Module Handbook
Information Engineering and Management (M.Sc.)
Summer term 2010
Long version
04.03.2010
Table of Contents

1 Structure of the Master Programme in Information Engineering and Management

2 Module Handbook - a helpful guide throughout the studies

3 Actual Changes

4 Mandatory Modules

4.1 All Subjects

- IW4WWIW- Information Engineering and Management
- IW4WWOR- Stochastic Models in Information Engineering and Management
- IW4IWSEM- Interdisciplinary Seminar Module
- IW4IWMATHEMESIS- Master Thesis

5 Elective Modules

5.1 Business Administration

- IW4BWLSM1- Advanced CRM
- IW4BWLSM2- Electronic Markets
- IW4BWLSM3- Market Engineering
- IW4BWLSM4- Business & Service Engineering
- IW4BWLSM5- Communications & Markets
- IW4BWLSM6- Service Management
- IW4BWLFBV1- F1 (Finance)
- IW4BWLFBV2- F2 (Finance)
- IW4BWLFBV4- Applications of Actuarial Sciences I (BWL)
- IW4BWLFBV6- Insurance Management I
- IW4BWLFBV7- Insurance Management II
- IW4BWLFBV9- Operational Risk Management I
- IW4BWLFBV10- Operational Risk Management II
- IW4BWLMAR1- Marketing Planning
- IW4BWLMAR2- Market Research
- IW4BWLMAR3- Strategy, Innovation and Data Analysis
- IW4BWLMAR4- Behavioral Approaches in Marketing and Data Analysis
- IW4BWLMAR5- Successful Market Orientation
- IW4BWLMAR6- Entrepreneurship, Innovation and International Marketing
- IW4BWLUO1- Strategic Corporate Management and Organization
- IW4BWLUO3- Strategic Decision Making and Organization Theory
- IW4BWLIIP2- Industrial Production II
- IW4BWLIIP6- Industrial Production III
- IW4BWLIIP4- Basics of Liberalised Energy Markets
- IW4BWLIIP5- Energy Industry and Technology

5.2 Economics

- IW4VWL2- Applied Strategic Decisions
- IW4VWL7- Allocation and Equilibrium
- IW4VWL8- Macroeconomic Theory
- IW4VWL9- Social Choice Theory

5.3 Operations Research

- IW4OR1- Quantitative Marketing and OR
- IW4OR4- Operations Research in Supply Chain Management and Health Care Management
- IW4OR6- Mathematical Programming
- IW4OR7- Stochastic Modelling and Optimization

5.4 Statistics

- IW4STAT1- Mathematical and Empirical Finance
IW4STAT2: Statistical Methods in Risk Management .. 59
IW4STAT3: Risk Management and Econometrics in Finance 60

5.5 Informatics ... 61
IW4INSICH- Computer security ... 61
IW4INFKRYPT- Advanced Topics in Cryptography ... 62
IW4INPKK- Public Key Cryptography .. 63
IW4INAALGOA- Advanced Algorithms: Design and Analysis 64
IW4INAALGOB- Advanced Algorithms: Engineering and Applications 65
IW4INEALGT- Introduction to Algorithmics .. 66
IW4INAWALT- Web Applications and Web Technologies 67
IW4INCOMP1- Language Technology and Compiler .. 68
IW4INSWS- Software Systems ... 69
IW4INSWM- Software-Methodik ... 70
IW4INPWE- Applied Web Engineering .. 71
IW4INWN- Wireless Networking ... 72
IW4INNL- Networking Labs .. 73
IW4INFN- Future Networking ... 74
IW4INNW- Networking ... 75
IW4INNTPI- Networking Security – Theory and Praxis 76
IW4INIKDI- Innovative Concepts of Data and Information Management 77
IW4INDWATP- Theory and Practice of Data Warehousing and Mining 79
IW4INDBTP- Theory and Practice of Database Techniques 80
IW4INDITI- Dynamische IT-Infrastrukturen .. 81
IW4INBSV- Biosignalverarbeitung .. 82
IW4INSV- Sprachverarbeitung ... 83
IW4INBMHI- Motion centered Human-Machine Interface 84
IW4INKUF- Curves and Surfaces ... 85
IW4INACG- Algorithmen der Computergraphik .. 86
IW4INGAS- Foundations and Application of IT-Security 87
IW4INPV- Parallelverarbeitung .. 88
IW4INAIFB1- Service Technology ... 89
IW4INAIFB2- Cloud Computing .. 90
IW4INAIB3- Web Service Engineering ... 91
IW4INAIFB4- Web Data Management ... 92
IW4INAIFB5- Intelligent Systems and Services .. 93
IW4INAIFB6- Semantic Technologies .. 94
IW4INAIFB7- Ubiquitous Computing ... 95
IW4INAIFB8- Organic Computing ... 96
IW4INAIFB9- eCollaboration .. 97
IW4INAIFB10- Development of Distributed Business Information Systems ... 98

5.6 Law 99
IW4JURAM- Intellectual Property Law ... 99
IW4JURAS- Private Business Law ... 100
IW4JURAS- Public Business Law ... 101

6 Courses .. 103
6.1 Mandatory ... 103
26500- Business Administration in Information Engineering and Management 103
26450- Principles of Information Engineering and Management 105
25679- Markov Decision Models I ... 106
24018- Data Protection Law ... 107
24074- Networked IT-Infrastructures ... 108
24079- Algorithm Design .. 109
24079p- Practical Course in Algorithm Design ... 110
24079s- Seminar in Algorithm Design ... 111
24082- Public Media Law .. 112
24104- Wireless Sensor-Actuator-Networks .. 113
24105- Biosignale und Benutzerschnittstellen ... 114
24109- Parallel Algorithms ... 115
24110- High Performance Communication .. 116
24111- Workflowmanagement-Systems ... 117
24112- Multicore Computers and Computer Clusters 118
24114- Distributed Data Management ... 119
24117- Heterogene parallele Rechensysteme .. 120
24118- Data Warehousing and Mining ... 121
24119- Analysis and modeling of human motion sequences 122
24121- Copyright ... 123
24122- Subdivision algorithm .. 124
24124- Web Engineering ... 125
24125/24673- Reading Group ... 126
24126- Specification and Verification of Software ... 127
24128- Telematics ... 128
24132- Multimedia Communications ... 129
24134- Sprachtechnologie und Compiler ... 130
24136/24609- Trademark and Unfair Competition Law 131
24137- Signals and Codes ... 132
24140- Environmental Law ... 133
24141- Information Integration and Web Portals .. 134
24145- Principles of Automatic Speech Recognition 135
24146- Ubiquitous Computing .. 136
24146p- Advanced Lab in Ubiquitous Computing ... 137
24147- Consulting in Practice ... 138
24148- Traffic Telematics .. 139
24149- Network and IT-Security Management ... 140
24153/24604- Advanced Web Applications ... 141
24156- Empirical Software Engineering ... 142
24161- Mikroprozessoren II .. 143
24167- Employment Law I .. 144
24168- Tax Law I .. 145
24171- Randomized Algorithms .. 146
24173- Medical Simulation Systems I ... 147
24175- Meshes and point clouds ... 148
24280- Praktikum Multilingual Speech Processing 149
24288/24893- Motion based machine interface ... 150
24293/24649- Multicore Programming in Practice: Tools, Models, Languages 151
24298- Praktikum Automatic Speech Recognition 152
24304/24873- Practical Course Web Technologies .. 153
24373- Seminar Vom Mensch zum Roboter .. 154
24516- Database Systems .. 155
24519- Introduction in Computer Networks ... 156
24583- Computer Contract Law ... 157
24600- Multilingual Mensch-Maschine-Kommunikation 158
24601- Network Security: Architectures and Protocols 159
24605- Data Privacy Protection in Interconnected Information Systems 160
24606- Models of Parallel Processing ... 161
24612- Kognitive Modellierung ... 162
24614- Algorithms for Planar Graphs ... 163
24618- Graphisch-geometrische Algorithmen ... 164
24622- Algorithms in Cellular Automata ... 165
24623- Selected topics in Cryptography .. 166
24624- Rationale Splines ... 167
24625- Model Driven Software Development ... 168
24629- Symmetric encryption .. 169
24632- Telecommunications Law .. 170
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24634</td>
<td>Moderne Entwicklungsumgebung am Beispiel von .NET</td>
<td>171</td>
</tr>
<tr>
<td>24636</td>
<td>Performance Engineering of Enterprise Software Systems</td>
<td>172</td>
</tr>
<tr>
<td>24638</td>
<td>Algorithms for Routing</td>
<td>174</td>
</tr>
<tr>
<td>24643</td>
<td>Mobile Communications</td>
<td>175</td>
</tr>
<tr>
<td>24646</td>
<td>Tax Law II</td>
<td>176</td>
</tr>
<tr>
<td>24650</td>
<td>Civil Law for Advanced</td>
<td>177</td>
</tr>
<tr>
<td>24652</td>
<td>Computational complexity theory, with a view towards cryptography</td>
<td>178</td>
</tr>
<tr>
<td>24654</td>
<td>Component Based Software Engineering</td>
<td>179</td>
</tr>
<tr>
<td>24656</td>
<td>Embedded Security</td>
<td>180</td>
</tr>
<tr>
<td>24660</td>
<td>Software Development for modern, parallel platforms</td>
<td>181</td>
</tr>
<tr>
<td>24661</td>
<td>Patent Law</td>
<td>182</td>
</tr>
<tr>
<td>24666</td>
<td>European and International Law</td>
<td>183</td>
</tr>
<tr>
<td>24668</td>
<td>Employment Law II</td>
<td>184</td>
</tr>
<tr>
<td>24669</td>
<td>Simulation of Computer Networks</td>
<td>185</td>
</tr>
<tr>
<td>24670</td>
<td>Curves ans surfaces in CAD I</td>
<td>186</td>
</tr>
<tr>
<td>24671</td>
<td>Law of Contracts</td>
<td>187</td>
</tr>
<tr>
<td>24674</td>
<td>Next Generation Internet</td>
<td>188</td>
</tr>
<tr>
<td>24676</td>
<td>Medical Simulation Systems II</td>
<td>189</td>
</tr>
<tr>
<td>24793</td>
<td>Recht der Informationsordnung</td>
<td>190</td>
</tr>
<tr>
<td>24812</td>
<td>Internet Law</td>
<td>191</td>
</tr>
<tr>
<td>24815</td>
<td>Grundlagen des Patentrechts</td>
<td>192</td>
</tr>
<tr>
<td>24874</td>
<td>Practical Course Data Warehousing and Mining</td>
<td>193</td>
</tr>
<tr>
<td>24878</td>
<td>Praktikum Simulation von Rechnernetzen</td>
<td>194</td>
</tr>
<tr>
<td>24880/24291</td>
<td>Practical Course Web Engineering</td>
<td>195</td>
</tr>
<tr>
<td>24884</td>
<td>Practical course: Geometric Modeling</td>
<td>196</td>
</tr>
<tr>
<td>24905</td>
<td>Praktikum Biosignale</td>
<td>197</td>
</tr>
<tr>
<td>24941</td>
<td>Security</td>
<td>198</td>
</tr>
<tr>
<td>25050</td>
<td>Private and Social Insurance</td>
<td>199</td>
</tr>
<tr>
<td>25070p</td>
<td>Advanced Lab Applied Informatics</td>
<td>200</td>
</tr>
<tr>
<td>25070s</td>
<td>Seminar in Applied Informatics</td>
<td>201</td>
</tr>
<tr>
<td>25111</td>
<td>Nonlinear Optimization I</td>
<td>202</td>
</tr>
<tr>
<td>25113</td>
<td>Nonlinear Optimization II</td>
<td>203</td>
</tr>
<tr>
<td>25126</td>
<td>Special Topics in Optimization II</td>
<td>204</td>
</tr>
<tr>
<td>25128</td>
<td>Special Topics in Optimization I</td>
<td>205</td>
</tr>
<tr>
<td>25131</td>
<td>Seminar in Continuous Optimization</td>
<td>206</td>
</tr>
<tr>
<td>25134</td>
<td>Global Optimization I</td>
<td>207</td>
</tr>
<tr>
<td>25136</td>
<td>Global Optimization II</td>
<td>208</td>
</tr>
<tr>
<td>25138</td>
<td>Mixed Integer Programming I</td>
<td>209</td>
</tr>
<tr>
<td>25140</td>
<td>Mixed Integer Programming II</td>
<td>210</td>
</tr>
<tr>
<td>25154</td>
<td>Modern Market Research</td>
<td>211</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research</td>
<td>212</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research</td>
<td>213</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business & electronic Marketing</td>
<td>214</td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information</td>
<td>215</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing</td>
<td>216</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation</td>
<td>217</td>
</tr>
<tr>
<td>25166</td>
<td>Strategic and Innovative Decision Making in Marketing</td>
<td>218</td>
</tr>
<tr>
<td>25167</td>
<td>Behavioral Approaches in Marketing</td>
<td>219</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing</td>
<td>220</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research</td>
<td>221</td>
</tr>
<tr>
<td>25192</td>
<td>Master Seminar in Marketing</td>
<td>222</td>
</tr>
<tr>
<td>25193</td>
<td>Master Seminar zu Marktforschung</td>
<td>223</td>
</tr>
<tr>
<td>25194</td>
<td>Master Seminar in Quantitative Marketing and OR</td>
<td>224</td>
</tr>
<tr>
<td>25195</td>
<td>Master-Seminar Marketing Planning</td>
<td>225</td>
</tr>
<tr>
<td>25196</td>
<td>Master Seminar in Entrepreneurship, Innovation and International Marketing</td>
<td>226</td>
</tr>
<tr>
<td>25197</td>
<td>Seminar zum strategischen u. verhaltenswissenschaftlichen Marketing</td>
<td>227</td>
</tr>
<tr>
<td>25210</td>
<td>Management Accounting</td>
<td>228</td>
</tr>
<tr>
<td>25212</td>
<td>Valuation</td>
<td>229</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>25214</td>
<td>Corporate Financial Policy</td>
<td>230</td>
</tr>
<tr>
<td>25232</td>
<td>Financial Intermediation</td>
<td>231</td>
</tr>
<tr>
<td>25240</td>
<td>Market Microstructure</td>
<td>232</td>
</tr>
<tr>
<td>25293</td>
<td>Seminar in Finance</td>
<td>233</td>
</tr>
<tr>
<td>25296</td>
<td>Exchanges</td>
<td>234</td>
</tr>
<tr>
<td>25299</td>
<td>Business Strategies of Banks</td>
<td>235</td>
</tr>
<tr>
<td>25317</td>
<td>Multivariate Methods</td>
<td>236</td>
</tr>
<tr>
<td>25331</td>
<td>Stochastic Calculus and Finance</td>
<td>237</td>
</tr>
<tr>
<td>25337</td>
<td>Stochastic and Econometric Models in Credit Risk Management</td>
<td>238</td>
</tr>
<tr>
<td>25342</td>
<td>Operational Risk and Extreme Value Theory</td>
<td>239</td>
</tr>
<tr>
<td>25350</td>
<td>Finance and Banking</td>
<td>240</td>
</tr>
<tr>
<td>25353</td>
<td>Statistical Methods in Financial Risk Management</td>
<td>241</td>
</tr>
<tr>
<td>25357</td>
<td>Portfolio and Asset Liability Management</td>
<td>243</td>
</tr>
<tr>
<td>25359</td>
<td>Financial Time Series and Econometrics</td>
<td>244</td>
</tr>
<tr>
<td>25369</td>
<td>Game Theory II</td>
<td>245</td>
</tr>
<tr>
<td>25373</td>
<td>Experimental Economics</td>
<td>246</td>
</tr>
<tr>
<td>25375</td>
<td>Data Mining</td>
<td>247</td>
</tr>
<tr>
<td>25381</td>
<td>Advanced Econometrics of Financial Markets</td>
<td>248</td>
</tr>
<tr>
<td>25408</td>
<td>Auction Theory</td>
<td>249</td>
</tr>
<tr>
<td>25486</td>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>250</td>
</tr>
<tr>
<td>25488</td>
<td>Tactical and Operational Supply Chain Management</td>
<td>251</td>
</tr>
<tr>
<td>25491</td>
<td>Seminar in Discrete Optimization</td>
<td>252</td>
</tr>
<tr>
<td>25493</td>
<td>Enterprise Hospital</td>
<td>253</td>
</tr>
<tr>
<td>25494</td>
<td>Production Planning and Scheduling</td>
<td>254</td>
</tr>
<tr>
<td>25495</td>
<td>Operations Research in Health Care Management</td>
<td>255</td>
</tr>
<tr>
<td>25497</td>
<td>Software Laboratory: OR Models II</td>
<td>256</td>
</tr>
<tr>
<td>25498</td>
<td>Practical seminar: Health Care Management (with Case Studies)</td>
<td>257</td>
</tr>
<tr>
<td>25517</td>
<td>Welfare Economics</td>
<td>258</td>
</tr>
<tr>
<td>25525</td>
<td>Game Theory I</td>
<td>259</td>
</tr>
<tr>
<td>25527</td>
<td>Advanced Topics in Economic Theory</td>
<td>260</td>
</tr>
<tr>
<td>25537</td>
<td>Decision Theory and Objectives in Applied Politics</td>
<td>261</td>
</tr>
<tr>
<td>25539</td>
<td>Mathematical Theory of Democracy</td>
<td>262</td>
</tr>
<tr>
<td>25543</td>
<td>Theory of Economic Growth</td>
<td>263</td>
</tr>
<tr>
<td>25549</td>
<td>Theory of Business Cycles</td>
<td>264</td>
</tr>
<tr>
<td>25659</td>
<td>Quality Control II</td>
<td>265</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I</td>
<td>266</td>
</tr>
<tr>
<td>25665</td>
<td>Simulation II</td>
<td>267</td>
</tr>
<tr>
<td>25674</td>
<td>Quality Control I</td>
<td>268</td>
</tr>
<tr>
<td>25682</td>
<td>Markov Decision Models II</td>
<td>269</td>
</tr>
<tr>
<td>25687</td>
<td>Optimization in a Random Environment</td>
<td>270</td>
</tr>
<tr>
<td>25688</td>
<td>OR-oriented modeling and analysis of real problems (project)</td>
<td>271</td>
</tr>
<tr>
<td>25700sp</td>
<td>Special Topics of Efficient Algorithms</td>
<td>272</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications</td>
<td>273</td>
</tr>
<tr>
<td>25704</td>
<td>Organic Computing</td>
<td>274</td>
</tr>
<tr>
<td>25706</td>
<td>Nature-inspired Optimisation</td>
<td>276</td>
</tr>
<tr>
<td>25722</td>
<td>Distributed Database Systems: Basic Technology for e-Business</td>
<td>277</td>
</tr>
<tr>
<td>25724</td>
<td>Database Systems and XML</td>
<td>278</td>
</tr>
<tr>
<td>25735</td>
<td>Document Management and Groupware Systems</td>
<td>279</td>
</tr>
<tr>
<td>25742</td>
<td>Knowledge Discovery</td>
<td>280</td>
</tr>
<tr>
<td>25748</td>
<td>Semantic Web Technologies I</td>
<td>281</td>
</tr>
<tr>
<td>25750</td>
<td>Semantic Web Technologies II</td>
<td>282</td>
</tr>
<tr>
<td>25760</td>
<td>Complexity Management</td>
<td>283</td>
</tr>
<tr>
<td>25762</td>
<td>Intelligent Systems in Finance</td>
<td>285</td>
</tr>
<tr>
<td>25764</td>
<td>IT Complexity in Practice</td>
<td>287</td>
</tr>
<tr>
<td>25770</td>
<td>Service Oriented Computing 1</td>
<td>288</td>
</tr>
<tr>
<td>25772</td>
<td>Service Oriented Computing 2</td>
<td>289</td>
</tr>
<tr>
<td>25774</td>
<td>Web Service Engineering</td>
<td>290</td>
</tr>
<tr>
<td>Code</td>
<td>Module</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>25776</td>
<td>Cloud Computing</td>
<td>291</td>
</tr>
<tr>
<td>25784</td>
<td>Management of IT-Projects</td>
<td>292</td>
</tr>
<tr>
<td>25788</td>
<td>Strategic Management of Information Technology</td>
<td>293</td>
</tr>
<tr>
<td>25791</td>
<td>n.n.</td>
<td>294</td>
</tr>
<tr>
<td>25820</td>
<td>Lab Class Web Services</td>
<td>295</td>
</tr>
<tr>
<td>25860</td>
<td>Special Topics of Knowledge Management</td>
<td>296</td>
</tr>
<tr>
<td>25900</td>
<td>Management and Strategy</td>
<td>297</td>
</tr>
<tr>
<td>25902</td>
<td>Managing Organizations</td>
<td>298</td>
</tr>
<tr>
<td>25904</td>
<td>Organization Theory</td>
<td>299</td>
</tr>
<tr>
<td>25908</td>
<td>Modeling Strategic Decision Making</td>
<td>300</td>
</tr>
<tr>
<td>25912</td>
<td>Value-Based Instruments of Corporate Strategy</td>
<td>301</td>
</tr>
<tr>
<td>25915/25916</td>
<td>Seminar: Management and Organization</td>
<td>302</td>
</tr>
<tr>
<td>25952</td>
<td>Planning and Management of Industrial Plants</td>
<td>303</td>
</tr>
<tr>
<td>25954</td>
<td>Production and Logistics Management</td>
<td>304</td>
</tr>
<tr>
<td>25958</td>
<td>Strategic Aspects of Energy Economy</td>
<td>305</td>
</tr>
<tr>
<td>25959</td>
<td>Energy Policy</td>
<td>306</td>
</tr>
<tr>
<td>25961</td>
<td>Supply Chain Management with Advanced Planning Systems</td>
<td>307</td>
</tr>
<tr>
<td>25962</td>
<td>Emissions into the Environment</td>
<td>308</td>
</tr>
<tr>
<td>25963</td>
<td>The Management of R&D Projects with Case Studies</td>
<td>309</td>
</tr>
<tr>
<td>25975</td>
<td>Computer-based Production Planning and Control, Process Simulation and Supply Chain Management</td>
<td>310</td>
</tr>
<tr>
<td>25995</td>
<td>Material Flow Analysis and Life Cycle Assessment</td>
<td>311</td>
</tr>
<tr>
<td>25998</td>
<td>Basics of Liberalised Energy Markets</td>
<td>312</td>
</tr>
<tr>
<td>26000</td>
<td>Technological Change in Energy Industry</td>
<td>313</td>
</tr>
<tr>
<td>26001</td>
<td>Heat Economy</td>
<td>314</td>
</tr>
<tr>
<td>26002</td>
<td>Energy Systems Analysis</td>
<td>315</td>
</tr>
<tr>
<td>26003</td>
<td>Energy and Environment</td>
<td>316</td>
</tr>
<tr>
<td>26020</td>
<td>Energy Trade and Risk Management</td>
<td>317</td>
</tr>
<tr>
<td>26022</td>
<td>Gas-Markets</td>
<td>318</td>
</tr>
<tr>
<td>26025</td>
<td>Simulation Game in Energy Economics</td>
<td>319</td>
</tr>
<tr>
<td>26232</td>
<td>Telecommunication and Internet Economics</td>
<td>320</td>
</tr>
<tr>
<td>26234</td>
<td>Regulation Theory and Practice</td>
<td>321</td>
</tr>
<tr>
<td>26310</td>
<td>Life and Pensions</td>
<td>322</td>
</tr>
<tr>
<td>26312</td>
<td>Reinsurance</td>
<td>323</td>
</tr>
<tr>
<td>26316</td>
<td>Insurance Optimisation</td>
<td>324</td>
</tr>
<tr>
<td>26320</td>
<td>Insurance Accounting</td>
<td>325</td>
</tr>
<tr>
<td>26323</td>
<td>Insurance Marketing</td>
<td>326</td>
</tr>
<tr>
<td>26324</td>
<td>Insurance Production</td>
<td>327</td>
</tr>
<tr>
<td>26326</td>
<td>Enterprise Risk Management</td>
<td>328</td>
</tr>
<tr>
<td>26327</td>
<td>Service Management</td>
<td>329</td>
</tr>
<tr>
<td>26328</td>
<td>Multidisciplinary Risk Research</td>
<td>330</td>
</tr>
<tr>
<td>26335</td>
<td>Insurance Risk Management</td>
<td>331</td>
</tr>
<tr>
<td>26340</td>
<td>Saving Societies</td>
<td>332</td>
</tr>
<tr>
<td>26350</td>
<td>Current Issues in the Insurance Industry</td>
<td>333</td>
</tr>
<tr>
<td>26353</td>
<td>International Risk Transfer</td>
<td>334</td>
</tr>
<tr>
<td>26354</td>
<td>Risk Management of Microfinance and Private Households</td>
<td>335</td>
</tr>
<tr>
<td>26355</td>
<td>Public Sector Risk Management</td>
<td>336</td>
</tr>
<tr>
<td>26360</td>
<td>Insurance Contract Law</td>
<td>337</td>
</tr>
<tr>
<td>26393</td>
<td>Project Work in Risk Research</td>
<td>338</td>
</tr>
<tr>
<td>26395</td>
<td>Risk Communication</td>
<td>339</td>
</tr>
<tr>
<td>26452</td>
<td>Management of Business Networks</td>
<td>340</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading</td>
<td>341</td>
</tr>
<tr>
<td>26456</td>
<td>Business Models in the Internet: Planning and Implementation</td>
<td>342</td>
</tr>
<tr>
<td>26458</td>
<td>Computational Economics</td>
<td>343</td>
</tr>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions</td>
<td>344</td>
</tr>
<tr>
<td>26462</td>
<td>Communications Economics</td>
<td>345</td>
</tr>
<tr>
<td>26466</td>
<td>eServices</td>
<td>346</td>
</tr>
<tr>
<td>26468</td>
<td>Service Innovation</td>
<td>347</td>
</tr>
<tr>
<td>Module Code</td>
<td>Module Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>26502</td>
<td>Electronic Markets (Principles)</td>
<td>351</td>
</tr>
<tr>
<td>26504</td>
<td>Electronic Markets: Institutions and Market Mechanisms</td>
<td>353</td>
</tr>
<tr>
<td>26506</td>
<td>Personalization and Recommender Systems</td>
<td>356</td>
</tr>
<tr>
<td>26508</td>
<td>Customer Relationship Management</td>
<td>358</td>
</tr>
<tr>
<td>26510</td>
<td>Master Seminar in Information Engineering and Management</td>
<td>359</td>
</tr>
<tr>
<td>26518</td>
<td>Social Network Analysis in CRM</td>
<td>360</td>
</tr>
<tr>
<td>26530</td>
<td>Interdisciplinary Seminar in Information Engineering and Management</td>
<td>362</td>
</tr>
<tr>
<td>26531</td>
<td>Business Dynamics</td>
<td>363</td>
</tr>
<tr>
<td>26550</td>
<td>Derivatives</td>
<td>364</td>
</tr>
<tr>
<td>26555</td>
<td>Asset Pricing</td>
<td>365</td>
</tr>
<tr>
<td>26560</td>
<td>Fixed Income Securities</td>
<td>366</td>
</tr>
<tr>
<td>26565</td>
<td>Credit Risk</td>
<td>367</td>
</tr>
<tr>
<td>26570</td>
<td>International Finance</td>
<td>368</td>
</tr>
<tr>
<td>ADG</td>
<td>Applied Differential Geometry</td>
<td>369</td>
</tr>
<tr>
<td>AlgAS</td>
<td>Algorithms for Ad-Hoc and Sensor Networks</td>
<td>370</td>
</tr>
<tr>
<td>AlgVG</td>
<td>Algorithms for Visualization of Graphs</td>
<td>371</td>
</tr>
<tr>
<td>ECG</td>
<td>Einführung in die Computergraphik</td>
<td>372</td>
</tr>
<tr>
<td>GVsem</td>
<td>Seminar Geometric computing</td>
<td>373</td>
</tr>
<tr>
<td>KFCAD2</td>
<td>Curves and Surfaces in CAD II</td>
<td>374</td>
</tr>
<tr>
<td>KFCAD3</td>
<td>Curves and Surfaces in CAD III</td>
<td>375</td>
</tr>
<tr>
<td>KbSWA</td>
<td>Component Based Software Architecture</td>
<td>376</td>
</tr>
<tr>
<td>MOD</td>
<td>Moving Objects Databases</td>
<td>378</td>
</tr>
<tr>
<td>PKK</td>
<td>Public Key Cryptography</td>
<td>379</td>
</tr>
<tr>
<td>PLV</td>
<td>Selling IT-Solutions Professionally</td>
<td>380</td>
</tr>
<tr>
<td>PMP</td>
<td>Project Management in Practice</td>
<td>381</td>
</tr>
<tr>
<td>PrakATM</td>
<td>Lab Advanced Telematics</td>
<td>382</td>
</tr>
<tr>
<td>PrakKryp</td>
<td>Laboratory in Cryptography</td>
<td>383</td>
</tr>
<tr>
<td>SWSich</td>
<td>Software Security</td>
<td>384</td>
</tr>
<tr>
<td>SWT2</td>
<td>Software Engineering II</td>
<td>385</td>
</tr>
<tr>
<td>SemAIFB1</td>
<td>Seminar in Enterprise Information Systems</td>
<td>386</td>
</tr>
<tr>
<td>SemAIFB2</td>
<td>Seminar Efficient Algorithms</td>
<td>387</td>
</tr>
<tr>
<td>SemAIFB3</td>
<td>Seminar Complexity Management</td>
<td>388</td>
</tr>
<tr>
<td>SemAIFB4</td>
<td>Seminar Knowledge Management</td>
<td>389</td>
</tr>
<tr>
<td>SemAIFB5</td>
<td>Seminar eOrganization</td>
<td>390</td>
</tr>
<tr>
<td>SemAKTSV</td>
<td>Seminar Aktuelle Themen der Sprachverarbeitung</td>
<td>391</td>
</tr>
<tr>
<td>SemFBV1</td>
<td>Seminar in Insurance Management</td>
<td>392</td>
</tr>
<tr>
<td>SemFBV2</td>
<td>Seminar in Operational Risk Management</td>
<td>393</td>
</tr>
<tr>
<td>SemFBV3</td>
<td>Seminar in Risk Theory and Actuarial Science</td>
<td>394</td>
</tr>
<tr>
<td>SemIIIP2</td>
<td>Seminar in Industrial Production</td>
<td>395</td>
</tr>
<tr>
<td>SemIW</td>
<td>Seminar Information Engineering and Management</td>
<td>396</td>
</tr>
<tr>
<td>SemSich</td>
<td>Seminar in Security</td>
<td>397</td>
</tr>
<tr>
<td>SemWIOR1</td>
<td>Seminar Stochastic Models</td>
<td>398</td>
</tr>
<tr>
<td>SemWIOR2</td>
<td>Seminar Economic Theory</td>
<td>399</td>
</tr>
<tr>
<td>SemWIOR3</td>
<td>Seminar in Experimental Economics</td>
<td>400</td>
</tr>
<tr>
<td>SemWIOR4</td>
<td>Seminar in Game and Decision Theory</td>
<td>401</td>
</tr>
<tr>
<td>SemiKryp2</td>
<td>Seminar in Cryptography</td>
<td>402</td>
</tr>
<tr>
<td>SemiKryp3</td>
<td>Seminar in Cryptography</td>
<td>403</td>
</tr>
<tr>
<td>WSUW</td>
<td>How statistics begins to understand the difference between cause and effect</td>
<td>404</td>
</tr>
<tr>
<td>db_impl</td>
<td>Database Implementation and Tuning</td>
<td>405</td>
</tr>
<tr>
<td>dbdep</td>
<td>Deployment of Database Systems</td>
<td>406</td>
</tr>
<tr>
<td>dbprakt</td>
<td>Practical Course Database Systems</td>
<td>407</td>
</tr>
<tr>
<td>n.n.-</td>
<td>Software Laboratory: Simulation</td>
<td>408</td>
</tr>
<tr>
<td>n.n.-</td>
<td>Location Theory</td>
<td>409</td>
</tr>
<tr>
<td>n.n.-</td>
<td>Software Laboratory: SAP APO</td>
<td>410</td>
</tr>
<tr>
<td>n.n.-</td>
<td>Graph Theory</td>
<td>411</td>
</tr>
<tr>
<td>Course Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>n.n.- Operations Research in Supply Chain Management</td>
<td>412</td>
<td></td>
</tr>
<tr>
<td>praktvd- Practical Course Distributed Data Management</td>
<td>413</td>
<td></td>
</tr>
<tr>
<td>rechtsem- Seminar in Law</td>
<td>414</td>
<td></td>
</tr>
<tr>
<td>xAlgoEng- Algorithm Engineering</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>Appendix: Study- and Examination Regulation (15/04/2009, in German)</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>431</td>
<td></td>
</tr>
</tbody>
</table>
Structure of the Master Programme in Information Engineering and Management

