Nr. 3) wird im Studienplan geregelt.


(6) Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.

(7) Eine Fachprüfung ist endgültig nicht bestanden, wenn mindestens ein Modul des Faches endgültig nicht bestanden ist.


(9) Ist gemäß § 34 Abs. 2 Satz 3 LHG die Masterprüfung bis zum Ende des siebten Fachsemesters dieses Studiengangs einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang, sei es denn, dass der Studierende die Fristüberschreitung nicht zu vertreten hat. Die Entscheidung darüber trifft der Prüfungsausschuss. Die Entscheidung über eine Fristverlängerung und über Ausnahmen von der Fristregelung trifft der Prüfungsausschuss.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß


(2) Eine Prüfung gilt als mit „nicht ausreichend“ (5.0) bewertet, wenn der Studierende einen Prüfungstermin ohne triftigen Grund versäumt oder wenn er nach Beginn der Prüfung ohne triftigen Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Masterarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, sei es denn, der Studierende hat die Fristüberschreitung nicht zu vertreten.

(4) Versucht der Studierende, das Ergebnis einer mündlichen oder schriftlichen Prüfung (§ 4 Abs. 2, Nr. 1 und 2) durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Prüfung als mit „nicht ausreichend“ (5.0) bewertet.


(7) Absatz 1 - 6 gelten für Erfolgskontrollen anderer Art (§ 4 Abs. 2, Nr. 3) entsprechend.

(8) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei Prüfungen und Praktika.

§ 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten


§ 11 Masterarbeit


(2) Thema, Aufgabenstellung und Umfang der Masterarbeit sind vom Betreuer so zu begrenzen, dass sie mit dem in Absatz 3 festgelegten Arbeitsaufwand bearbeitet werden kann.

(3) Die Masterarbeit soll zeigen, dass der Studierende in der Lage ist, ein Problem aus seinem Fach selbstständig und in der vorgegebenen Zeit nach wissenschaftlichen Methoden, die dem

(4) Die Masterarbeit kann von jedem Prüfer nach § 14 Abs. 2 vergeben werden. Soll die Masterarbeit außerhalb der beiden nach § 1 Abs. 2 Satz 1 beteiligten Fakultäten angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses. Dem Studierenden ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. Die Masterarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsleistung zu bewertende Beitrag des einzelnen Studierenden auf grund objektiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterscheidbar ist und die Anforderung nach Absatz 1 erfüllt.

(5) Bei der Abgabe der Masterarbeit hat der Studierende schriftlich zu versichern, dass er die Arbeit selbstständig verfasst hat und keine anderen als die von ihm angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Masterarbeit mit „nicht ausreichend“ (5.0) bewertet.


(7) Die Masterarbeit wird von einem Betreuer sowie in der Regel von einem weiteren Prüfer aus der jeweils anderen Fakultät der beiden nach § 1 Abs. 2 Satz 1 beteiligten Fakultäten begutachtet und bewertet. Einer der beiden muss Juniorprofessor oder Professor sein. Bei nicht übereinstimmender Beurteilung der beiden Prüfer setzt der Prüfungsausschuss im Rahmen der Bewertung der beiden Prüfer die Note der Masterarbeit fest. Der Bewertungszeitraum soll acht Wochen nicht überschreiten.

§ 12 Zusatzleistungen und Zusatzmodule


(2) Der Studierende hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

Neben den im Studienplan definierten fachwissenschaftlichen Modulen und Leistungen können die Zusatzleistungen nach Absatz 1 - 3 auch aus dem Lehrangebot anderer Fakultäten und Einrichtungen gewählt werden.

§ 13 Prüfungsausschuss

(1) Für den Masterstudiengang Informationswirtschaft wird ein Prüfungsausschuss gebildet. Er besteht aus sechs stimmberechtigten Mitgliedern, die jeweils zur Hälfte von der Fakultät für Informatik und der Fakultät für Wirtschaftswissenschaften bestellt werden: vier Professoren, Juniorprofessoren, Hochschul- oder Privatdozenten, zwei Vertretern der Gruppe der akademischen Mitarbeiter nach § 10 Abs. 1 Satz 2 Nr. 2 LHG und einem Vertreter der Studierenden mit beratender Stimme. Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelor- und den Masterstudiengang Informationswirtschaft erhöht sich die Anzahl der Vertreter der Studierenden auf zwei Mitglieder mit beratender Stimme, wobei je ein Vertreter aus dem Bachelor- und aus dem Masterstudiengang stammt. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr.

(2) Der Vorsitzende, sein Stellvertreter, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter werden von den jeweiligen Fakultätsräten bestellt, die Mitglieder der Gruppe der akademischen Mitarbeiter nach § 10 Abs. 1 Satz 2 Nr. 2 LHG und der Vertreter der Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppen; Wiederbestellung ist möglich. Der Vorsitzende und dessen Stellvertreter müssen Professor oder Juniorprofessor aus einer der beteiligten Fakultäten sein. Der Vorsitz wechselt zwischen den Fakultäten alle zwei Jahre. Der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch die Prüfungsssekretariate unterstützt.


(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben in dringenden Angelegenheiten und für alle Regelfälle auf den Vorsitzenden des Prüfungsausschusses übertragen.


(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolvierende Prüfungsleistung betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses ein fachlich zuständiger und von der betroffenen Fakultät zu nennender Professor, Juniorprofessor, Hochschul- oder Privatdozent hinzuziehen. Er hat in diesem Punkt Stimmrecht.

(7) Belastende Entscheidungen des Prüfungsausschusses sind schriftlich mitzuteilen. Sie sind zu begründen und mit einer Rechtsbehelfsbelehrung zu versehen. Widersprüche gegen Entscheidungen des Prüfungsausschusses sind innerhalb eines Monats nach Zugang der Entscheidung schriftlich oder zur Niederschrift beim Rektorat der Universität Karlsruhe (TH) einzulegen.

§ 14 Prüfer und Beisitzer

(1) Der Prüfungsausschuss bestellt die Prüfer und die Beisitzenden. Er kann die Bestellung dem Vorsitzenden übertragen.

(2) Prüfer sind Hochschullehrer und habilitierte Mitglieder sowie akademische Mitarbeiter der jeweiligen Fakultät, denen die Prüfungsbeauftragung übertragen wurde. Bestellt werden darf nur, wer mindestens...
die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat. Bei der Bewertung der Masterarbeit muss ein Prüfer Hochschullehrer sein.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zum Prüfer bestellt werden, wenn die jeweilige Fakultät ihnen eine diesbezügliche Prüfungsbefugnis erteilt hat.

(4) Zum Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem Studiengang der Informationswirtschaft, Informatik, Rechtswissenschaften, Wirtschaftswissenschaften oder einen gleichwertigen akademischen Abschluss erworben hat.

§ 15 Anrechnung von Studienzeiten, Anerkennung von Studien- und Prüfungsleistungen


(2) Werden Leistungen angerechnet, können die Noten – soweit die Notensysteme vergleichbar sind – übernommen werden und in die Berechnung der Modulnoten und der Gesamtnote einbezogen werden. Liegen keine Noten vor, muss die Leistung nicht anerkannt werden. Der Studierende hat die für die Anrechnung erforderlichen Unterlagen vorzulegen.

(3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(4) Absatz 1 gilt auch für Studienzeiten, Studien- und Prüfungsleistungen, die in staatlich anerkannten Fernstudien- und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufsakademien sowie an Fach- und Ingenieurschulen erworben wurden.


(6) Zuständig für die Anrechnungen ist der Prüfungsausschuss. Vor Feststellungen über die Gleichwertigkeit sind die zuständigen Fachvertreter zu hören. Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.

(7) Erbringt ein Studierender Studienleistungen an einer ausländischen Universität, soll die Gleichwertigkeit vorab durch einen Studienvertrag nach den ECTS-Richtlinien festgestellt und nach diesem verfahren werden.

(8) Zusatzleistungen, die ein Studierender für den Bachelorstudiengang Informationswirtschaft erbracht hat und die im Studienplan des Masterstudiengangs Informationswirtschaft vorgesehen sind, werden auf Antrag des Studierenden an den Prüfungsausschuss anerkannt.
II. Masterprüfung

§ 16 Umfang und Art der Masterprüfung
(1) Die Masterprüfung besteht aus den Fachprüfungen nach Absatz 2, dem interdisziplinären Seminarmodul nach Absatz 3 sowie der Masterarbeit nach § 11.