The Master programme in *Information Engineering and Management* has 4 terms. The terms 1 to 3 of the programme are method-oriented and provide the students with state-of-the-art knowledge in informatics, business administration, operations research, economics, statistics and law. The interdisciplinary approach is especially emphasized in the interdisciplinary seminar.

It is recommended to study the courses in the following sequence:

- The (mandatory) modules in business administration and operations research should be studied in the first two terms of the programme.
- The interdisciplinary seminar should be taken in the third term of the programme.
- The (elective) modules from business administration, economics, operations research, and statistics, from informatics, and from law should be studied in the first three terms of the programme.
- The 4-th term is reserved for the Master Thesis in which the student proves his ability for independent scientific research in informatics, the economic sciences, and law.

Figure 1 shows a summary of this recommendation with the structure of the disciplines and with credit points allocated to the modules of the programme.

![Figure 1: Structure of the Master Programme in Information Engineering and Management (Recommendation)](image)

Abbildung 1: Structure of the Master Programme in Information Engineering and Management (Recommendation)
Module Handbook - a helpful guide throughout the studies

The programme exists of several subjects (e.g. business administration, economics, operations research). Every subject is split into modules and every module itself exists of one or more interrelated courses. The extent of every module is indicated by credit points (CP), which will be credited after the successful completion of the module. Some of the modules are obligatory. According to the interdisciplinary character of the programme, a great variety of individual specialization and deepening possibilities exists for a large number of modules. This enables the student to customize content and time schedule of the programme according to personal needs, interest and job perspective. The module handbook describes the modules belonging to the programme. It describes:

- the structure of the modules
- the extent (in CP),
- the dependencies of the modules,
- the learning outcomes,
- the assessment and examinations.

The module handbook serves as a necessary orientation and as a helpful guide throughout the studies. The module handbook does not replace the course catalogue, which provides important information concerning each semester and variable course details (e.g. time and location of the course).

Begin and completion of a module

Every module and every course is allowed to be credited only once. The decision whether the course is assigned to one module or the other (e.g. if a course is selectable in two or more modules) is made by the student at the time of signing in for the corresponding exam. The module is succeeded, if the general exam of the module and/or if all of its relevant partial exams have been passed (grade min 4.0). In order to that the minimum requirement of credits of this module have been met.

General exams and partial exams

The module exam can be taken in a general exam or several partial exams. If the module exam is offered as a general exam, the entire content of the module will be reviewed in a single exam. If the module exam exists of partial exams, the content of each course will be reviewed in corresponding partial exams. The registration for the examinations takes place online via the self-service function for students. The following functions can be accessed on https://studium.kit.edu/meinsemester/Seiten/pruefungsanmeldung.aspx:

- Sign in and sign off exams
- Retrieve examination results
- Print transcript of records

For further and more detailed information also see https://zvwgate.zvw.uni-karlsruhe.de/download/leitfaden_studierende.pdf

Repeating exams

Principally, a failed exam can repeated only once. If the repeat examination (including an eventually provided verbal repeat examination) will be failed as well, the examination claim is lost. Requests for a second repetition of an exam require the approval of the examination committee. A request for a second repetition has to be made without delay after loosing the examination claim. A counseling interview is mandatory. For further information see http://www.wiwi.kit.edu/serviceHinweise.php.

Bonus accomplishments and additional accomplishments

Bonus accomplishments can be achieved on the basis of entire modules or within modules, if there are alternatives at choice. Bonus accomplishments can improve the module grade and overall grade by taking into account only the best possible combination of all courses when calculating the grades. The student has to declare a Bonus accomplishment as such at the time of registration for the exams. Exams, which have been registered as Bonus accomplishments, are subject to examination regulations. Therefore, a failed exam has to be repeated. Failing the repeat examination implies the loss of the examination claim.

Additional accomplishments are voluntarily taken exams, which have no impact on the overall grade of the student.
and can take place on the level of single courses or on entire modules. It is also mandatory to declare an additional accomplishment as such at the time of registration for an exam. Up to 2 modules with a minimum of 9 CP may appear additionally in the certificate. After the approval of the examination committee, it is also possible to include modules in the certificate, which are not defined in the module handbook. Single additional courses will be recorded in the transcript of records. Courses and modules, which have been declared as bonus accomplishments, can be changed to additional accomplishments.

Further information

More detailed information about the legal and general conditions of the programme can be found in the examination regulation of the programme (in the appendix).

Used abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP/CP</td>
<td>Credit Points/ECTS</td>
<td>Leistungspunkte/ECTS</td>
<td></td>
</tr>
<tr>
<td>LV</td>
<td>course</td>
<td>Lehrveranstaltung</td>
<td></td>
</tr>
<tr>
<td>RÜ</td>
<td>computing lab</td>
<td>Rechnerübung</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>summer term</td>
<td>Sommersemester</td>
<td></td>
</tr>
<tr>
<td>Sem.</td>
<td>semester/term</td>
<td>Semester</td>
<td></td>
</tr>
<tr>
<td>ER/SPO</td>
<td>examination regulations</td>
<td>Studien- und Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>KS/SQ</td>
<td>key skills</td>
<td>Schlüsselqualifikationen</td>
<td></td>
</tr>
<tr>
<td>SWS</td>
<td>contact hour</td>
<td>Semesterwochenstunde</td>
<td></td>
</tr>
<tr>
<td>Ü</td>
<td>excercise course</td>
<td>Übung</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>lecture</td>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>winter term</td>
<td>Wintersemester</td>
<td></td>
</tr>
</tbody>
</table>
3 Actual Changes

Important changes are pointed out in this section in order to provide a better orientation. Although this process was done with great care, other/minor changes may exist.

Advanced CRM [IW4BWLISM1] (S. 24)

Anmerkungen

The course *Business Dynamics* was added to the module.

Electronic Markets [IW4BWLISM2] (S. 25)

Anmerkungen

The course *Electronic Markets: Institutions and Market Mechanisms* will not be offered any more. An exam will be offered in september 2010.

The courses *Business Dynamics* and *Telecommunication and Internet Economics* were added to the module.

Business & Service Engineering [IW4BWLISM4] (S. 27)

Anmerkungen

F2 (Finance) [IW4BWLFBV2] (S. 31)

Anmerkungen

Applications of Actuarial Sciences I (BWL) [IW4BWLFBV4] (S. 32)

Anmerkungen

The course *Saving Societies [26340]* will irregularly not be held in the summer term 2010.