(2) In den ersten beiden Studienjahren sind Fachprüfungen aus folgenden Fächern durch den Nachweis von Leistungspunkten in einem oder mehreren Modulen abzulegen:
   1. aus dem Fach Betriebswirtschaftslehre im Umfang von 10 Leistungspunkten,

Des Weiteren sind Fachprüfungen
   1. aus wirtschaftswissenschaftlichen Fächern durch Module im Umfang von 18 Leistungspunkten,
   2. aus dem Fach Informatik durch Module im Umfang von 33 Leistungspunkten,
   3. aus dem Fach Recht durch Module im Umfang von 18 Leistungspunkten


(3) Ferner muss ein interdisziplinäres Seminarmodul im Umfang von 6 Leistungspunkten absolviert werden, das von je einem Prüfer nach § 14 Abs. 2 aus der Informatik, dem Recht und den Wirtschaftswissenschaften betreut wird.

(4) Als eine weitere Prüfungsleistung ist eine Masterarbeit gemäß § 11 anzufertigen.

§ 17 Bestehen der Masterprüfung, Bildung der Gesamtnote
(1) Die Masterprüfung ist bestanden, wenn alle in § 16 genannten Prüfungsleistungen mindestens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Masterprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt. Dabei werden alle Prüfungsleistungen nach § 16 mit ihren Leistungspunkten gewichtet.

(3) Hat der Studierende die Masterarbeit mit der Note 1.0 und die Masterprüfung mit einer Gesamtnote von 1.0 abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen. Mit einer Masterarbeit mit der Note 1.0 und bis zu einer Gesamtnote von 1.3 kann auf Antrag an den Prüfungsausschuss das Prädikat „mit Auszeichnung“ (with distinction) verliehen werden.

§ 18 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement
(2) Das Zeugnis enthält die in den Fachprüfungen, den zugeordneten Modulprüfungen, im interdisziplinären Seminarmodul und der Masterarbeit erzielten Noten, deren zugeordnete Leistungspunkte und ECTS-Noten und die Gesamtnote und die ihr entsprechende ECTS-Note. Das Zeugnis ist von den Dekanen der beteiligten Fakultäten und vom Vorsitzenden des Prüfungsausschusses zu unterzeichnen.


(5) Die Masterurkunde, das Masterzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.

III. Schlussbestimmungen

§ 19 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen

(1) Der Bescheid über die endgültig nicht bestandene Masterprüfung wird dem Studierenden durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.

(2) Hat der Studierende die Masterprüfung endgültig nicht bestanden, wird ihm auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 20 Ungültigkeit der Masterprüfung, Aberkennung des Mastergrades

(1) Hat der Studierende bei einer Prüfung getäuscht und wird diese Tatsache erst nach der Aushändigung des Zeugnisses bekannt, so kann der Prüfungsausschuss nachträglich die Noten für diejenigen Prüfungsleistungen, bei deren Erbringung der Studierende getäuscht hat, entsprechend berichtigen und die Prüfung ganz oder teilweise für „nicht bestanden“ erklären.

(2) Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat der Kandidat die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

(3) Dem Studierenden ist vor einer Entscheidung nach Absatz 1 und Absatz 2 Satz 2 Gelegenheit zur Äußerung zu geben.

(4) Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Dies bezieht sich auch auf alle davon betroffenen Anlagen (Transcript of Records und Diploma Supplement). Mit dem unrichtigen Zeugnis sind auch die Masterurkunde, das Masterzeugnis und alle...
Anlagen (Transcript of Records und Diploma Supplement) einzuziehen, wenn die Prüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(5) Eine Entscheidung nach Absatz 1 oder Absatz 2 Satz 2 ist nach einer Frist von fünf Jahren ab dem Datum des Prüfungszeugnisses ausgeschlossen.

(6) Die Aberkennung des akademischen Mastergrades richtet sich nach den gesetzlichen Bestimmungen.

§ 21 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Masterprüfung wird dem Studierenden auf Antrag innerhalb eines Jahres Einsicht in seine Masterarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der Prüfer bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 22 In-Kraft-Treten

(1) Diese Satzung tritt am 1. Oktober 2009 in Kraft.