Insurance Management I [IW4BWLFBV6] (S. 33)

Anmerkungen

The courses *Insurance Marketing [26323]*, *Insurance Production [26324]*, and *Service Management [26327]* are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de

The course *Insurance Contract Law [26360]* will not be held any more after winter term 2009/10. There will be no more exams for this course after the exam period of summer term 2010.

The courses *Private and Social Insurance, Insurance Risk Management, and Current Issues in the Insurance Industry* have been added to the module.

Insurance Management II [IW4BWLFBV7] (S. 34)

Anmerkungen

The courses *Insurance Marketing [26323]*, *Insurance Production [26324]*, and *Service Management [26327]* are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de

The course *Risk Controlling in Insurance Groups* is not offered in this module.

The course *Insurance Contract Law [26360]* will not be held any more after winter term 2009/10. There will be no more exams for this course after the exam period of summer term 2010.

The module is offered as an extension module to *Insurance Management I* from summer term 2010 on. Students that already began this module have been assigned to the module *Insurance Management I*.

Operational Risk Management I [IW4BWLFBV9] (S. 35)

Anmerkungen

The courses *Multidisciplinary Risk Research [26328]*, *Risk Communication [26395]*, *Risk Management of Microfinance and Private Households [26354]* and *Project Work in Risk Research [26393]* are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de

The course *Public Sector Risk Management [26355]* is offered in summer term 2010 for the last time, no further exams will be offered after the two exams for the course of summer term 2010. The courses *Multidisciplinary Risk Research, Risk Management of Microfinance and Private Households, and Project Work in Risk Research* have been added to the module.
Operational Risk Management II [IW4BWLFBV10] (S. 36)

Anmerkungen

The courses Multidisciplinary Risk Research [26328], Risk Communication [26395], Risk Management of Microfinance and Private Households [26354] and Project Work in Risk Research [26393] are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de

The course Public Sector Risk Management [26355] is offered in summer term 2010 for the last time, no further exams will be offered after the two exams for the course of summer term 2010.

The module is offered as an extension module to Operational Risk Management I from summer term 2010 on. Students that already began this module have been assigned to the module Operational Risk Management I.

Allocation and Equilibrium [IW4VWL7] (S. 50)

Anmerkungen

The lecture Advanced Topics in Economic Theory [25527] was formerly named Advanced Microeconomic Theory.

Advanced Topics in Economic Theory [25527] (S. 260)

Anmerkungen

The lecture will be offered in the summer term 2010 for the first time.

Up to now, the lecture was named Advanced Microeconomic Theory.

Saving Societies [26340] (S. 332)

Anmerkungen

The course will irregularly not be offered in the summer term 2010.

Public Sector Risk Management [26355] (S. 336)

Anmerkungen

Block course. Please register at the secretariat of the chair of insurance science.

The course Public Sector Risk Management [26355] is offered in summer term 2010 for the last time. No more exams will be held after the exams for this term.

Insurance Contract Law [26360] (S. 337)

Anmerkungen

Block course. To attend the course please register at the secretariat of the chair of insurance science.

The course will not be held any more after winter term 2009/10, the exam will not be offered after the exam period of summer term 2010.

Project Work in Risk Research [26393] (S. 338)

Anmerkungen

This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de

To attend the course please register at the secretariat of the chair of insurance science.

The course is held in the summer term 2010 together with the Research Colloquium for Doctoral Students.

Anmerkungen

The course will not be offered any more. An exam will be offered in september 2010.

Anmerkungen

The course is not lectured in the summer term 2010.

Algorithms for Visualization of Graphs [AlgVG] (S. 371)

Anmerkungen

The course is not lectured in the summer term 2010.
The course is not lectured in the summer term 2010.
4 Mandatory Modules

4.1 All Subjects

Module: Information Engineering and Management

Module key: [IW4WWIW]

Subject: Business Administration (obligatory)
Module coordination: Christof Weinhardt, Andreas Geyer-Schulz
Credit points (CP): 10

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• understands and analyzes the central role of information as an economic good, a production factor, and a competitive factor,
• identifies, evaluates, prices, and markets information goods,
• evaluates informations flows and the value of information in an interdisciplinary context,
• works out solutions in teams,
• transfers models from Business Administration to situations in business whose basic conditions are changed due to the implementation of information and communication technology,
• applies methods from Business Administration (Decision theory, game theory, operations research, etc.) to questions of Information Engineering and Management,
• analyzes the potential to automate the decision making process in businesses by data bases,
• describes the process to extract relevant data for decision making from operational accounting systems.

Content
The module Information Engineering and Management comprises the lectures Principles of Information Engineering and Management [26450] and Business Administration in Information Engineering and Management [26500].

In the lecture Principles of Information Engineering and Management, a clear distinction of information as a production, competitive, and economic good is introduced. The central role of information is explained through the concept of the “information lifecycle”. The single phases from existence/generation through allocation and evaluation until the distribution and usage of information are analyzed from the business administration perspective and the microeconomic perspective. The state of the art of economic theory is presented throughout the different phases of the information lifecycle. The lecture is complemented by accompanying exercise courses.

In the lecture Business Administration in Information Engineering and Management, classical Business Administration is applied to businesses in an information- and communication-technological environment. The process to extract relevant data for decision making from operational accounting systems receives special attention. In order to do so, topics such as activity-based costing and transaction costs models are addressed. The automation of the decision making process in businesses by data bases is another focus of the module. To solve such issues within a company, relevant methods such as decision theory and game theory are lectured. Finally, complex business relevant questions in a dynamically changing environment are addressed by presenting models and methods from system dynamics.

Courses in module Information Engineering and Management [IW4WWIW]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C/E/T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26450</td>
<td>Principles of Information Engineering and Ma-</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>nagement (S. 105)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26500</td>
<td>Business Administration in Information Engine-</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>eering and Management (S. 103)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks
None.
Module: Stochastic Models in Information Engineering and Management

Module key: [IW4WWOR]

Subject: Operations Research (obligatory)
Module coordination: Karl-Heinz Waldmann
Credit points (CP): 5

Learning Control / Examinations
The assessment of the module is in a written examination according to §4(2), 1 of the examination regulation. In each term (usually in March and July), one examination is held for both courses. The grade of the module corresponds to the grade of this examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques of stochastic modelling. Students are able to properly describe and analyze basic stochastic systems.

Content
Markov chains are no longer a nice theory but an important tool in order to model, analyse, and optimize a stochastic system as it evolves over time.
Topics overview: Markov chains, Poisson Processes.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25679</td>
<td>Markov Decision Models I (S. 106)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>

Module Handbook: Version 04.03.2010
Information Engineering and Management (M.Sc.)
Module: Interdisciplinary Seminar Module

Module key: [IW4IWSEM]

Module coordination: Studiendekan (Fak. f. Wirtschaftswissenschaften), Martina Zitterbart
Credit points (CP): 6

Learning Control / Examinations
The assessment in this module is regulated by § 4 (2) 3, of the examination regulation for the Master Information Engineering and Management. Further details will be defined for each seminar separately.

Prerequisites
Students should have experience with literature search in informatics, economics, business administration, and law. They should know the methods of scientific work, presentation techniques for scientific presentations, as well as the form requirements of scientific publications (guide line for authors) and review processes for scientific publications. The interdisciplinary seminar should be taken as last course of the compulsory program in the 3rd term of the Master programme.

Conditions
See German version.

Learning Outcomes
- In the interdisciplinary seminar Information Engineering and Management students investigate a recent topic in Information Engineering and Management with the scientific methods of the disciplines of the degree programme.
- They develop interdisciplinary solution approaches on the base of the state-of-the art in the disciplines.
- They present selected solution approaches and methods on an expert level and they defend and rationalize the selected solution approaches and methods in a discussion with scientific arguments.
- They write a seminar paper whose form is appropriate for a scientific journal.
- They revise their paper taking into account the reviews of their tutors in an appropriate manner.

Content
The Students will be coached by a group of tutors which consists in each case of an tutor of informatics, economics and law.
<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26530</td>
<td>Interdisciplinary Seminar in Information Engineering and Management (S. 362)</td>
<td>2</td>
<td>W/S</td>
<td>6</td>
<td>A. Geyer-Schulz, T. Dreier</td>
</tr>
<tr>
<td>26510</td>
<td>Master Seminar in Information Engineering and Management (S. 359)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>SeminarIW</td>
<td>Seminar in Information Engineering and Management (S. 396)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>C. Weinhardt</td>
</tr>
<tr>
<td>SeminarIP2</td>
<td>Seminar in Industrial Production (S. 395)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>F. Schultmann, M. Fröhling, M. Hiete</td>
</tr>
<tr>
<td>25195</td>
<td>Master-Seminar Marketing Planning (S. 225)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25192</td>
<td>Master Seminar in Marketing (S. 222)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25197</td>
<td>Seminar zum strategischen u. verhaltenswiss. Marketing (S. 227)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>25193</td>
<td>Master Seminar zu Marktforschung (S. 223)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25196</td>
<td>Master Seminar in Entrepreneurship, Innovation and International Marketing (S. 226)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>Gaul</td>
</tr>
<tr>
<td>25194</td>
<td>Master Seminar in Quantitative Marketing and OR (S. 224)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25915/25916</td>
<td>Seminar: Management and Organization (S. 302)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25293</td>
<td>Seminar in Finance (S. 233)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
</tr>
<tr>
<td>SeminarFBV1</td>
<td>Seminar in Insurance Management (S. 392)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>U. Werner</td>
</tr>
<tr>
<td>SeminarFBV2</td>
<td>Seminar in Operational Risk Management (S. 393)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>U. Werner</td>
</tr>
<tr>
<td>SeminarFBV3</td>
<td>Seminar in Risk Theory and Actuarial Science (S. 394)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>C. Hipp, N.N.</td>
</tr>
<tr>
<td>SeminarWIOR3</td>
<td>Seminar in Experimental Economics (S. 400)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>SeminarWIOR4</td>
<td>Seminar in Game and Decision Theory (S. 401)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>SeminarWIOR2</td>
<td>Seminar Economic Theory (S. 399)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>25131</td>
<td>Seminar in Continuous Optimization (S. 206)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>O. Stein</td>
</tr>
<tr>
<td>SeminarWior1</td>
<td>Seminar in Stochastic Models (S. 398)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25491</td>
<td>Seminar in Discrete Optimization (S. 252)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>SeminarAIFB1</td>
<td>Seminar in Enterprise Information Systems (S. 386)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>R. Studer, A. Oberweis, W. Stucky, T. Wolf, R. Kneuper</td>
</tr>
<tr>
<td>SeminarAIFB2</td>
<td>Seminar Efficient Algorithms (S. 387)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>SeminarAIFB3</td>
<td>Seminar Complexity Management (S. 388)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>D. Seese</td>
</tr>
<tr>
<td>SeminarAIFB4</td>
<td>Seminar Knowledge Management (S. 389)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>R. Studer</td>
</tr>
<tr>
<td>26470</td>
<td>Seminar Service Science, Management & Engineering (S. 348)</td>
<td>2</td>
<td>W/S</td>
<td>4</td>
<td>T. Dreier, P. Sester, I. Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>rechtsem</td>
<td>Seminar in Law (S. 414)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>I. Spiecker genannt Döhmann</td>
</tr>
<tr>
<td>24793</td>
<td>Recht der Informationsordnung (S. 190)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Module: Master Thesis

Module key: [IW4IWMATHESIS]

Module coordination: Martina Zitterbart, Studiendekan (Fak. f. Wirtschaftswissenschaften), Vorsitzender des Prüfungsausschusses

Credit points (CP): 30

Learning Control / Examinations
Examination by two examiners from the two faculties. For details refer to examination regulation. The examiner has to be involved in the degree programme. Involved in the degree programme are the persons that coordinate a module or a lecture of the degree programme.

Prerequisites
None.

Conditions
Regulated in §11 of the examination regulation.
The requirements for the examiner are described in §14 (2) of the examination regulation.

Learning Outcomes
The student

• investigates a topic in Information Engineering and Management autonomously in a scientific manner at the state-of-the-art of the research in the field.
• shows a comprehensive understanding of the methods and approaches relevant for the investigation of the topic chosen.
• selects appropriate scientific methods and he uses them in a correct way. If necessary, he modifies methods in a suitable way or he develops them.
• compares his results with competing approaches critically and he evaluates his results.
• communicates his results clearly and in a scientific form in his master thesis.

Content

• The master thesis shows that the candidate can autonomously investigate a problem from his discipline with scientific methods according to the state-of-the-art of the discipline within a specified time period.
• The master thesis can be written in German or English.
• The topic of a master thesis can be accepted or chosen by each of the examiners according to examination regulation. The examiner accepting a topic for a master thesis acts as the first supervisor of this thesis.
• Writing a master thesis with a supervisor who is not a member of the two faculties participating in the degree programme (Faculty of Informatics, Faculty of Economics and Business Engineering) requires acceptance by the examination board of the degree programme. The candidate must have an opportunity to make suggestions for the topic of the master thesis.
• Candidates can write a master thesis in teams. However, this requires that the contribution and performance of each candidate to the thesis is identifiable according to objective criteria which allow a unique delineation of each candidate's contribution. The contribution of each candidate regarded in isolation must fulfill the requirements a individual master thesis.
• In exceptional cases and upon request of the candidate, the chairman of the examination board chooses a supervisor and requests that this supervisor provides the candidate with a topic for the master thesis within 4 weeks after the request. In this case, the candidate is informed by the chairman of the examination board about the topic selected.
• Topic, specification of research tasks and the volume of the master thesis should be limited by the supervisor, so that the master thesis can be written with the assigned workload of 30 credits (750-900h).
• The master thesis must contain the following declaration of the candidate: “I truthfully assure that I have autonomously written this master thesis. I have quoted all sources used precisely and completely. I have labelled everything which has been taken from the work of others with or without change.” A master thesis without this declaration will not be accepted.
• The date of the assignment of the topic to a candidate as well as the date of delivery of the master thesis should be registered at the examination board. The candidate can return a topic for the master thesis only one time and only within a period of two month after he has received the topic. Upon a request of the candidate with reasons supporting an extension, the examination board may extend the deadline for the delivery of the master thesis by a maximum of three months. A master thesis not delivered within time is graded as “fail” except when the candidate is not responsible for this delay (e.g. protection of motherhood).
• The master thesis is reviewed and graded by the supervisor and the additional examiner. The team of supervisor and examiner must represent both faculties participating in the degree programme (Faculty of Informatics, Faculty of Economics and Business Engineering). At least one of the two must be professor or junior professor. If the grades of the supervisor and the examiner differ, the examination board sets the mark within this limit.
• Reviewing and grading should be done within 8 weeks after delivery of the master thesis.
5 Elective Modules

5.1 Business Administration

Module: Advanced CRM

Module key: [IW4BWLISM1]

Subject: Business Administration
Module coordination: Andreas Geyer-Schulz
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately. The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• understand service competition as a sustainable competitive strategy and understand the effects of service competition on the design of markets, products, processes and services,
• models, analyzes and optimizes the structure and dynamics of complex business applications,
• develops and realizes personalized services, especially in the field of recommendation services,
• analyzes social networks and knows their application field in CRM,
• works in teams.

Content
Besides the foundations of modern customer oriented and service oriented management, developments of CRM systems are lectured together with tools for analysis and optimization of such systems.

An overview of general aspects and concepts of personalization and their importance for service provider and customers is given. Then, different categories of recommendation systems are presented: Ranging from explizit recommendation services like reviews to implicit services like the calculation of recommendations based on the historic data about products and/or customers. There exist a trend towards viewing economic systems and social systems as networks. This approach allows for the application of different methods from mathematics, economic sciences, sociology and physics. In CRM, network analyses may provide benefits calculating customer network values.

CRM processes and marketing campaigns are just two examples of dynamic systems that are characterized by feedback loops between different process steps. By means of the tools of business dynamics such processes can be modelled. Simulations of complex systems allow the analysis and optimization of business processes, marketing campaigns, and organizations.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26508</td>
<td>Customer Relationship Management (S. 358)</td>
<td>2/1</td>
<td>W</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26506</td>
<td>Personalization and Recommender Systems (S. 356)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26518</td>
<td>Social Network Analysis in CRM (S. 360)</td>
<td>2/1</td>
<td>W/S</td>
<td>4,5</td>
<td>B. Hoser</td>
</tr>
<tr>
<td>26531</td>
<td>Business Dynamics (S. 363)</td>
<td>2/1</td>
<td>S</td>
<td>4,5</td>
<td>A. Neumann</td>
</tr>
</tbody>
</table>

Remarks
The course Business Dynamics was added to the module.
Module: Electronic Markets

Subject: Business Administration
Module coordination: Andreas Geyer-Schulz
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- knows coordination and motivation methods and analyzes them regarding their efficiency,
- classifies markets and describes the roles of the participants in a formal way,
- knows the conditions for market failure and knows and develops countermeasures,
- knows institutions and market mechanisms, their fundamental theories and empirical research results,
- knows the design criteria of market mechanisms and a systematical approach for creating new markets,
- models, analyzes and optimizes the structure and dynamics of complex business applications.

Content
What are the conditions that make electronic markets develop and how can one analyse and optimize such markets?
In this module, the selection of the type of organization as an optimization of transaction costs is treated. Afterwards, the efficiency of electronic markets (price, information and allocation efficiency) as well as reasons for market failure are described. Finally, motivational issues like bounded rationality and information asymmetries (private information and moral hazard), as well as the development of incentive schemes, are presented. Regarding the market design, especially the interdependencies of market organization, market mechanisms, institutions and products are described and theoretical foundations are lectured.
Electronic markets are dynamic systems that are characterized by feedback loops between many different variables. By means of the tools of business dynamics such markets can be modelled. Simulations of complex systems allow the analysis and optimization of markets, business processes, policies, and organizations.
Topics include:
- classification, analysis, and design of markets
- simulation of markets
- auction methods and auction theory
- automated negotiations
- nonlinear pricing
- continuous double auctions
- market-maker, regulation, control

Courses in module Electronic Markets [IW4BWLISM2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26502</td>
<td>Electronic Markets (Principles) (S. 351)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26504</td>
<td>Electronic Markets: Institutions and Market Mechanisms (S. 353)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>A. Geyer-Schulz</td>
</tr>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions (S. 344)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Weinhardt, J. Kraemer, C. van Dinther</td>
</tr>
<tr>
<td>26232</td>
<td>Telecommunication and Internet Economics (S. 320)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>K. Mitusch</td>
</tr>
<tr>
<td>26531</td>
<td>Business Dynamics (S. 363)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>A. Neumann</td>
</tr>
</tbody>
</table>

Remarks
The course Electronic Markets: Institutions and Market Mechanisms will not be offered any more. An exam will be offered in September 2010.
The courses Business Dynamics and Telecommunication and Internet Economics were added to the module.
Module: Market Engineering

Subject: Business Administration
Module coordination: Christof Weinhardt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The course Market Engineering: Information in Institutions [26460] has to be attended.

Learning Outcomes
The students
 • know the design criterias of market mechanisms and the systematic approach to create new markets,
 • understand the basics of the mechanism design and auction theory,
 • analyze and evaluate existing markets regarding the missing incentives and the optimal solution of a given market mecha-
 nism, respectively,
 • develop solutions in teams.

Content
This module explains the dependencies between the design von markets and their success. Markets are complex interaction of different institution and participants in a market behave strategically according to the market rules. The development and the design of markets or market mechanisms has a strong influence on the behavior of the participants. A systematic approach and a thorough analysis of existing markets is inevitable to design, create and operate a market place successfully. The approaches for a systematic analysis are explained in the mandatory course Market Engineering [26460] by discussing theories about mechanism design and institutional economics. The student can deepen his knowledge about markets in a second course.