Karlsruhe, den 15. April 2009

Professor Dr. sc. tech. Horst Hippler
(Rektor)
# Index

## A

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Algorithms: Design and Analysis (Modul)</td>
<td>56</td>
</tr>
<tr>
<td>Advanced Algorithms: Engineering and Applications (Modul)</td>
<td>57</td>
</tr>
<tr>
<td>Advanced CRM (Modul)</td>
<td>57</td>
</tr>
<tr>
<td>Advanced Topics in Cryptography (Modul)</td>
<td>54</td>
</tr>
<tr>
<td>Algorithmen der Computergraphik (Modul)</td>
<td>78</td>
</tr>
<tr>
<td>Allocation and Equilibrium (Modul)</td>
<td>42</td>
</tr>
<tr>
<td>Applications of Actuarial Sciences I (BWl) (Modul)</td>
<td>24</td>
</tr>
<tr>
<td>Applied Strategic Decisions (Modul)</td>
<td>41</td>
</tr>
<tr>
<td>Applied Web Engineering (Modul)</td>
<td>63</td>
</tr>
</tbody>
</table>

## B

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of Liberalised Energy Markets (Modul)</td>
<td>39</td>
</tr>
<tr>
<td>Behavioral Approaches in Marketing and Data Analysis (Modul)</td>
<td>32</td>
</tr>
<tr>
<td>Behavioral Approaches in Marketing and Data Analysis (Modul)</td>
<td>32</td>
</tr>
<tr>
<td>Biosignalverarbeitung (Modul)</td>
<td>74</td>
</tr>
<tr>
<td>Business &amp; Service Engineering (Modul)</td>
<td>19</td>
</tr>
</tbody>
</table>

## C

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Computing (Modul)</td>
<td>82</td>
</tr>
<tr>
<td>Communication and Database Systems (Modul)</td>
<td>69</td>
</tr>
<tr>
<td>Communications &amp; Markets (Modul)</td>
<td>20</td>
</tr>
<tr>
<td>Computer security (Modul)</td>
<td>53</td>
</tr>
<tr>
<td>Curves and Surfaces (Modul)</td>
<td>77</td>
</tr>
</tbody>
</table>

## D

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of Distributet Business Information Systems (Modul)</td>
<td>90</td>
</tr>
<tr>
<td>Dynamische IT-Infrastrukturen (Modul)</td>
<td>73</td>
</tr>
</tbody>
</table>

## E

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>eCollaboration (Modul)</td>
<td>89</td>
</tr>
<tr>
<td>Electronic Markets (Modul)</td>
<td>17</td>
</tr>
<tr>
<td>Energy Industry and Technology (Modul)</td>
<td>40</td>
</tr>
<tr>
<td>Entrepreneurship, Innovation and International Marketing (Modul)</td>
<td>34</td>
</tr>
</tbody>
</table>

## F

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 (Finance) (Modul)</td>
<td>22</td>
</tr>
<tr>
<td>F2 (Finance) (Modul)</td>
<td>23</td>
</tr>
<tr>
<td>Foundations and Application of IT-Security (Modul)</td>
<td>79</td>
</tr>
<tr>
<td>Future Networking (Modul)</td>
<td>66</td>
</tr>
</tbody>
</table>

## I

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Production II (Modul)</td>
<td>37</td>
</tr>
<tr>
<td>Industrial Production III (Modul)</td>
<td>38</td>
</tr>
<tr>
<td>Information Engineering and Management (Modul)</td>
<td>11</td>
</tr>
<tr>
<td>Innovative Concepts of Data and Information Management (Modul)</td>
<td>70</td>
</tr>
<tr>
<td>Insurance Management I (Modul)</td>
<td>25</td>
</tr>
<tr>
<td>Insurance Management II (Modul)</td>
<td>26</td>
</tr>
<tr>
<td>Intellectual Property Law (Modul)</td>
<td>91</td>
</tr>
<tr>
<td>Intelligent Systems and Services (Modul)</td>
<td>85</td>
</tr>
<tr>
<td>Interdisciplinary Seminar Module (Modul)</td>
<td>13</td>
</tr>
<tr>
<td>Introduction to Algorithmics (Modul)</td>
<td>58</td>
</tr>
</tbody>
</table>