Courses in module Market Engineering [IW4BWLISM3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions (S. 344)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Weinhardt, J. Kraemer, C. van Dinther</td>
</tr>
<tr>
<td>25408</td>
<td>Auction Theory (S. 249)</td>
<td>2/2</td>
<td>W</td>
<td>4.5</td>
<td>K. Ehrhart, S. Seifert</td>
</tr>
<tr>
<td>26454</td>
<td>eFinance: Information Engineering and Management for Securities Trading (S. 341)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>C. Weinhardt, R. Riordan</td>
</tr>
<tr>
<td>26458</td>
<td>Computational Economics (S. 343)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>C. van Dinther</td>
</tr>
<tr>
<td>25373</td>
<td>Experimental Economics (S. 246)</td>
<td>2/2</td>
<td></td>
<td></td>
<td>S. Berninghaus, Kroll</td>
</tr>
</tbody>
</table>
Module: Business & Service Engineering
Module key: [IW4BWLISM4]

Subject: Business Administration
Module coordination: Christof Weinhardt, Gerhard Satzger
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student should learn to
- develop and implement new markets with regards to the technological progresses of information and communication technology and the increasing economic networking
- restructure and develop new business processes in markets under those conditions
- understand service competition as a sustainable competitive strategy and understand the effects of service competition on the design of markets, products, processes and services.

Content
This module addresses the challenges of creating new kinds of products, processes, services, and markets from a service perspective in the context of new developed information and communication technologies and the globalization process. The module describes service competition as a business strategy in the long term that leads to the design of business processes, business models, forms of organization, markets, and competition. This will be shown by actual examples from personalized services, recommender services and social networks.

Courses in module Business & Service Engineering [IW4BWLISM4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>26456</td>
<td>Business Models in the Internet: Planning and Implementation (S. 342)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>26478</td>
<td>Special Topics in Information Engineering & Management (S. 349)</td>
<td>3 W/S</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>26506</td>
<td>Personalization and Recommender Systems (S. 356)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>26468</td>
<td>Service Innovation (S. 347)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Remarks
Module: Communications & Markets

Subject: Business Administration
Module coordination: Christof Weinhardt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The course Communications Economics [26462] has to be attended.

Learning Outcomes
The student is able to
- understand the game theoretic basics of Industrial Economics
- understand the relationship between incentive mechanisms and the network economy
- analyse and evaluate markets and auction mechanisms using methods from game theory
- elaborate solutions in a team

Content
The module has a focus on applied game-theoretic analysis of information exchange and incentive mechanisms. Single participants in a market make decisions concerning their products, the price determination and competitive position, which can change the situation in a market. These changes inflict a change in corporate policy. Approaches from game-theory in industrial economics and mechanism design are offering analytic tools by which one can systematically deduce strategic decisions for businesses, given a certain market situation.

Courses in module Communications & Markets [IW4BWLISM5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26462</td>
<td>Communications Economics (S. 345)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>S. Seifert, J. Kraemer</td>
</tr>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions (S. 344)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>C. Weinhardt, J. Kraemer, C. van Dinther</td>
</tr>
<tr>
<td>25408</td>
<td>Auction Theory (S. 249)</td>
<td>2/2 W</td>
<td>4.5</td>
<td></td>
<td>K. Ehrhart, S. Seifert</td>
</tr>
<tr>
<td>26478</td>
<td>Special Topics in Information Engineering & Management (S. 349)</td>
<td>3 W/S</td>
<td>4.5</td>
<td></td>
<td>C. Weinhardt</td>
</tr>
</tbody>
</table>

Remarks
The lecture Special Topics in Information Engineering & Management [26478] is first offered in the winter term 2009/10. All practical Seminars offered at the IM can be chosen for this course. Please update yourself on www.iism.kit.edu/im/lehre.
Module: Service Management

Subject: Business Administration
Module coordination: Gerhard Satzger, Christof Weinhardt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 and 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The course Business and IT Service Management [26484] is obligatory.
The course eServices [26466] can only be choosen, if it was not attended in the Bachelor programme.

Learning Outcomes
The students
• understand the basics of developing and managing IT-based services,
• understand and apply OR methods in service management,
• analyze and develop supply chain and business networks,
• understand and analyze innovation processes in corporations

Content
The module service management addresses the basics of developing and managing IT-based services. The lectures contained in this module teach the basics of developing and managing IT-based services and the application of OR methods in the field of service management. Moreover, students learn to analyze and develop supply chain networks as well as to understand and analyze innovation processes in corporations. Current examples from research and industry demonstrate the relevance of the topics discussed in this module.

Courses in module Service Management [IW4BWLISM6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>26484</td>
<td>Business and IT Service Management (S. 350)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>G. Satzger</td>
</tr>
<tr>
<td>26452</td>
<td>Management of Business Networks (S. 340)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>C. Weinhardt, J. Kraemer</td>
</tr>
<tr>
<td>26468</td>
<td>Service Innovation (S. 347)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>G. Satzger, A. Neus</td>
</tr>
<tr>
<td>26466</td>
<td>eServices (S. 346)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Weinhardt, G. Satzger</td>
</tr>
</tbody>
</table>
Module: F1 (Finance)

Module key: [IW4BWLFBV1]

Subject: Business Administration
Module coordination: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• has core skills in economics and methodology in the field of finance
• assesses corporate investment projects from a financial perspective
• is able to make appropriate investment decisions on financial markets

Content
The courses of this module equip the students with core skills in economics and methodology in the field of modern finance. Securities which are traded on financial and derivative markets are presented, and frequently applied trading strategies are discussed. A further focus of this module is on the assessment of both profits and risks in security portfolios and corporate investment projects from a financial perspective.

Courses in module F1 (Finance) [IW4BWLFBV1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>26550</td>
<td>Derivatives (S. 364)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
<tr>
<td>25212</td>
<td>Valuation (S. 229)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
</tr>
<tr>
<td>26555</td>
<td>Asset Pricing (S. 365)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>26550</td>
<td>Derivatives (S. 364)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
<tr>
<td>25212</td>
<td>Valuation (S. 229)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
</tr>
<tr>
<td>26555</td>
<td>Asset Pricing (S. 365)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s):
M. Uhrig-Homburg
M. Ruckes
M. Uhrig-Homburg, M. Ruckes
Module: F2 (Finance)

Subject: Business Administration
Module coordination: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
It is obligatory to attend the module F1 (Finance) [IW4BWLFBV1].
The courses Asset Pricing [VLAP], Valuation [25212] and Derivatives [26550] can only be chosen if they have not been chosen in the module F1 (Finance) [IW4BWLFBV1] already.

Learning Outcomes
The student has advanced skills in economics and methodology in the field of modern finance.

Content
The module F2 (Finance) is based on the module F1 (Finance). The courses of this module equip the students with advanced skills in economics and methodology in the field of modern finance on a broad basis.

Courses in module F2 (Finance) [IW4BWLFBV2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26560</td>
<td>Fixed Income Securities (S. 366)</td>
<td>2/1 W</td>
<td>4.5</td>
<td></td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>25214</td>
<td>Corporate Financial Policy (S. 230)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>25240</td>
<td>Market Microstructure (S. 232)</td>
<td>2/0 W</td>
<td>3</td>
<td></td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>26565</td>
<td>Credit Risk (S. 367)</td>
<td>2/1 W</td>
<td>4.5</td>
<td></td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>25210</td>
<td>Management Accounting (S. 228)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>T. Lüdecke</td>
</tr>
<tr>
<td>26555</td>
<td>Asset Pricing (S. 365)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>M. Uhrig-Homburg, M. Ruckes</td>
</tr>
<tr>
<td>25212</td>
<td>Valuation (S. 229)</td>
<td>2/1 W</td>
<td>4.5</td>
<td></td>
<td>M. Ruckes</td>
</tr>
<tr>
<td>26550</td>
<td>Derivatives (S. 364)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
<td>M. Uhrig-Homburg</td>
</tr>
<tr>
<td>26570</td>
<td>International Finance (S. 368)</td>
<td>2 S</td>
<td>3</td>
<td></td>
<td>M. Uhrig-Homburg, Walter</td>
</tr>
<tr>
<td>25299</td>
<td>Business Strategies of Banks (S. 235)</td>
<td>2 W</td>
<td>3</td>
<td></td>
<td>W. Müller</td>
</tr>
<tr>
<td>25296</td>
<td>Exchanges (S. 234)</td>
<td>1 S</td>
<td>1.5</td>
<td></td>
<td>J. Franke</td>
</tr>
<tr>
<td>25232</td>
<td>Financial Intermediation (S. 231)</td>
<td>3 W</td>
<td>4.5</td>
<td></td>
<td>M. Ruckes</td>
</tr>
</tbody>
</table>

Remarks
Module: Applications of Actuarial Sciences I (BWL)
Module key: [IW4BWLFBV4]

Subject: Business Administration
Module coordination: Christian Hipp
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Knowledge in statistics and the module Insurance: Calculation and Control [WW3BWLFBV2] is an advantage, but not a requirement.

Conditions
Two courses out of Life and Pensions [26310], Reinsurance [26312], Insurance Optimisation [26316] and Saving Societies [26340] have to be chosen.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26310</td>
<td>Life and Pensions (S. 322)</td>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>M. Vogt, Besserer</td>
</tr>
<tr>
<td>26312</td>
<td>Reinsurance (S. 323)</td>
<td>4</td>
<td>S</td>
<td>4.5</td>
<td>C. Hipp, Stöckbauer, Schwehr</td>
</tr>
<tr>
<td>26316</td>
<td>Insurance Optimisation (S. 324)</td>
<td>3</td>
<td>W</td>
<td>4.5</td>
<td>C. Hipp</td>
</tr>
<tr>
<td>26340</td>
<td>Saving Societies (S. 332)</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>N.N.</td>
</tr>
</tbody>
</table>

Remarks
The course Saving Societies [26340] will irregularly not be held in the summer term 2010.
Module: Insurance Management I
Module key: [IW4BWLFBV6]

Subject: Business Administration
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
If the contents were not part of the Bachelor programme and there is no professional experience in the insurance industry so far, the student has to pass a test to proof sufficient prior knowledge in the first third of the term.

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Courses in module Insurance Management I [IW4BWLFBV6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26323</td>
<td>Insurance Marketing (S. 326)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26320</td>
<td>Insurance Accounting (S. 325)</td>
<td>3/0</td>
<td>W</td>
<td>4.5</td>
<td>F. Ludwig</td>
</tr>
<tr>
<td>26324</td>
<td>Insurance Production (S. 327)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26327</td>
<td>Service Management (S. 329)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26360</td>
<td>Insurance Contract Law (S. 337)</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>H. Schwebler</td>
</tr>
<tr>
<td>25050</td>
<td>Private and Social Insurance (S. 199)</td>
<td>2/0</td>
<td>W</td>
<td>2.5</td>
<td>W. Heilmann, Besserer</td>
</tr>
<tr>
<td>26350</td>
<td>Current Issues in the Insurance Industry (S. 333)</td>
<td>2/0</td>
<td>S</td>
<td>2.5</td>
<td>W. Heilmann</td>
</tr>
<tr>
<td>26335</td>
<td>Insurance Risk Management (S. 331)</td>
<td>2/0</td>
<td>S</td>
<td>2.5</td>
<td>H. Maser</td>
</tr>
</tbody>
</table>

Remarks
The courses Insurance Marketing [26323], Insurance Production [26324], and Service Management [26327] are offered irregularly.
For further information, see: http://insurance.fbv.uni-karlsruhe.de
The course Insurance Contract Law [26360] will not be held any more after winter term 2009/10. There will be no more exams for this course after the exam period of summer term 2010.
The courses Private and Social Insurance, Insurance Risk Management, and Current Issues in the Insurance Industry have been added to the module.
Module: Insurance Management II

Subject: Business Administration
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites

If the contents were not part of the Bachelor programme and there is no professional experience in the insurance industry so far, the student has to pass a test to proof sufficient prior knowledge in the first third of the term.

Conditions
The module may only be chosen together with the module Insurance Management I.

Learning Outcomes
See German version.

Content
See German version.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26323</td>
<td>Insurance Marketing (S. 326)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26320</td>
<td>Insurance Accounting (S. 325)</td>
<td>3/0</td>
<td>W</td>
<td>4.5</td>
<td>F. Ludwig</td>
</tr>
<tr>
<td>26324</td>
<td>Insurance Production (S. 327)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26327</td>
<td>Service Management (S. 329)</td>
<td>3/0</td>
<td>W/S</td>
<td>4.5</td>
<td>U. Werner</td>
</tr>
<tr>
<td>26360</td>
<td>Insurance Contract Law (S. 337)</td>
<td>3/0</td>
<td>S</td>
<td>4.5</td>
<td>H. Schwebler</td>
</tr>
<tr>
<td>25050</td>
<td>Private and Social Insurance (S. 199)</td>
<td>2/0</td>
<td>W</td>
<td>2.5</td>
<td>W. Heilmann, Besserer</td>
</tr>
<tr>
<td>26350</td>
<td>Current Issues in the Insurance Industry (S. 333)</td>
<td>2/0</td>
<td>S</td>
<td>2.5</td>
<td>W. Heilmann</td>
</tr>
<tr>
<td>26335</td>
<td>Insurance Risk Management (S. 331)</td>
<td>2/0</td>
<td>S</td>
<td>2.5</td>
<td>H. Maser</td>
</tr>
</tbody>
</table>

Remarks
The courses Insurance Marketing [26323], Insurance Production [26324], and Service Management [26327] are offered irregularly.
For further information, see: http://insurance.fbv.uni-karlsruhe.de

The course Risk Controlling in Insurance Groups is not offered in this module.

The course Insurance Contract Law [26360] will not be held any more after winter term 2009/10. There will be no more exams for the course after the exam period of summer term 2010.

The module is offered as an extension module to Insurance Management I from summer term 2010 on. Students that already began this module have been assigned to the module Insurance Management I.
Module: Operational Risk Management I

Subject: Business Administration
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2) of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Interest in interdisciplinary research is assumed.
Knowledge in social science disciplines, GIS or Finance is an advantage.
Knowledge in risk management (for example gained in the Bachelor programme) is an advantage.

Conditions
It is only possible to choose the course Enterprise Risk Management [26326] if it was not attended in the Bachelor programme.
It is only possible to choose the course International Risk Transfer [26353] if it was not attended in the Bachelor programme.

Learning Outcomes
See German version.

Content
Operational risks of institutions resulting from the interaction of human, technical, and organisational factors (internal risks) as well as from external natural, technical, social or political incidents; specific requirements, legal and economic framework of various risk carriers (private and public households, small and major enterprises), design of strategies and risk management instruments for coping with risks.
Risks of private households in industrialized and developing countries as well as those of emerging markets on the one hand and the state as all-embracing actor in those countries on the other one.

Courses in module Operational Risk Management I [IW4BWLFBV9]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26326</td>
<td>Enterprise Risk Management (S. 328)</td>
<td>3/0 W</td>
<td>4.5</td>
<td>U. Werner</td>
<td></td>
</tr>
<tr>
<td>26328</td>
<td>Multidisciplinary Risk Research (S. 330)</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td>U. Werner</td>
<td></td>
</tr>
<tr>
<td>26353</td>
<td>International Risk Transfer (S. 334)</td>
<td>2/0 S</td>
<td>2.5</td>
<td>W. Schwehr</td>
<td></td>
</tr>
<tr>
<td>26355</td>
<td>Public Sector Risk Management (S. 336)</td>
<td>2/0 W/S</td>
<td>2.5</td>
<td>R. Mechler</td>
<td></td>
</tr>
<tr>
<td>26395</td>
<td>Risk Communication (S. 339)</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td>U. Werner</td>
<td></td>
</tr>
<tr>
<td>26354</td>
<td>Risk Management of Microfinance and Private Households (S. 335)</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td>U. Werner</td>
<td></td>
</tr>
<tr>
<td>26393</td>
<td>Project Work in Risk Research (S. 338)</td>
<td>3 W/S</td>
<td>4.5</td>
<td>U. Werner</td>
<td></td>
</tr>
</tbody>
</table>

Remarks
The courses Multidisciplinary Risk Research [26328], Risk Communication [26395], Risk Management of Microfinance and Private Households [26354] and Project Work in Risk Research [26393] are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
The course Public Sector Risk Management [26355] is offered in summer term 2010 for the last time, no further exams will be offered after the two exams for the course of summer term 2010.
The courses Multidisciplinary Risk Research, Risk Management of Microfinance and Private Households, and Project Work in Risk Research have been added to the module.
Module: Operational Risk Management II

Subject: Business Administration
Module coordination: Ute Werner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 2 or 3 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Interest in interdisciplinary research is assumed.
Knowledge in social science disciplines, GIS or Finance is an advantage.
Knowledge in risk management (for example gained in the Bachelor programme) is an advantage.

Conditions
The module may only be chosen together with the module Operational Risk Management I.

Learning Outcomes
See German version.

Content
Operational risks of institutions resulting from the interaction of human, technical, and organisational factors (internal risks) as well as from external natural, technical, social or political incidents; specific requirements, legal and economic framework of various risk carriers (private and public households, small and major enterprises), design of strategies and risk management instruments for coping with risks.
Risks of private households in industrialized and developing countries as well as those of emerging markets on the one hand and the state as all-embracing actor in those countries on the other one.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>26326</td>
<td>Enterprise Risk Management (S. 328)</td>
<td>3/0 W</td>
<td>4.5</td>
<td></td>
<td>U. Werner</td>
</tr>
<tr>
<td>26328</td>
<td>Multidisciplinary Risk Research (S. 330)</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td></td>
<td>U. Werner</td>
</tr>
<tr>
<td>26355</td>
<td>Public Sector Risk Management (S. 336)</td>
<td>2/0 W/S</td>
<td>2.5</td>
<td></td>
<td>R. Mechler</td>
</tr>
<tr>
<td>26353</td>
<td>International Risk Transfer (S. 334)</td>
<td>2/0 S</td>
<td>2.5</td>
<td></td>
<td>W. Schwehr</td>
</tr>
<tr>
<td>26395</td>
<td>Risk Communication (S. 339)</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td></td>
<td>U. Werner</td>
</tr>
<tr>
<td>26345</td>
<td>Risk Management of Microfinance and Private Households (S. 335)</td>
<td>3/0 W/S</td>
<td>4.5</td>
<td></td>
<td>U. Werner</td>
</tr>
<tr>
<td>26393</td>
<td>Project Work in Risk Research (S. 338)</td>
<td>3 W/S</td>
<td>4.5</td>
<td></td>
<td>U. Werner</td>
</tr>
</tbody>
</table>

Remarks
The courses Multidisciplinary Risk Research [26328], Risk Communication [26395], Risk Management of Microfinance and Private Households [26354] and Project Work in Risk Research [26393] are offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de

The course Public Sector Risk Management [26355] is offered in summer term 2010 for the last time, no further exams will be offered after the two exams for the course of summer term 2010.

The module is offered as an extension module to Operational Risk Management I from summer term 2010 on. Students that already began this module have been assigned to the module Operational Risk Management I.
Module: Marketing Planning

Subject: Business Administration
Module coordination: Wolfgang Gaul
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 120 min. and contains topics from at least one of the main lectures [25156] and [25158] as well as from the chosen lectures. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absoled within one year.

The overall grade for the module is the average of the grades for each course weighted by the credits of the course. It is recommended, to attend more lectures than required to fulfill 9 Credit Points as it is possible to examine in these additional lectures and influence the final grade positively.

Prerequisites
None.

Conditions
The courses Marketing and Operations Research [25156] and Corporate Planning and Operations Research [25158] have to be chosen.

Learning Outcomes

Courses in module Marketing Planning [IW4BWLMAR1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25156</td>
<td>Marketing and Operations Research (S. 212)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research (S. 213)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business & electronic Marketing (S. 214)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing (S. 216)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation (S. 217)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing (S. 220)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
</tbody>
</table>
Module: Market Research

Subject: Business Administration
Module coordination: Wolfgang Gaul
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 120 min. and contains topics from at least one of the main lectures [25154] and [25171] as well as from the chosen lectures. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absoluted within one year.

The overall grade for the module is the average of the grades for each course weighted by the credits of the course. It is recommended, to attend more lectures than required to fulfill 9 Credit Points as it is possible to examine in these additional lectures and influence the final grade positively.

Prerequisites
None.

Conditions
The courses Modern Market Research [25154] oder Data Analysis and Operations Research [25171] have to be chosen.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 211)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research (S. 221)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business & electronic Marketing (S. 214)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing (S. 216)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation (S. 217)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing (S. 220)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
</tbody>
</table>
Module: Strategy, Innovation and Data Analysis

Module key: [IW4BWLMAR3]

Subject: Business Administration
Module coordination: Bruno Neibecker
Credit points (CP): 9

Learning Control / Examinations
Assessment consist of a written module exam according to §4(2), 1 SPO. The module exam has a duration of 120 min. and contains topics from the main lecture [25166] as well as from one of the chosen lectures [25154] and [25162]. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
- The lecture Strategic and Innovative Decision Making in Marketing [25166] has to be attended.
- From the lectures Modern Market Research [25154] and Information Technology and Business Information [25162], one must be attended.
- At least 9 CP must be achieved.

Learning Outcomes
Students have learned the following outcomes and competences:
- To specify the key terms in strategic management and innovation research, based on methodological and behavioral approaches
- To apply statistical tools to analyze and interpret case specific problems in marketing
- To indentify the main research trends
- To analyze and interpret high level academic articles
- To learn interactive skills to work in teams and to follow a goal-oriented approach
- To gain understanding of methodological research to develop concrete plans for marketing decision-making

Content
The core product is everything a customer or business consumer receives. Marketers must understand what it takes to develop a new product successfully. It is important to understand that innovations differ in their degree of newness (up to radical innovations). This helps to determine how quickly the products will be adopted by a target market. Market orientation is on the front side of the medal, the reverse side includes meeting the needs of diverse stakeholders. To find out the critical success factors a deep understanding of analytical and statistical methods is essential. As a result, the developing of an effective marketing strategy is discussed as an empirical, scientific process.

Courses in module Strategy, Innovation and Data Analysis [IW4BWLMAR3]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25166</td>
<td>Strategic and Innovative Decision Making in Marketing (S. 218)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 211)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information (S. 215)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s): B. Neibecker, W. Gaul, B. Neibecker
Module: Behavioral Approaches in Marketing and Data Analysis

Module key: [IW4BWLMAR4]

Subject: Business Administration

Module coordination: Bruno Neibecker

Credit points (CP): 9

Learning Control / Examinations
Assessment consist of a written module exam according to §4(2), 1 SPO. The module exam has a duration of 120 min. and contains topics from the main lecture [25167] as well as from one of the chosen lectures [25154] and [25162]. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
- The lecture Behavioral Approaches in Marketing [25167] has to be attended.
- From the lectures Modern Market Research [25154] and Information Technology and Business Information [25162], one must be attended.
- At least 9 CP must be achieved.

Learning Outcomes
Students have learned the following outcomes and competences:
- To specify the key terms in marketing and communication management
- To identify and define theoretical constructs in marketing communication, based on behavioral theory
- To indentify the main research trends
- To analyze and interpret high level academic articles
- To learn interactive skills to work in teams and to follow a goal-oriented approach
- To gain understanding of methodological research to develop concrete plans for marketing decision-making

Content
Consumer behavior approaches in Marketing are seen as an important research area with a consumer-based perspective including a strong interdisciplinary and empirical orientation. My goal was to create a marketing module that presents a balanced coverage of both qualitative and quantitative material. That is, a practical, managerial perspective is discussed in relation to psychological, sociological and physiological (neuromarketing) approaches. It is examined how the individual receives information from his or her environment and how this material is learned, stored in memory, and used to form attitudes and to make decisions. A comprehensive understanding of marketing research and marketing data analysis is provided throughout the module, as for example in market segmentation or the definition of a target market a company decides to pursue.

Courses in module Behavioral Approaches in Marketing and Data Analysis [IW4BWLMAR4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>25167</td>
<td>Behavioral Approaches in Marketing (S. 219)</td>
<td>2/1 W 4.5</td>
<td></td>
<td></td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 211)</td>
<td>2/1 S 4.5</td>
<td></td>
<td></td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information (S. 215)</td>
<td>2/1 S 4.5</td>
<td></td>
<td></td>
<td>B. Neibecker</td>
</tr>
</tbody>
</table>
Module: Successful Market Orientation

Module key: [IW4BWLMAR5]

Subject: Business Administration
Module coordination: Wolfgang Gaul
Credit points (CP): 18

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 240 min. and contains topics from at least two of four main lectures [25154], [25156], [25158] and [25171] as well as from the chosen lectures. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absolved within one year.

The overall grade for the module is the average of the grades for each course weighted by the credits of the course. It is recommended, to attend more lectures than required to fulfill 18 Credit Points as it is possible to examine in these additional lectures and influence the final grade positively.

Prerequisites
None.

Conditions
At least two courses out of Modern Market Research [25154], Marketing and Operations Research [25156] and Corporate Planning and Operations Research [25171] have to be chosen.

Learning Outcomes

Content

Courses in module Successful Market Orientation [IW4BWLMAR5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 211)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research (S. 212)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research (S. 213)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research (S. 221)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business & electronic Marketing (S. 214)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing (S. 216)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation (S. 217)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing (S. 220)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25166</td>
<td>Strategic and Innovative Decision Making in Marketing (S. 218)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>25167</td>
<td>Behavioral Approaches in Marketing (S. 219)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>B. Neibecker</td>
</tr>
<tr>
<td>25162</td>
<td>Information Technology and Business Information (S. 215)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>B. Neibecker</td>
</tr>
</tbody>
</table>
Module: Entrepreneurship, Innovation and International Marketing

[IW4BWLMAR6]

Subject: Business Administration

Module coordination: Wolfgang Gaul

Credit points (CP): 9

Learning Control / Examinations

The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 120 min. and contains topics from at least two of the main lectures [25164], [25165] and [25170] as well as from the chosen lectures. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absolved within one year.

The overall grade for the module is the average of the grades for each course weighted by the credits of the course. It is recommended, to attend more lectures than required to fulfill 9 Credit Points as it is possible to examine in these additional lectures and influence the final grade positively.

Prerequisites

None.

Conditions

At least two courses out of International Marketing [25164], Marketing and Innovation [25165] and Entrepreneurship and Marketing [25170] have to be chosen.

Learning Outcomes

Content

Courses in module Entrepreneurship, Innovation and International Marketing [IW4BWLMAR6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 211)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research (S. 212)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research (S. 213)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research (S. 221)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25160</td>
<td>e-Business & electronic Marketing (S. 214)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25164</td>
<td>International Marketing (S. 216)</td>
<td>1</td>
<td>S</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25165</td>
<td>Marketing and Innovation (S. 217)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25170</td>
<td>Entrepreneurship and Marketing (S. 220)</td>
<td>1/1</td>
<td>W</td>
<td>2.5</td>
<td>W. Gaul</td>
</tr>
</tbody>
</table>
Module: Strategic Corporate Management and Organization Module key: [IW4BWLUO1]

Subject: Business Administration
Module coordination: Hagen Lindstädt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
One of the following courses have to be attended: Managing Organizations [25902], Management and Strategy [25900].

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25904</td>
<td>Organization Theory (S. 299)</td>
<td>2/1</td>
<td>W</td>
<td>6</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25902</td>
<td>Managing Organizations (S. 298)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25908</td>
<td>Modeling Strategic Decision Making (S. 300)</td>
<td>2/1</td>
<td>S</td>
<td>6</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25912</td>
<td>Value-Based Instruments of Corporate Strategy (S. 301)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>U. Pidun, M. Wolff</td>
</tr>
<tr>
<td>25900</td>
<td>Management and Strategy (S. 297)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>H. Lindstädt</td>
</tr>
</tbody>
</table>
Module: Strategic Decision Making and Organization Theory Module key: [IW4BWLUO3]

Subject: Business Administration
Module coordination: Hagen Lindstädt
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations are offered every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25904</td>
<td>Organization Theory (S. 299)</td>
<td>2/1</td>
<td>W</td>
<td>6</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25908</td>
<td>Modeling Strategic Decision Making (S. 300)</td>
<td>2/1</td>
<td>S</td>
<td>6</td>
<td>H. Lindstädt</td>
</tr>
<tr>
<td>25912</td>
<td>Value-Based Instruments of Corporate Strategy (S. 301)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>U. Pidun, M. Wolff</td>
</tr>
</tbody>
</table>
Module: Industrial Production II

Subject: Business Administration
Module coordination: Frank Schultmann
Credit points (CP): 9

Learning Control / Examinations
The examination will be in form of individual written exams acc. to §4(2), 1 ER, covering the chosen courses which sum up to minimum requirements. Exams are offered in every semester and can be re-examined at every ordinary examination date. The overall modular grade is calculated by weighing the individual grades with the according credit points. The grade will be truncated after the first decimal. Additional results may be considered on request.

Prerequisites
Skills learned in the compulsory B.Sc. modules of business administration, engineering, operations research and informatics.

Conditions
The course “Planning and Management of Industrial Plants” [25952] and one additional activity have to be chosen. Each course may only be taken in one module, i.e. no course can be applied to two different modules. The courses are set up in a way that they can be taken independently from each other; therefore it is possible to start this module at any time.
We recommend combining this module with “Industrial Production I” [WW3BWLIIP] (Bachelor) and “Industrial Production III” [IW4BWLIIIP6] (Master).

Learning Outcomes
• Students shall be able to describe the tasks of tactical production management with special attention drawn upon industrial plants.
• Students shall understand the relevant tasks in plant management (projection, realisation and supervising tools for industrial plants).
• Students shall be able to describe the special need of a techno-economic approach to solve problems in the field of tactical production management.
• Students shall be proficient in using selected techno-economic methods like investment and cost estimates, plant layout, capacity planning, evaluation principles of production techniques, production systems as well as methods to design and optimize production systems.
• Students shall be able to evaluate techno-economical approaches in planning tactical production management with respect to their efficiency, accuracy and relevance for industrial use.

Content
• Planning and Management of Industrial Plants: Basics, circulation flow starting from projecting to techno-economic evaluation, construction and operating up to plant dismantling.
• Additional courses cover project management principles and discussion of how decisions in an industrial environment (politics, environment protection, etc.) might affect plant design and operation.

Courses in module Industrial Production II [IW4BWLIIIP2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25952</td>
<td>Planning and Management of Industrial Plants</td>
<td>2/2</td>
<td>W</td>
<td>5.5</td>
<td>F. Schultmann</td>
</tr>
<tr>
<td>(S. 303)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25962</td>
<td>Emissions into the Environment (S. 308)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>U. Karl</td>
</tr>
<tr>
<td>25995</td>
<td>Material Flow Analysis and Life Cycle Assessment</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>L. Schebek</td>
</tr>
<tr>
<td>(S. 311)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module: Industrial Production III

Subject: Business Administration
Module coordination: Frank Schultmann
Credit points (CP): 9

Learning Control / Examinations
The examination will be in form of individual written exams acc. to §4(2), 1 ER, covering the chosen courses which sum up to minimum requirements. Exams are offered in every semester and can be re-examined at every ordinary examination date. The overall modular grade is calculated by weighing the individual grades with the according credit points. The grade will be truncated after the first decimal.

Prerequisites
Skills learned in the compulsory B.Sc. modules of business administration, engineering, operations research and informatics.

Conditions
The course Production and Logistics Management [25954] and one additional activity have to be chosen. Each course may only be taken in one module, i.e. no course can be applied to two different modules. The courses are set up in a way that they can be taken independently from each other; therefore it is possible to start this module at any time. We recommend combining this module with “Industrial Production I” [WW3BWLIIP] (Bachelor) and “Industrial Production II” [IW4BWLIIP2] (Master).

Learning Outcomes
• Students shall be able to describe the tasks concerning general problems of an operative production and logistics management.
• Students shall be able to describe the planning tasks of supply chain management.
• Students shall be proficient in using approaches to solve general planning problems.
• Students shall consider the existing interdependencies between planning tasks and applied methods.
• Students shall be able to describe the mail goals and set-up of software supporting tools in production and logistics management (i.e. APS, PPS-, ERP- and SCM Systems).
• Students shall be able to discuss the scope of these software tools and their general disadvantages.

Content
• Planning tasks and exemplary methods of production planning and control in supply chain management.
• Supporting software tools in production and logistics management (APS, PPS- and ERP Systems).

Courses in module Industrial Production III [IW4BWLIIP6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25954</td>
<td>Production and Logistics Management (S. 304)</td>
<td>2/2 S 5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25975</td>
<td>Computer-based Production Planning and Control, Process Simulation and Supply Chain Management (S. 310)</td>
<td>2/0 S 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25963</td>
<td>The Management of R&D Projects with Case Studies (S. 309)</td>
<td>2/2 W/S 3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25961</td>
<td>Supply Chain Management with Advanced Planning Systems (S. 307)</td>
<td>2 S 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks
The tutorial to „Production and Logistics Management“ [25954] will be offered in summer 2010. For interim regulations, please contact the institute.
Module: Basics of Liberalised Energy Markets

Subject: Business Administration
Module coordination: Wolf Fichtner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25998</td>
<td>Basics of Liberalised Energy Markets (S. 312)</td>
<td>2/1</td>
<td>W</td>
<td>3.5</td>
<td>W. Fichtner</td>
</tr>
<tr>
<td>26020</td>
<td>Energy Trade and Risk Management (S. 317)</td>
<td>2/1</td>
<td>S</td>
<td>3.5</td>
<td>K. Hufendiek</td>
</tr>
<tr>
<td>25959</td>
<td>Energy Policy (S. 306)</td>
<td>2/0</td>
<td>S</td>
<td>3.5</td>
<td>M. Wietschel</td>
</tr>
<tr>
<td>26022</td>
<td>Gas-Markets (S. 318)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>A. Pustisek</td>
</tr>
<tr>
<td>26025</td>
<td>Simulation Game in Energy Economics (S. 319)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>W. Fichtner</td>
</tr>
<tr>
<td>26234</td>
<td>Regulation Theory and Practice (S. 321)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>K. Mitusch</td>
</tr>
</tbody>
</table>
Module: Energy Industry and Technology

Subject: Business Administration
Module coordination: Wolf Fichtner
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examinations take place every semester. Re-examinations are offered at every ordinary examination date. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>26003</td>
<td>Energy and Environment (S. 316)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>U. Karl, n.n.</td>
</tr>
<tr>
<td>25958</td>
<td>Strategical Aspects of Energy Economy (S. 305)</td>
<td>2/0</td>
<td>W</td>
<td>3.5</td>
<td>A. Ardone</td>
</tr>
<tr>
<td>26000</td>
<td>Technological Change in Energy Industry (S. 313)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>M. Wietschel</td>
</tr>
<tr>
<td>26001</td>
<td>Heat Economy (S. 314)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>W. Fichtner</td>
</tr>
<tr>
<td>26002</td>
<td>Energy Systems Analysis (S. 315)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>D. Möst</td>
</tr>
</tbody>
</table>
5.2 Economics

Module: Applied Strategic Decisions

Module key: [IW4VWL2]

Subject: Economics
Module coordination: Siegfried Berninghaus, Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits of the course.

Prerequisites
The student should have basic knowledge of game theory.

Conditions
The course *Game Theory II* [25369] is obligatory. Exception: This lecture was completed in the Bachelor study programme.

Learning Outcomes
The student
- knows and analyzes complex strategic decisions, knows advanced formal solution concepts and how to apply them,
- knows basic solution concepts for simple strategic decisions and is able to apply them to concrete problems,
- knows the experimental method from design of an experiment to evaluation of data and applies them.

Content
The module offers various possibilities of application of game theoretic methods. The main focus is on strategic bargaining and behavior in auctions. Also empirical aspects are taken into account.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25369</td>
<td>Game Theory II (S. 245)</td>
<td>2/2 W</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>25525</td>
<td>Game Theory I (S. 259)</td>
<td>2/2 S</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>25408</td>
<td>Auction Theory (S. 249)</td>
<td>2/2 W</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>26460</td>
<td>Market Engineering: Information in Institutions (S. 344)</td>
<td>2/1 S</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>25373</td>
<td>Experimental Economics (S. 246)</td>
<td>2/2 S</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

Responsible Lecturer(s):
- S. Berninghaus
- K. Ehrhart, S. Seifert
- C. Weinhardt, J. Kraemer, C. van Dinther
- S. Berninghaus, Kroll
Module: Allocation and Equilibrium

Module key: [IW4VWL7]

Subject: Economics
Module coordination: Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module, there might be taken optional term paper in the field of economics (ie, on the chairs Puppe, or at Berninghaus resp. at the IWW) within the module (according to Section 4(2), 3 of the examination regulation). The submission of the term paper is only admitted until the end of the following semester in which the last exam of the Economics-Module was absolved. It does not apply for term papers which are already taken in the Seminar Module. For more information, please visit the homepage of the Chair (http://vwl1.ets.kit.edu/).

Prerequisites
Micro- and macroeconomical knowledge corresponding to the content of the economical courses of the Bachelor Programme is assumed.

Conditions
None.

Learning Outcomes

Courses in module Allocation and Equilibrium [IW4VWL7]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25527</td>
<td>Advanced Topics in Economic Theory (S. 260)</td>
<td>2/T</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe, M. Hillebrand, K. Mitsusch</td>
</tr>
<tr>
<td>25517</td>
<td>Welfare Economics (S. 258)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>25549</td>
<td>Theory of Business Cycles (S. 264)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Hillebrand</td>
</tr>
</tbody>
</table>

Remarks
The lecture Advanced Topics in Economic Theory [25527] was formerly named Advanced Microeconomic Theory.
Module: Macroeconomic Theory

Subject: Economics
Module coordination: Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.
To improve the overall grade of the module, there might be taken optional term paper in the field of economics (ie, on the chairs Puppel, or at Berninghaus resp. at the IWW) within the module (according to Section 4(2), 3 of the examination regulation). The submission of the term paper is only admitted until the end of the following semester in which the last exam of the Economics-Module was absolved. It does not apply for term papers which are already taken in the Seminar Module. For more information, please visit the homepage of the Chair (http://vwl1.ets.kit.edu/).

Prerequisites
Grundlegende mikro- und makroökonomische Kenntnisse, wie sie beispielsweise in den Veranstaltungen Volkswirtschaftslehre I (Mikroökonomie) [25012] und Volkswirtschaftslehre II (Makroökonomie) [25014] vermittelt werden, werden vorausgesetzt.
Aufgrund der inhaltlichen Ausrichtung der Veranstaltung wird ein Interesse an quantitativ-mathematischer Modellierung vorausgesetzt.

Conditions
None.