## L

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Technology and Compiler (Modul)</td>
<td>60</td>
</tr>
</tbody>
</table>

## M

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroeconomic Theory (Modul)</td>
<td>43</td>
</tr>
<tr>
<td>Market Engineering (Modul)</td>
<td>18</td>
</tr>
<tr>
<td>Market Research (Modul)</td>
<td>30</td>
</tr>
<tr>
<td>Marketing Planning (Modul)</td>
<td>29</td>
</tr>
<tr>
<td>Master Thesis (Modul)</td>
<td>15</td>
</tr>
<tr>
<td>Mathematical and Empirical Finance (Modul)</td>
<td>50</td>
</tr>
<tr>
<td>Mathematical Programming (Modul)</td>
<td>48</td>
</tr>
<tr>
<td>Motion centered Human-Machine Interface (Modul)</td>
<td>76</td>
</tr>
</tbody>
</table>

## N

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networking (Modul)</td>
<td>67</td>
</tr>
<tr>
<td>Networking Labs (Modul)</td>
<td>65</td>
</tr>
<tr>
<td>Networking Security -- Theory and Praxis (Modul)</td>
<td>68</td>
</tr>
</tbody>
</table>

## O

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Risk Management I (Modul)</td>
<td>27</td>
</tr>
<tr>
<td>Operational Risk Management II (Modul)</td>
<td>28</td>
</tr>
<tr>
<td>Operations Research in Supply Chain Management and Health Care Management (Modul)</td>
<td>46</td>
</tr>
<tr>
<td>Organic Computing (Modul)</td>
<td>88</td>
</tr>
</tbody>
</table>

## P

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallelsverarbeitung (Modul)</td>
<td>80</td>
</tr>
<tr>
<td>Private Business Law (Modul)</td>
<td>92</td>
</tr>
<tr>
<td>Public Business Law (Modul)</td>
<td>93</td>
</tr>
<tr>
<td>Public Key Cryptography (Modul)</td>
<td>55</td>
</tr>
</tbody>
</table>

## Q

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative Marketing and OR (Modul)</td>
<td>45</td>
</tr>
</tbody>
</table>

## R

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Management and Econometrics in Finance (Modul)</td>
<td>52</td>
</tr>
</tbody>
</table>

## S

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic Technologies (Modul)</td>
<td>86</td>
</tr>
<tr>
<td>Service Management (Modul)</td>
<td>21</td>
</tr>
<tr>
<td>Service Technology (Modul)</td>
<td>81</td>
</tr>
<tr>
<td>Social Choice Theory (Modul)</td>
<td>44</td>
</tr>
<tr>
<td>Software Systems (Modul)</td>
<td>61</td>
</tr>
<tr>
<td>Software-Methodik (Modul)</td>
<td>62</td>
</tr>
<tr>
<td>Sprachverarbeitung (Modul)</td>
<td>75</td>
</tr>
<tr>
<td>Stochastic Methods in Risk Management (Modul)</td>
<td>51</td>
</tr>
<tr>
<td>Stochastic Modelling and Optimization (Modul)</td>
<td>49</td>
</tr>
<tr>
<td>Stochastic Models in Information Engineering and Management (Modul)</td>
<td>12</td>
</tr>
<tr>
<td>Strategic Corporate Management and Organization (Modul)</td>
<td>35</td>
</tr>
<tr>
<td>Strategic Decision Making and Organization Theory (Modul)</td>
<td>36</td>
</tr>
<tr>
<td>Strategy, Innovation and Data Analysis (Modul)</td>
<td>31</td>
</tr>
<tr>
<td>Successful Market Orientation (Modul)</td>
<td>33</td>
</tr>
</tbody>
</table>
T

Theory and Practice of Data Warehousing and Mining (Modul) 71
Theory and Practice of Database Techno (Modul) ............ 72

U

Ubiquitous Computing (Modul) ......................... 87

W

Web Applications and Web Technologies (Modul) ........ 59
Web Data Management (Modul) .......................... 84
Web Service Engineering (Modul) ....................... 83
Wireless Networking (Modul) ............................. 64