Learning Outcomes

Content

Courses in module Macroeconomic Theory [IW4VWL8]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25543</td>
<td>Theory of Economic Growth (S. 283)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>M. Hillebrand</td>
</tr>
<tr>
<td>25549</td>
<td>Theory of Business Cycles (S. 264)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>M. Hillebrand</td>
</tr>
</tbody>
</table>
Module: Social Choice Theory

Subject: Economics

Module coordination: Clemens Puppe
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

To improve the overall grade of the module, there might be taken optional term paper in the field of economics (ie, on the chairs Puppe, or at Berninghaus resp. at the IWW) within the module (according to Section 4(2), 3 of the examination regulation). The submission of the term paper is only admitted until the end of the following semester in which the last exam of the Economics-Module was absolved. It does not apply for term papers which are already taken in the Seminar Module. For more information, please visit the homepage of the Chair (http://vwl1.ets.kit.edu/).

Prerequisites
Micro- and macroeconomical knowledge corresponding to the content of the economical courses of the Bachelor Programme is assumed.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25517</td>
<td>Welfare Economics (S. 258)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>C. Puppe</td>
</tr>
<tr>
<td>25525</td>
<td>Game Theory I (S. 259)</td>
<td>2/2</td>
<td>S</td>
<td>4.5</td>
<td>S. Berninghaus</td>
</tr>
<tr>
<td>25537</td>
<td>Decision Theory and Objectives in Applied Politics (S. 261)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>Tangian</td>
</tr>
<tr>
<td>25539</td>
<td>Mathematical Theory of Democracy (S. 262)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>Tangian</td>
</tr>
</tbody>
</table>
5.3 Operations Research

Module: Quantitative Marketing and OR

Module key: [IW4OR1]

Subject: Operations Research
Module coordination: Wolfgang Gaul
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of a general written exam according to §4 Abs. 2, Nr. 1 of examination regulation. The written exam has a duration of 120 min. and contains topics from the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The examination is offered every semester. Re-examinations are offered at every ordinary examination date and has to be absolved within one year.

The overall grade for the module is the average of the grades for each course weighted by the credits of the course.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Quantitative Marketing and OR [IW4OR1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25154</td>
<td>Modern Market Research (S. 211)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25156</td>
<td>Marketing and Operations Research (S. 212)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25158</td>
<td>Corporate Planning and Operations Research (S. 213)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
<tr>
<td>25171</td>
<td>Data Analysis and Operations Research (S. 221)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>W. Gaul</td>
</tr>
</tbody>
</table>
Module: Operations Research in Supply Chain Management and Health Care Management
Module key: [IW4OR4]

Subject: Operations Research
Module coordination: Stefan Nickel
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to § 4(2), 1 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module.
The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
In agreement with the module coordinator, a course from the modules Mathematical optimization [WW4OR6] or Stochastic Modelling and Optimization [WW4OR7] or one of the courses Game Theory I [25525] and Game Theory II [25369] can be acknowledged.

Learning Outcomes
The student
• is familiar with basic concepts and terms of Supply Chain Management,
• knows the different areas of SCM and their respective optimization problems,
• is acquainted with classical location problem models (in planes, in networks and discrete) as well as fundamental methods for distribution and transport planning, inventory planning and management,
• is familiar with general procedures and characteristics of Health Care Management and the possibilities for adapting mathematical models for non-profit organizations,
• is able to model practical problems mathematically and estimate their complexity as well as choose and adapt appropriate solution methods.

Content
Supply Chain Management is concerned with the planning and optimization of the entire, inter-company procurement, production and distribution process for several products taking place between different business partners (suppliers, logistics service providers, dealers). The main goal is to minimize the overall costs while taking into account several constraints including the satisfaction of customer demands.
This module considers several areas of SCM. On the one hand, the determination of optimal locations within a supply chain is addressed. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of Supply Chains. Thoroughly carried out, location planning tasks allow an efficient flow of materials and lead to lower costs and increased customer service. On the other hand, the planning of material transport in the context of supply chain management represents another focus of this module. By linking transport connections and different facilities, the material source (production plant) is connected with the material sink (customer). For given material flows or shipments, it is considered how to choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. Furthermore, this module offers the possibility to learn about different aspects of the tactical and operational planning level in Supply Chain Management, including methods of scheduling as well as different approaches in procurement and distribution logistics. Finally, issues of warehousing and inventory management will be discussed.
Health Care Management addresses specific Supply Chain Management problems in the health sector. Important applications arise in scheduling and internal logistics of hospitals.
Courses in module [IW4OR4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25486</td>
<td>Facility Location and Strategic Supply Chain Management (S. 250)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25488</td>
<td>Tactical and Operational Supply Chain Management (S. 251)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>n.n.</td>
<td>Operations Research in Supply Chain Management (S. 412)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25495</td>
<td>Operations Research in Health Care Management (S. 255)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25493</td>
<td>Enterprise Hospital (S. 253)</td>
<td>2/0</td>
<td>W/S</td>
<td>2</td>
<td>S. Nickel, Hansis</td>
</tr>
<tr>
<td>25498</td>
<td>Practical seminar: Health Care Management (with Case Studies) (S. 257)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>7</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25497</td>
<td>Software Laboratory: OR Models II (S. 256)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>n.n.</td>
<td>Software Laboratory: Simulation (S. 408)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>n.n.</td>
<td>Software Laboratory: SAP APO (S. 410)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25494</td>
<td>Production Planning and Scheduling (S. 254)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>J. Kalcsics</td>
</tr>
</tbody>
</table>

Remarks

Some lectures and courses are offered irregularly.
The planned lectures and courses for the next three years are announced online.
Module: Mathematical Programming

Subject: Operations Research
Module coordination: Oliver Stein
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
Upon consultation with the module coordinator, alternatively one lecture from the modules Operations Research in Supply Chain Management and Health Care Management [WW4OR5] and Stochastic Modeling and Optimization [WW4OR7] or one of the lectures Game Theory I [25525] and Game Theory II [25369] may be accepted.

Learning Outcomes
The student
• names and describes basic notions for advanced optimization methods, in particular from continuous and mixed integer programming, location theory, and graph theory,
• knows the indispensable methods and models for quantitative analysis,
• models and classifies optimization problems and chooses the appropriate solution methods to solve also challenging optimization problems independently and, if necessary, with the aid of a computer,
• validates, illustrates and interprets the obtained solutions,
• identifies drawbacks of the solution methods and, if necessary, is able to makes suggestions to adapt them to practical problems.

Content
The modul focuses on theoretical foundations as well as solution algorithms for optimization problems with continuous and mixed integer decision variables, for location problems and for problems on graphs.

Courses in module Mathematical Programming [IW4OR6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25138</td>
<td>Mixed Integer Programming I (S. 209)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25140</td>
<td>Mixed Integer Programming II (S. 210)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25128</td>
<td>Special Topics in Optimization I (S. 205)</td>
<td>2/1</td>
<td>W/S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25126</td>
<td>Special Topics in Optimization II (S. 204)</td>
<td>2/1</td>
<td>W/S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>n.n.</td>
<td>Location Theory (S. 409)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>n.n.</td>
<td>Graph Theory (S. 411)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25497</td>
<td>Software Laboratory: OR Models II (S. 256)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>S. Nickel</td>
</tr>
<tr>
<td>25111</td>
<td>Nonlinear Optimization I (S. 202)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25113</td>
<td>Nonlinear Optimization II (S. 203)</td>
<td>2/1</td>
<td>S</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25134</td>
<td>Global Optimization I (S. 207)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
<tr>
<td>25136</td>
<td>Global Optimization II (S. 208)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>O. Stein</td>
</tr>
</tbody>
</table>

Remarks
The lectures are partly offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
Module: Stochastic Modelling and Optimization

Subject: Operations Research
Module coordination: Karl-Heinz Waldmann
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial written exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student knows and understands stochastic relationships and has a competent knowledge in modelling, analyzing and optimizing stochastic systems in economics and engineering.

Content
see courses

Courses in module Stochastic Modelling and Optimization [IW4OR7]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25679</td>
<td>Markov Decision Models I (S. 106)</td>
<td>2/1/2</td>
<td>W</td>
<td>5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25682</td>
<td>Markov Decision Models II (S. 269)</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25674</td>
<td>Quality Control I (S. 268)</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25659</td>
<td>Quality Control II (S. 265)</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25687</td>
<td>Optimization in a Random Environment (S. 270)</td>
<td>2/1/2</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25662</td>
<td>Simulation I (S. 266)</td>
<td>2/1/2</td>
<td>W</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25665</td>
<td>Simulation II (S. 267)</td>
<td>2/1/2</td>
<td>S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
<tr>
<td>25688</td>
<td>OR-oriented modeling and analysis of real problems (project) (S. 271)</td>
<td>1/0/3</td>
<td>W/S</td>
<td>4.5</td>
<td>K. Waldmann</td>
</tr>
</tbody>
</table>
5.4 Statistics

Module: Mathematical and Empirical Finance
Module key: [IW4STAT1]

Subject: Statistics
Module coordination: Svetlozar Rachev
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The lecture Stochastic Calculus and Finance [25331] is mandatory.

Learning Outcomes

Content

Courses in module Mathematical and Empirical Finance [IW4STAT1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25331</td>
<td>Stochastic Calculus and Finance (S. 237)</td>
<td>2/1 W 4.5</td>
<td>S. Rachev</td>
<td></td>
</tr>
<tr>
<td>25359</td>
<td>Financial Time Series and Econometrics (S. 244)</td>
<td>2/1 W 5</td>
<td>S. Rachev</td>
<td></td>
</tr>
<tr>
<td>25381</td>
<td>Advanced Econometrics of Financial Markets (S. 248)</td>
<td>2/1 S 5</td>
<td>S. Rachev</td>
<td></td>
</tr>
<tr>
<td>25357</td>
<td>Portfolio and Asset Liability Management (S. 243)</td>
<td>2/1 S 5</td>
<td>S. Rachev</td>
<td></td>
</tr>
<tr>
<td>25350/1</td>
<td>Finance and Banking (S. 240)</td>
<td>2/2 W 5</td>
<td>K. Vollmer</td>
<td></td>
</tr>
</tbody>
</table>
Module: Statistical Methods in Risk Management

Subject: Statistics
Module coordination: Svetlozar Rachev
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.

The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions

Learning Outcomes

Content

Courses in module Statistical Methods in Risk Management [IW4STAT2]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25353</td>
<td>Statistical Methods in Financial Risk Management (S. 241)</td>
<td>2/1 W 4.5</td>
<td></td>
<td></td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25337</td>
<td>Stochastic and Econometric Models in Credit Risk Management (S. 238)</td>
<td>2/2 S 5</td>
<td></td>
<td></td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25357</td>
<td>Portfolio and Asset Liability Management (S. 243)</td>
<td>2/1 S 5</td>
<td></td>
<td></td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25342</td>
<td>Operational Risk and Extreme Value Theory (S. 239)</td>
<td>2/2 W/S 5</td>
<td></td>
<td></td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25375</td>
<td>Data Mining (S. 247)</td>
<td>2 W 5</td>
<td></td>
<td></td>
<td>G. Nakhaeizadeh</td>
</tr>
<tr>
<td>25317</td>
<td>Multivariate Methods (S. 236)</td>
<td>2/2 S 5</td>
<td></td>
<td></td>
<td>W. Heller</td>
</tr>
</tbody>
</table>
Module: Risk Management and Econometrics in Finance

Module key: [IW4STAT3]

Subject: Statistics
Module coordination: Svetlozar Rachev
Credit points (CP): 9

Learning Control / Examinations
The assessment is carried out as partial exams (according to Section 4(2), 1 or 2 of the examination regulation) of the single courses of this module, whose sum of credits must meet the minimum requirement of credits of this module. The assessment procedures are described for each course of the module separately.
The overall grade of the module is the average of the grades for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Profound knowledge in the area of probability theory, estimation theory and test theory is recommended.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>25353</td>
<td>Statistical Methods in Financial Risk Management (S. 241)</td>
<td>2/1</td>
<td>W</td>
<td>4.5</td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25359</td>
<td>Financial Time Series and Econometrics (S. 244)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Rachev</td>
</tr>
<tr>
<td>25381</td>
<td>Advanced Econometrics of Financial Markets (S. 248)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>S. Rachev</td>
</tr>
</tbody>
</table>
5.5 Informatics

Module: Computer security

Module coordination: Jörn Müller-Quade

Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

The student

- knows and understands the basic commonly used algorithms, their design, correctness and efficiency analysis, implementation, documentation and application,
- can handle new algorithmic problems, using this understanding,
- can apply the mathematical approaches learned in the basic computer science and mathematics courses to solve problems.

Main topics are here formal correctness arguments and a mathematical analysis of efficiency.
- deals with a restricted problem in the field of computer security within the seminar,
- analyzes and discusses the problems associated to a distinct discipline in the lectures and in the final seminar paper,
- discusses, presents and defends subject-specific arguments within a given task,
- organizes the preparation of the final papers largely independent.

Content

Theoretical and practical aspects of computer security

- Development of safety goals and classification of threats
- Presentation and comparison of different formal access control models
- Formal description of authentication systems, presentation and comparison of different authentication methods (passwords, biometrics, challenge-response protocols)
- Analysis of typical vulnerabilities in programs and web applications and development of appropriate protective methods / avoidance strategies
- Overview of opportunities for side channel attacks
- Introduction to key management and Public Key Infrastructure
- Presentation and comparison of current safety certifications
- Block ciphers, hash functions, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (eg, Diffie-Hellman)
- Presentation of combinations of cryptographic modules using currently used protocols such as Secure Shell (SSH) and Transport Layer Security (TLS)

Courses in module Computer security [IW4INSICH]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24941</td>
<td>Security (S. 198)</td>
<td>3/1</td>
<td>S</td>
<td>6</td>
</tr>
<tr>
<td>SemSich</td>
<td>Seminar in Security (S. 397)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
</tr>
<tr>
<td>24137</td>
<td>Signals and Codes (S. 132)</td>
<td>2</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>24629</td>
<td>Symmetric encryption (S. 169)</td>
<td>2</td>
<td>S</td>
<td>3</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s)

- J. Müller-Quade
- J. Müller-Quade, M. Zitterbart
- J. Müller-Quade
- J. Müller-Quade

Module Handbook: Version 04.03.2010

Information Engineering and Management (M.Sc.)
Module: Advanced Topics in Cryptography

Subject: Informatics
Module coordination: Jörn Müller-Quade
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• will be familiar with the theoretical foundations and the basic mechanisms of computer security and cryptography.
• can understand and explain the methods of computer security and cryptography,
• will be able to read and understand the latest scientific papers,
• will be able to critically assess appropriate security solutions, and identify weaknesses / threats,
• can design an own security solution to a given problem, (eg. later in the a master's thesis).
• learns to transform theoretical concepts into practice (eg. in a Praktikum)

Content
The module is intended to provide depth theoretical and practical aspects of IT security and cryptography.
• Development of safety goals and classification of threats.
• Formal description of authentication systems.
• Analysis of typical vulnerabilities in programs and web applications and development of appropriate protective methods / avoidance strategies
• Overview of opportunities for side channel attacks
• Introduction to key management and Public Key Infrastructure
• Presentation and comparison of current safety certifications.
• The current research issues from some of the following areas are covered:
 – Block ciphers, hash functions,
 – Public-key encryption, digital signature, key exchange.
 – Basic security protocols such as fair coin toss over the phone, Byzantine Agreement, Dutch Flower Auctions, Zero Knowledge.
 – Threat models and security definitions.
 – Modular design and protocol composition.
 – Security definitions of simulatability.
 – Universal Composability.
 – Deniability as an additional safety feature.
 – Electronic Voting.

Courses in module Advanced Topics in Cryptography [IW4INFKRYP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrakKryp</td>
<td>Laboratory in Cryptography (S. 383)</td>
<td>4</td>
<td>W/S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24623</td>
<td>Selected topics in Cryptography (S. 166)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>SemiKryp3</td>
<td>Seminar in Cryptography (S. 403)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>WSUW</td>
<td>How statistics begins to understand the difference between cause and effect (S. 404)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>D. Janzing</td>
</tr>
<tr>
<td>24137</td>
<td>Signals and Codes (S. 132)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24629</td>
<td>Symmetric encryption (S. 169)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24656</td>
<td>Embedded Security (S. 180)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24652</td>
<td>Computational complexity theory, with a view towards cryptography (S. 178)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>J. Müller-Quade</td>
</tr>
</tbody>
</table>
Module: Public Key Cryptography

Subject: Informatics

Module coordination: Jörn Müller-Quade

Credit points (CP): 8

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

The student

• will learn the methods and mechanisms of cryptography in practice as well as the theoretical foundations of cryptography.
• should be able to critically assess algorithms and protocols and to identify vulnerabilities / threats.
• deals with a restricted problem in the field of cryptography within the seminar,
• analyzes and discusses the problems associated to a distinct discipline in the lectures and in the final seminar paper,
• discusses, presents and defends subject-specific arguments within a given task,
• organizes the preparation of the final papers largely independent.

Content

• The most important primitives of cryptography will be covered, as there are: one-way function, hash function, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (eg, Diffie-Hellman) with their strengths and weaknesses.
• In addition to public-key systems, the module provides knowledge about number-theoretic algorithms for solving problems such as primality testing, factoring large numbers and computing discrete logarithms in finite groups. Thus the choice of parameters and the related level of security of a cryptographic system can be estimated.
• Furthermore, an introduction to provable security is provided, which presents some of the key security concepts (eg, IND-CCA).
• The combination of cryptographic modules will be treated using the example of currently used protocols such as Secure Shell (SSH), Transport Layer Security (TLS) and anonymous digital money.

Courses in module Public Key Cryptography [IW4INPKK]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKK</td>
<td>Public Key Cryptography (S. 379)</td>
<td>3</td>
<td>W</td>
<td>6</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>SemiKryp2</td>
<td>Seminar in Cryptography (S. 402)</td>
<td>2</td>
<td>W/S</td>
<td>2</td>
<td>J. Müller-Quade</td>
</tr>
</tbody>
</table>
Module: Advanced Algorithms: Design and Analysis

Subject: Informatics
Module coordination: Dorothea Wagner
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

- knows advanced methodical approaches with respect to the design and analysis of algorithms,
- can comment on theoretical aspects of algorithmics in a qualified and well-structured manner,
- identifies algorithmic problems from different areas and can formulate these formally,
- can analyze and judge the computational complexity of algorithmic problems from different areas,
- can recognize and design suitable algorithmic techniques to solve algorithmic problems.

Content
This module conveys profound knowledge concerning theoretical aspects of algorithmics. Its focus is on the design and analysis of advanced algorithms, particularly, on algorithms for graphs, randomized algorithms, parallel algorithms and algorithms for NP-hard problems.

Courses in module Advanced Algorithms: Design and Analysis [IW4INAALGOA]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24171</td>
<td>Randomized Algorithms (S. 146)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>T. Worsch</td>
</tr>
<tr>
<td>24109</td>
<td>Parallel Algorithms (S. 115)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>P. Sanders</td>
</tr>
<tr>
<td>xAlgoEng</td>
<td>Algorithm Engineering (S. 415)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>P. Sanders, D. Wagner</td>
</tr>
<tr>
<td>24614</td>
<td>Algorithms for Planar Graphs (S. 163)</td>
<td>2/1</td>
<td>S</td>
<td>3/5</td>
<td>D. Wagner</td>
</tr>
<tr>
<td>24622</td>
<td>Algorithms in Cellular Automata (S. 165)</td>
<td>2/1</td>
<td>S</td>
<td>3</td>
<td>T. Worsch</td>
</tr>
<tr>
<td>24079s</td>
<td>Seminar in Algorithm Design (S. 111)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>D. Wagner</td>
</tr>
<tr>
<td>AlgVG</td>
<td>Algorithms for Visualization of Graphs (S. 371)</td>
<td>2/1</td>
<td>S</td>
<td>3/5</td>
<td>D. Wagner, M. Nöllenburg</td>
</tr>
<tr>
<td>25706</td>
<td>Nature-inspired Optimisation (S. 276)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Mostaghim, P. Shukla</td>
</tr>
<tr>
<td>24079p</td>
<td>Practical Course in Algorithm Design (S. 110)</td>
<td>4</td>
<td>W/S</td>
<td>5</td>
<td>P. Sanders, D. Wagner, M. Krug</td>
</tr>
<tr>
<td>24638</td>
<td>Algorithms for Routing (S. 174)</td>
<td>2/1</td>
<td>S</td>
<td>3/5</td>
<td>D. Wagner</td>
</tr>
<tr>
<td>AlgAS</td>
<td>Algorithms for Ad-Hoc and Sensor Networks (S. 370)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>B. Katz</td>
</tr>
</tbody>
</table>
Module: Advanced Algorithms: Engineering and Applications

Module key: [IW4INAALGOB]

Subject: Informatics
Module coordination: Dorothea Wagner
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

The Student
- knows advanced methodical approaches concerning the design of algorithms and their applications,
- can comment on the practical aspects of algorithmics in a qualified and well-structured manner,
- identifies algorithmic problems from different areas of application and can formulate these formally,
- can judge the computational complexity of algorithmic problems,
- recognizes suitable algorithmic techniques for solving these problems and can transfer and apply knowledge of these techniques to new problems,
- can implement solutions based on algorithmic techniques for practical problems and can evaluate these

Content

This module conveys profound knowledge concerning practical aspects of algorithmics and covers applications of algorithms for practical problems. Its focus is on the design, the practical implementation and the evaluation of algorithms, particularly, algorithms for graphs, parallel algorithms, algorithms for NP-hard problems, optimization algorithms inspired by nature, as well as algorithms from various areas of application.

Courses in module Advanced Algorithms: Engineering and Applications [IW4INAALGOB]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24079p</td>
<td>Practical Course in Algorithm Design (S. 110)</td>
<td>4 W/S 5</td>
<td></td>
<td></td>
<td>P. Sanders, D. Wagner, M. Krug</td>
</tr>
<tr>
<td>xAlgoEng</td>
<td>Algorithm Engineering (S. 415)</td>
<td>2 W/S 3</td>
<td></td>
<td></td>
<td>R. Sanders, D. Wagner</td>
</tr>
<tr>
<td>25704</td>
<td>Organic Computing (S. 274)</td>
<td>2/1 S 5</td>
<td></td>
<td></td>
<td>H. Schmeck, S. Mostaghim</td>
</tr>
<tr>
<td>25706</td>
<td>Nature-inspired Optimisation (S. 276)</td>
<td>2/1 W 5</td>
<td></td>
<td></td>
<td>S. Mostaghim, P. Shukla</td>
</tr>
<tr>
<td>24638</td>
<td>Algorithms for Routing (S. 174)</td>
<td>2/1 S 3/5</td>
<td></td>
<td></td>
<td>D. Wagner</td>
</tr>
<tr>
<td>24109</td>
<td>Parallel Algorithms (S. 115)</td>
<td>2 W/S 3</td>
<td></td>
<td></td>
<td>P. Sanders</td>
</tr>
<tr>
<td>AlgVG</td>
<td>Algorithms for Visualization of Graphs (S. 371)</td>
<td>2/1 S 3/5</td>
<td></td>
<td></td>
<td>D. Wagner, M. Nöllenburg</td>
</tr>
<tr>
<td>24079s</td>
<td>Seminar in Algorithm Design (S. 111)</td>
<td>2 W/S 3</td>
<td></td>
<td></td>
<td>D. Wagner</td>
</tr>
<tr>
<td>24614</td>
<td>Algorithms for Planar Graphs (S. 163)</td>
<td>2/1 S 3/5</td>
<td></td>
<td></td>
<td>D. Wagner</td>
</tr>
<tr>
<td>24622</td>
<td>Algorithms in Cellular Automata (S. 165)</td>
<td>2/1 S 3</td>
<td></td>
<td></td>
<td>T. Worsch</td>
</tr>
<tr>
<td>24171</td>
<td>Randomized Algorithms (S. 146)</td>
<td>2 W 3</td>
<td></td>
<td></td>
<td>T. Worsch</td>
</tr>
<tr>
<td>AlgAS</td>
<td>Algorithms for Ad-Hoc and Sensor Networks (S. 370)</td>
<td>2 S 3</td>
<td></td>
<td></td>
<td>B. Katz</td>
</tr>
</tbody>
</table>

Module Handbook: Version 04.03.2010
Information Engineering and Management (M.Sc.)
Module: Introduction to Algorithmics

Module key: [IW4INEALGT]

Subject: Informatics
Module coordination: Dorothea Wagner
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

- gains basic insights into the most important areas of algorithmics,
- identifies algorithmic problems from different areas of application and can formulate these in a formal manner,
- comprehends and determines the running times of algorithms,
- knows basic algorithms and data structures and can transfer this knowledge to new problems.

Content
This module conveys knowledge of basic theoretical and practical aspects of algorithmics. It covers common methods for the design and analysis of basic algorithmic problems as well as the fundamentals of common algorithmic methods such as approximations algorithms, linear programming, randomized algorithms, parallel algorithms and parameterized algorithms.

Courses in module Introduction to Algorithmics [IW4INEALGT]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24079</td>
<td>Algorithm Design (S. 109)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>D. Wagner, P. Sanders</td>
</tr>
<tr>
<td>24079s</td>
<td>Seminar in Algorithm Design (S. 111)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>D. Wagner</td>
</tr>
</tbody>
</table>
Module: Web Applications and Web Technologies

Subject: Informatics
Module coordination: Sebastian Abeck
Credit points (CP): 9

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
To understand the architecture of multi-layered and service-oriented applications.
To be able to model the software architecture of a Web application.
To understand the major principles of traditional application development and the corresponding development process.
To comprehend how high-level process models are systematically refined in order to be mapped to a service oriented architecture.
The technologies and development tools can be applied to support exemplary scenarios.
Using document templates the obtained results can be clearly described.
The results can be vividly presented and supported in discussions.

Content
This module comprises at first the lecture "Advanced Web Applications". The lecture deals with the model-driven development of service-oriented Web applications which support business processes. These processes must be modeled in a way that it can be mapped to a Service-oriented Architecture (SOA).
The lecture is completed by a practical course. Each participant is integrated in one of the current project teams of the research group. The practical course consists of two parts: (i) An introduction into traditional and advanced service-oriented software development which takes about 4 to 5 weeks (ii) The solution (and its documentation) of an individual problem that is derived from one of the projects conducted by the project team.

Courses in module Web Applications and Web Technologies [IW4INWAWT]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24153/24604</td>
<td>Advanced Web Applications (S. 141)</td>
<td>2/0</td>
<td>W/S</td>
<td>4</td>
<td>S. Abeck</td>
</tr>
<tr>
<td>24304/24873</td>
<td>Practical Course Web Technologies (S. 153)</td>
<td>2/0</td>
<td>W/S</td>
<td>5</td>
<td>S. Abeck, Gebhart, Hoyer, Link, Pansa</td>
</tr>
</tbody>
</table>
Module: Language Technology and Compiler

Module key: [IW4INCOMP1]

Subject: Informatics
Module coordination: Gregor Snelting
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student

- knows the importance of language and compiler technologies in other areas of computer science
- learns the theoretical foundations and practical methods which form the foundation for the compiler passes: lexical analysis, syntactic analysis, semantic analysis, code generation and code optimization
- has received an overview over the state of the art in compiler construction
- is able to apply his knowledge in practice when constructing a compiler (e.g. In the compiler lab)
- is able to follow advanced courses (e.g. Compiler 2)

Content
- Structure of a compiler
- Lexical analysis
- Syntactic analysis
- Semantic analysis
- Code generation
- Code optimization
- Specific technologies: LL-Parser, LR/LALR-Parser, attributed grammars, instruction selection, register allocation, runtime mechanisms, memory management, static single assignment form and its usage in optimization

Courses in module Language Technology and Compiler [IW4INCOMP1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24134</td>
<td>Sprachtechnologie und Compiler (S. 130)</td>
<td>4/2</td>
<td>W</td>
<td>8</td>
</tr>
</tbody>
</table>

G. Snelting
Module: Software Systems

Subject: Informatics
Module coordination: Ralf Reussner
Credit points (CP): 9

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes

Content

Courses in module Software Systems [IW4INSWS]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K6SWA</td>
<td>Component Based Software Architecture (S. 376)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>R. Reussner, M. Kuperberg, K. Krogmann</td>
</tr>
<tr>
<td>24660</td>
<td>Software Development for modern, parallel platforms (S. 181)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>W. Tichy, Pankratius, Otto</td>
</tr>
<tr>
<td>24112</td>
<td>Multicore Computers and Computer Clusters (S. 118)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>W. Tichy, Pankratius, Victor</td>
</tr>
<tr>
<td>24125/24673</td>
<td>Reading Group (S. 126)</td>
<td>1</td>
<td>W/S</td>
<td>1</td>
<td>R. Reussner, K. Krogmann, M. Kuperberg</td>
</tr>
<tr>
<td>24654</td>
<td>Component Based Software Engineering (S. 179)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>R. Reussner, M. Kuperberg, K. Krogmann</td>
</tr>
<tr>
<td>24126</td>
<td>Specification and Verification of Software (S. 127)</td>
<td>3</td>
<td>S</td>
<td>5</td>
<td>B. Beckert</td>
</tr>
<tr>
<td>24293/24649</td>
<td>Multicore Programming in Practice: Tools, Models, Languages (S. 151)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>V. Pankratius, W. Tichy</td>
</tr>
</tbody>
</table>
Module: Software-Methodik

Subject: Informatics

Module coordination: Ralf Reussner

Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Software-Methodik [IW4INSWM]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KbSWA</td>
<td>Component Based Software Architecture (S. 376)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>R. Reussner, M. Kuperberg, K. Krogmann</td>
</tr>
<tr>
<td>24156</td>
<td>Empirical Software Engineering (S. 142)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>W. Tichy</td>
</tr>
<tr>
<td>24634</td>
<td>Moderne Entwicklungsumgebung am Beispiel von .NET (S. 171)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>W. Tichy, Gelhausen, Ladani</td>
</tr>
<tr>
<td>SWSich</td>
<td>Software Security (S. 384)</td>
<td>2/1</td>
<td>W/S</td>
<td>3</td>
<td>G. Snelting</td>
</tr>
<tr>
<td>24636</td>
<td>Performance Engineering of Enterprise Software Systems (S. 172)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>R. Reussner, S. Kounev</td>
</tr>
<tr>
<td>24625</td>
<td>Model Driven Software Development (S. 168)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>R. Reussner, S. Becker</td>
</tr>
<tr>
<td>24125/24673</td>
<td>Reading Group (S. 126)</td>
<td>1</td>
<td>W/S</td>
<td>1</td>
<td>R. Reussner, K. Krogmann, M. Kuperberg</td>
</tr>
<tr>
<td>24654</td>
<td>Component Based Software Engineering (S. 179)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>R. Reussner, M. Kuperberg, K. Krogmann</td>
</tr>
<tr>
<td>SWT2</td>
<td>Software Engineering II (S. 385)</td>
<td>3/1</td>
<td>W</td>
<td>6</td>
<td>R. Reussner, W. Tichy</td>
</tr>
</tbody>
</table>
Module: Applied Web Engineering

Subject: Informatics
Module coordination: Wilfried Juling
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
- Students know the fundamentals as well as current methodologies and techniques in the field of Web Engineering and can apply them in practice. They have gained insights and first experiences in managing Web projects as well as in analyzing, structuring and describing problems in the field of Web Engineering.
- Students have acquired knowledge about state-of-the-art Web-based concepts, technologies and frameworks. They have developed a fundamental understanding of server- and client-side technologies and their interaction.
- Students have the ability to design Web-based systems autonomously with regard to the aspects data, interaction, navigation, presentation, communication and processing.
- Students are able to understand and interpret scientific papers and standard specifications and are confident in using the domain-specific language.

Content
The module is designed as an introduction to the discipline of Web Engineering, covering both theory and practice. The focus is on approaches and methods fostering a systematic construction of Web-based applications and systems. The different phases and aspects of the Web application lifecycle are examined as well. It helps students to look at the Web phenomenon from different perspectives - e.g. as a Web designer, analyst, architect, component engineer, program manager, product manager or CIO. Methods for dealing with requirements, design, architecture, implementation and management are discussed and applied in a project.

The module will convey practical knowledge of the Web’s fundamental languages and technologies, like (X)HTML/CSS and XML/XSL. Furthermore component-based Web engineering approaches and frameworks are applied in the software project. Another thematic focus of the course is on Web services as a fundamental building block for constructing service-oriented applications. By realizing a software project, the structured and disciplined application of the learnt technologies is emphasized.

Courses in module Applied Web Engineering [IW4INPWE]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24124</td>
<td>Web Engineering (S. 125)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Nußbaumer</td>
</tr>
<tr>
<td>24880/24291</td>
<td>Practical Course Web Engineering (S. 195)</td>
<td>2/0</td>
<td>W/S</td>
<td>5</td>
<td>W. Juling, M. Nußbaumer, M. Keller, F. Majer</td>
</tr>
</tbody>
</table>
Module: Wireless Networking

Subject: Informatics
Module coordination: Martina Zitterbart
Credit points (CP): 8

Learning Control / Examinations
The assessment of this module consists of oral exams of approx. 20 min. following § 4 Abs. 2 Nr. 2 SPO on the selected courses. The overall grade is computed by weighting the grade of each course with its credits and computing the average of the weighted grades.
It is recommended to take the exams at the same time.

Prerequisites
Knowledge on the contents of the lecture Introduction into Computer Networks [24519] or Networked IT-Infrastructures [24074] is recommended.

Conditions
The lecture Telematics [24128] must be selected if it has not been passed yet.

Learning Outcomes
Each student should be able

- to learn and use the concepts and principals of wireless network design
- to identify the flaws and benefits of wireless communication systems
- to judge the performance of protocols, wireless networks and architectures
- master advanced protocols, architectures and algorithms of wireless communication systems

Content
This module details selected aspects of wireless communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.

Courses in module Wireless Networking [IW4INWN]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24148</td>
<td>Traffic Telematics (S. 139)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>J. Härri, H. Hartenstein</td>
</tr>
<tr>
<td>24104</td>
<td>Wireless Sensor-Actuator-Networks (S. 113)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24669</td>
<td>Simulation of Computer Networks (S. 185)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24643</td>
<td>Mobile Communications (S. 175)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>O. Waldhorst</td>
</tr>
<tr>
<td>24146</td>
<td>Ubiquitous Computing (S. 136)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>W. Juling</td>
</tr>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols (S. 159)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>M. Schöller</td>
</tr>
<tr>
<td>24128</td>
<td>Telematics (S. 128)</td>
<td></td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
</tbody>
</table>
Module: Networking Labs

Subject: Informatics
Module coordination: Martina Zitterbart
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Each student should be able

- to learn and apply the concepts and principals of wireless network design
- to identify the flaws and benefits of wireless communication systems
- to judge the performance of protocols, wireless networks and architectures
- master advanced protocols, architectures and algorithms of wireless communication systems

Content
This module details and applies selected aspects of communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.

Courses in module Networking Labs [IW4INNL]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24674</td>
<td>Next Generation Internet (S. 188)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>R. Bless</td>
</tr>
<tr>
<td>24104</td>
<td>Wireless Sensor-Actuator-Networks (S. 113)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td></td>
<td>PrakATM Lab Advanced Telematics (S. 382)</td>
<td>2</td>
<td>W/S</td>
<td>5</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24669</td>
<td>Simulation of Computer Networks (S. 185)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24878</td>
<td>Praktikum Simulation von Rechnernetzen (S. 194)</td>
<td>0/2</td>
<td>S</td>
<td>5</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management (S. 140)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols (S. 159)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>M. Schöller</td>
</tr>
<tr>
<td>24643</td>
<td>Mobile Communications (S. 175)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>O. Waldhorst</td>
</tr>
</tbody>
</table>
Module: Future Networking

Module key: [IW4INFN]

Subject: Informatics
Module coordination: Martina Zitterbart
Credit points (CP): 8

Learning Control / Examinations
The assessment of this module consists of oral exams of approx. 20 min. following § 4 Abs. 2 Nr. 2 SPO on the selected courses. The overall grade is computed by weighting the grade of each course with its credits and computing the average of the weighted grades.
It is recommended to take the exams at the same time.

Prerequisites
Knowledge on the contents of the lecture Introduction into Computer Networks [24519] or Networked IT-Infrastructures [24074] is recommended.

Conditions
The lecture Telematics [24128] must be selected if it has not been passed yet.

Learning Outcomes
Each student should be able
• to learn and use the concepts and principals of future network design
• to identify the flaws and benefits of future communication systems
• to judge the performance of protocols, future networks and architectures
• master advanced protocols, architectures and algorithms of future communication systems

Content
This module details selected aspects of future communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.

Courses in module Future Networking [IW4INFN]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24674</td>
<td>Next Generation Internet (S. 188)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
</tr>
<tr>
<td>24132</td>
<td>Multimedia Communications (S. 129)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
</tr>
<tr>
<td>24643</td>
<td>Mobile Communications (S. 175)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
</tr>
<tr>
<td>24104</td>
<td>Wireless Sensor-Actuator-Networks (S. 113)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
</tr>
<tr>
<td>24128</td>
<td>Telematics (S. 128)</td>
<td>2</td>
<td>W</td>
<td>4</td>
</tr>
<tr>
<td>24148</td>
<td>Traffic Telematics (S. 139)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
</tr>
</tbody>
</table>

Responsible
R. Bless
O. Waldhorst
M. Zitterbart
M. Zitterbart
J. Härr, H. Hartenstein

Module Handbook: Version 04.03.2010
Information Engineering and Management (M.Sc.)
Module: Networking

Subject: Informatics
Module coordination: Martina Zitterbart
Credit points (CP): 8

Learning Control / Examinations
The assessment of this module consists of oral exams of approx. 20 min. following § 4 Abs. 2 Nr. 2 SPO on the selected courses. The overall grade is computed by weighting the grade of each course with its credits and computing the average of the weighted grades.
It is recommended to take the exams at the same time.

Prerequisites
Knowledge on the contents of the lecture Introduction into Computer Networks [24519] or Networked IT-Infrastructures [24074] is recommended.

Conditions
The lecture Telematics [24128] must be selected if it has not been passed yet.

Learning Outcomes
Each student should be able

• to learn and use the concepts and principals of wired network design
• to identify the flaws and benefits of wired communication systems
• to judge the performance of protocols, wired networks and architectures
• master advanced protocols, architectures and algorithms of wired communication systems

Content
This module details selected aspects of wired communication systems. This includes beside the requirements of secure and multimedia-based communication also the realization and controllability of large communication systems and networks. An important aspect is benchmarking and mastering the used algorithms, protocols and architectures. Also actual developments and applications are in the focus of this module.

Courses in module Networking [IW4INNW]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24128</td>
<td>Telematics (S. 128)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24110</td>
<td>High Performance Communication (S. 116)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Zitterbart</td>
</tr>
<tr>
<td>24674</td>
<td>Next Generation Internet (S. 188)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>R. Bless</td>
</tr>
<tr>
<td>24669</td>
<td>Simulation of Computer Networks (S. 185)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24132</td>
<td>Multimedia Communications (S. 129)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>R. Bless</td>
</tr>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols (S. 159)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>M. Schöller</td>
</tr>
</tbody>
</table>
Module: Networking Security – Theory and Praxis

Subject: Informatics
Module coordination: Martina Zitterbart
Credit points (CP): 9

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Each student should be able
- to recall the basic security mechanisms and theoretical foundations of networking security and cryptography
- to read and understand actual academic papers
- to judge the security level of actual security solutions
- to identify possible attacks on security solutions

Content
This module details selected aspects of networking security and cryptography in theory and praxis.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24601</td>
<td>Network Security: Architectures and Protocols (S. 159)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>M. Schöller</td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management (S. 140)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>SemiKryp2</td>
<td>Seminar in Cryptography (S. 402)</td>
<td>2</td>
<td>W/S</td>
<td>2</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24629</td>
<td>Symmetric encryption (S. 169)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>24941</td>
<td>Security (S. 198)</td>
<td>3/1</td>
<td>S</td>
<td>6</td>
<td>J. Müller-Quade</td>
</tr>
</tbody>
</table>
Module: Communication and Database Systems
Module key: [IW4INKD]

Subject: Informatics
Module coordination: Klemens Böhm, Martina Zitterbart
Credit points (CP): 8

Learning Control / Examinations
The assessment consists of a 90 minutes written exam following §4, Abs. 2, 1 of the Prüfungsordnung.
The grade is the grade of the written exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students will

• have learned fundamentals of data communication as well as the design of communication systems,
• be familiar with the composition of the different protocols and their mechanisms and be able to design simple protocols on their own,
• have understood the relationships between the different communication layers,
• be able to explain the benefits of database technology at the end of the course,
• have understood the development of database applications and be able to set up and access simple databases,
• be familiar with the terminology and the underlying database theory.

Content
Distributed information systems are worldwide information repositories which are accessible by everybody at any place of the world at any time. The physical distance is bridged by telecommunication systems, while database management technology manages and coordinates data for arbitrary periods of time. In order to understand globally running processes, one has to understand both data transmission techniques and database technology. Besides the telecommunication and database technologies on their own, an understanding of their cooperation is required, too.

Courses in module Communication and Database Systems [IW4INKD]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24516</td>
<td>Database Systems (S. 155)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24519</td>
<td>Introduction in Computer Networks (S. 156)</td>
<td>2/1</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
</tbody>
</table>
Module: Innovative Concepts of Data and Information Management

Module key: [IW4INIKDI]

Subject: Informatics
Module coordination: Klemens Böhm
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
It is recommended to take the module Communication and Database Systems in advance.

Conditions
If the Seminar Information Systems is selected, the lectures Selling IT-Solutions Professionally [PLV], Consulting in Practice [24147] and Project Management in Practice [PMP] cannot be taken.

Learning Outcomes

The students
- know the research area of information systems in its various facets and are able to do scientific work in this area,
- are able to develop complex information systems on their own,
- are able to structure and manage complex projects in the field of information systems with unpredictable difficulties,
- are able to explain and to discuss complex aspects of the topics covered by this module with both experts and informed outsiders.

Content

This module aims at exposing students to modern information management, both, in ‘breadth’ and ‘depth’. We achieve ‘breadth’ by means of a close inspection and comparison of different systems and their respective aims. We achieve ‘depth’ by means of an extensive examination of the underlying concepts and design alternatives, their assessment as well as by discussing applications.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24118</td>
<td>Data Warehousing and Mining (S. 121)</td>
<td>2/1 W</td>
<td>5</td>
<td>K. Böhm</td>
<td></td>
</tr>
<tr>
<td>db_impl</td>
<td>Database Implementation and Tuning (S. 405)</td>
<td>2/1 S</td>
<td>5</td>
<td>K. Böhm</td>
<td></td>
</tr>
<tr>
<td>db</td>
<td>Deployment of Database Systems (S. 406)</td>
<td>2/1 W</td>
<td>5</td>
<td>K. Böhm</td>
<td></td>
</tr>
<tr>
<td>24114</td>
<td>Distributed Data Management (S. 119)</td>
<td>2/1 W</td>
<td>5</td>
<td>K. Böhm</td>
<td></td>
</tr>
<tr>
<td>MOD</td>
<td>Moving Objects Databases (S. 378)</td>
<td>2 W</td>
<td>3</td>
<td>K. Böhm</td>
<td></td>
</tr>
<tr>
<td>24111</td>
<td>Workflowmanagement-Systems (S. 117)</td>
<td>2 W</td>
<td>3</td>
<td>J. Mülle</td>
<td></td>
</tr>
<tr>
<td>24141</td>
<td>Information Integration and Web Portals (S. 134)</td>
<td>2 W</td>
<td>3</td>
<td>J. Mülle</td>
<td></td>
</tr>
<tr>
<td>24605</td>
<td>Data Privacy Protection in Interconnected Information Systems (S. 160)</td>
<td>2 S</td>
<td>3</td>
<td>Buchmann</td>
<td></td>
</tr>
<tr>
<td>PLV</td>
<td>Selling IT-Solutions Professionally (S. 380)</td>
<td>2 S</td>
<td>1</td>
<td>K. Böhm, Hellriegel</td>
<td></td>
</tr>
<tr>
<td>24147</td>
<td>Consulting in Practice (S. 138)</td>
<td>2 W/S</td>
<td>1</td>
<td>K. Böhm, Dürr</td>
<td></td>
</tr>
<tr>
<td>PMP</td>
<td>Project Management in Practice (S. 381)</td>
<td>2 S</td>
<td>1</td>
<td>K. Böhm, W. Schnober</td>
<td></td>
</tr>
</tbody>
</table>
Module: Theory and Practice of Data Warehousing and Mining

Module key: [IW4INDWMTP]

Subject: Informatics
Module coordination: Klemens Böhm
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of an oral exam of approx. 20 minutes following § 4 Abs. 2 Nr. 2 Study and Examination Regulation on the contents of the selected lecture.
The practical course requires an additional certificate following § 4 Abs. 2 Nr. 3.
The grade of the module is the grade of the oral exam.

Prerequisites
None.

Conditions
The practical course on Data Warehousing and Mining [24874] must be taken.
It is recommended to take the lecture Data Warehousing und Mining [24118] if it has not been taken yet.

Learning Outcomes
The students
• know the research area of information systems in its various facets and are able to do scientific work in this area,
• are able to explain and to discuss complex aspects of the topics covered by this module with both experts and informed outsiders,
• know the concepts, algorithms, techniques and selected tools in the areas of data warehousing and data mining,
• are familiar with the practical challenges of data analysis and are able to develop respective solutions on their own.

Content
This module aims at exposing students to modern information management, both, in ‘breadth’ and ‘depth’. We achieve ‘breadth’ by means of a close inspection and comparison of different systems and their respective aims. We achieve ‘depth’ by means of an extensive examination of the underlying concepts and design alternatives, their assessment as well as by discussing applications. In particular, we look at data warehousing and mining techniques not only from a theoretical point of view but deploy and realise such technologies in a practical course.

Courses in module Theory and Practice of Data Warehousing and Mining [IW4INDWMTP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24874</td>
<td>Practical Course Data Warehousing and Mining (S. 193)</td>
<td>2</td>
<td>S</td>
<td>4</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24118</td>
<td>Data Warehousing and Mining (S. 121)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>db</td>
<td>Deployment of Database Systems (S. 406)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>db_impl</td>
<td>Database Implementation and Tuning (S. 405)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24114</td>
<td>Distributed Data Management (S. 119)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
</tbody>
</table>

Remarks
The courses of this module are offered irregularly. Nonetheless, it is guaranteed that the module can be passed anytime.
Module: Theory and Practice of Database Techno

Module key: [IW4INDBTP]

Subject: Informatics
Module coordination: Klemens Böhm
Credit points (CP): 9

Learning Control / Examinations
The assessment consists of an oral exam of approx. 20 minutes following § 4 Abs. 2 Nr. 2 Study and Examination Regulation on the contents of the selected lecture.
The practical course requires an additional certificate following § 4 Abs. 2 Nr. 3.
The grade of the module is the grade of the oral exam.

Prerequisites
It is recommended to
• combine the Practical Course Databases with the lecture Deployment of Database Systems [24647].
• combine the Practical Course Distributed Data Management with the lecture Distributed Data Management [24114].

Conditions
One of the practical courses must be taken.

Learning Outcomes
The students
• know the research area of information systems in its various facets and are able to do scientific work in this area,
• are able to develop complex information systems on their own,
• are able to explain and to discuss complex aspects of the topics covered by this module with both experts and informed outsiders,
• are able to deploy (distributed) databases and are familiar with the relevant technologies.

Content
This module aims at exposing students to modern information management, both, in ‘breadth’ and ‘depth’. We achieve ‘breadth’ by means of a close inspection and comparison of different systems and their respective aims. We achieve ‘depth’ by means of an extensive examination of the underlying concepts and design alternatives, their assessment as well as by discussing applications. In particular, we look at the topics of this module not only from a theoretical point of view but deploy and realise the respective technologies in a practical course.

Courses in module Theory and Practice of Database Techno [IW4INDBTP]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dbprakt</td>
<td>Practical Course Database Systems (S. 407)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>praktvd</td>
<td>Practical Course Distributed Data Management (S. 413)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24114</td>
<td>Distributed Data Management (S. 119)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>24118</td>
<td>Data Warehousing and Mining (S. 121)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>db</td>
<td>Deployment of Database Systems (S. 406)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
<tr>
<td>db_impl</td>
<td>Database Implementation and Tuning (S. 405)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>K. Böhm</td>
</tr>
</tbody>
</table>

Remarks
The courses of this module are offered irregularly. Nonetheless, it is guaranteed that the module can be passed anytime.
Module: Dynamische IT-Infrastrukturen

Module key: [IW4INDITI]

Subject: Informatics
Module coordination: Hannes Hartenstein
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24124</td>
<td>Web Engineering (S. 125)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>M. Nußbaumer</td>
</tr>
<tr>
<td>24669</td>
<td>Simulation of Computer Networks (S. 185)</td>
<td>2/0</td>
<td>S</td>
<td>4</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24146</td>
<td>Ubiquitous Computing (S. 136)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>W. Juling</td>
</tr>
<tr>
<td>24878</td>
<td>Praktikum Simulation von Rechnernetzen (S. 194)</td>
<td>0/2</td>
<td>S</td>
<td>5</td>
<td>H. Hartenstein</td>
</tr>
<tr>
<td>24074</td>
<td>Networked IT-Infrastructures (S. 108)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>W. Juling</td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management (S. 140)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>H. Hartenstein</td>
</tr>
</tbody>
</table>
Module: Biosignalverarbeitung

Module key: [IW4INBSV]

Subject: Informatics
Module coordination: Tanja Schultz
Credit points (CP): 9

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Content

Courses in module Biosignalverarbeitung [IW4INBSV]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24105</td>
<td>Biosignale und Benutzerschnittstellen (S. 114)</td>
<td>4/0</td>
<td>W</td>
<td>6</td>
<td>T. Schultz, Wand</td>
</tr>
<tr>
<td>24600</td>
<td>Multilinguale Mensch-Maschine-Kommunikation (S. 158)</td>
<td>4/0</td>
<td>S</td>
<td>6</td>
<td>T. Schultz, Putze</td>
</tr>
<tr>
<td>24119</td>
<td>Analysis and modeling of human motion sequences (S. 122)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>A. Wörner, T. Schultz</td>
</tr>
<tr>
<td>24905</td>
<td>Praktikum Biosignale (S. 197)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>T. Schultz, Wand</td>
</tr>
<tr>
<td>24612</td>
<td>Kognitive Modellierung (S. 162)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>T. Schultz, Putze</td>
</tr>
</tbody>
</table>
Module: Sprachverarbeitung

Subject: Informatics
Module coordination: Tanja Schultz
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Sprachverarbeitung [IW4INSV]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24145</td>
<td>Principles of Automatic Speech Recognition (S. 135)</td>
<td>4</td>
<td>W</td>
<td>6</td>
<td>A. Waibel, Stüker</td>
</tr>
<tr>
<td>24600</td>
<td>Multilinguale Mensch-Maschine-Kommunikation (S. 158)</td>
<td>4/0</td>
<td>S</td>
<td>6</td>
<td>T. Schultz, Putze</td>
</tr>
<tr>
<td>SemAKTSV</td>
<td>Seminar Aktuelle Themen der Sprachverarbeitung (S. 391)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>T. Schultz</td>
</tr>
<tr>
<td>24298</td>
<td>Praktikum Automatic Speech Recognition (S. 152)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>A. Waibel, Stüker</td>
</tr>
<tr>
<td>24280</td>
<td>Praktikum Multilingual Speech Processing (S. 149)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>T. Schultz</td>
</tr>
<tr>
<td>24612</td>
<td>Kognitive Modellierung (S. 162)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>T. Schultz, Putze</td>
</tr>
</tbody>
</table>
Module: Motion centered Human-Machine Interface

Module key: [IW4INBMMI]

Subject: Informatics
Module coordination: Annika Wörner
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
The module should be started in winter term

Conditions
None.

Learning Outcomes
- Within the module the student should be introduced to the basics of data processing of captured image sequences and should take the relation of the different processing steps.
- A general overview should be given relating to the discussed working field. The theoretical learned knowledge should be implemented in practice during the integrated practica.
- The students should be able to apply the learned methods and are able to convert and adapt them to related problems.
- Within the seminar the students should especially learn the analysing, structuring and the formal description of subproblems of the research field of motion capturing, motion recognition and the motion synthesis. The students should be able to realise the learned methods due to a further self studying in practical examples.

Content
The content of the whole module is described within the description of the different courses.

Courses in module Motion centered Human-Machine Interface [IW4INBMMI]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24119</td>
<td>Analysis and modeling of human motion sequences (S. 122)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>A. Wörner, T. Schultz</td>
</tr>
<tr>
<td>24373</td>
<td>Seminar Vom Mensch zum Roboter (S. 154)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>A. Wörner, Feldmann, Köhler</td>
</tr>
<tr>
<td>24288/24893</td>
<td>Motion based machine interface (S. 150)</td>
<td>4</td>
<td>W/S</td>
<td>3</td>
<td>A. Wörner, Köhler, Schulz</td>
</tr>
<tr>
<td>24905</td>
<td>Praktikum Biosignale (S. 197)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>T. Schultz, Wand</td>
</tr>
</tbody>
</table>
Module: Curves and Surfaces

Module key: [IW4INKUF]

Subject: Informatics
Module coordination: Hartmut Prautzsch
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Gaining knowledge and deeper understanding in the area of Computer Aided Geometric Design (CAGD) and Geometric Computing.
Further, this module should enable the students to master typical CAGD tasks and to work on a master’s thesis, in particular.

Content
Technics and algorithms for generating, representing, reconstructing, modifying, animating and analyzing free form geometries (curves, surfaces and bodies).

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24670</td>
<td>Curves ans surfaces in CAD I (S. 186)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>H. Prautzsch, Umlauf</td>
</tr>
<tr>
<td>KFCAD2</td>
<td>Curves and Surfaces in CAD II (S. 374)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>KFCAD3</td>
<td>Curves and Surfaces in CAD III (S. 375)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>24624</td>
<td>Rationale Splines (S. 167)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>24122</td>
<td>Subdivision algorithm (S. 124)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>24175</td>
<td>Meshes and point clouds (S. 148)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>ADG</td>
<td>Applied Differntial Geometry (S. 369)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
</tbody>
</table>
Module: Algorithmen der Computergraphik

Module key: [IW4INACG]

Subject: Informatics

Module coordination: Hartmut Prautzsch

Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG</td>
<td>Einführung in die Computergraphik (S. 372)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>J. Bender</td>
</tr>
<tr>
<td>24618</td>
<td>Graphisch-geometrische Algorithmen (S. 164)</td>
<td>2/1/0</td>
<td>S</td>
<td>5</td>
<td>A. Schmitt, Umlauf</td>
</tr>
<tr>
<td>24670</td>
<td>Curves ans surfaces in CAD I (S. 186)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>H. Prautzsch, Umlauf</td>
</tr>
<tr>
<td>KFCAD2</td>
<td>Curves and Surfaces in CAD II (S. 374)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>24175</td>
<td>Meshes and point clouds (S. 148)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>GVsem</td>
<td>Seminar Geometric computing (S. 373)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>H. Prautzsch</td>
</tr>
<tr>
<td>24884</td>
<td>Practical course: Geometric Modeling (S. 196)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>H. Prautzsch, Diziol</td>
</tr>
<tr>
<td>24173</td>
<td>Medical Simulation Systems I (S. 147)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>R. Dillmann, Röhl, Speidel</td>
</tr>
<tr>
<td>24676</td>
<td>Medical Simulation Systems II (S. 189)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>R. Dillmann, Unterhinninghofen, Suwelack</td>
</tr>
</tbody>
</table>
Module: Foundations and Application of IT-Security

Subject: Informatics
Module coordination: Jörn Müller-Quade
Credit points (CP): 8

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- knows the theoretic background and the basic mechanisms of computer security and cryptography
- understands the mechanisms of computer security and can explain them,
- can read and understand the current scientific papers,
- can evaluate the safety procedures and can recognize hazards,
- can adapt mechanisms of computer security to new environment.
- deals with a restricted problem in the field of cryptography within the seminar,
- analyzes and discusses the problems associated to a distinct discipline in the lectures and in the final seminar paper,
- discusses, presents and defends subject-specific arguments within a given task,
- organizes the preparation of the final papers largely independent.

Content
- Theoretical and practical aspects of computer security
- Development of safety goals and classification of threats
- Presentation and comparison of different formal access control models
- Formal description of authentication systems, presentation and comparison of different authentication methods (passwords, biometrics, challenge-response protocols)
- Analysis of typical vulnerabilities in programs and web applications and development of appropriate protective protection methods / avoidance strategies
- Introduction to key management and Public Key Infrastructure
- Presentation and comparison of current safety certifications
- Block ciphers, hash functions, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (e.g., Diffie-Hellman)
- Furthermore, an introduction to provable security is provided, which presents some of the key security concepts (e.g. IND-CCA).
- Presentation of combinations of cryptographic modules using currently used protocols such as Secure Shell (SSH) and Transport Layer Security (TLS).

Courses in module Foundations and Application of IT-Security [IW4INGAS]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24941</td>
<td>Security (S. 198)</td>
<td>3/1</td>
<td>S</td>
<td>6</td>
<td>J. Müller-Quade</td>
</tr>
<tr>
<td>SemiKryp2</td>
<td>Seminar in Cryptography (S. 402)</td>
<td>2</td>
<td>W/S</td>
<td>2</td>
<td>J. Müller-Quade</td>
</tr>
</tbody>
</table>

Module Handbook: Version 04.03.2010
Information Engineering and Management (M.Sc.)
Module: Parallelverarbeitung

Subject: Informatics
Module coordination: Wolfgang Karl
Credit points (CP): 9

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Parallelverarbeitung [IW4INPV]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24161</td>
<td>Mikroprozessoren II (S. 143)</td>
<td>2 W</td>
<td>3</td>
<td>W. Karl</td>
<td></td>
</tr>
<tr>
<td>24117</td>
<td>Heterogene parallele Rechensysteme (S. 120)</td>
<td>2 W</td>
<td>3</td>
<td>W. Karl</td>
<td></td>
</tr>
<tr>
<td>24660</td>
<td>Software Development for modern, parallel platforms (S. 181)</td>
<td>2 S</td>
<td>3</td>
<td>W. Tichy, Pankratius, Otto</td>
<td></td>
</tr>
<tr>
<td>24112</td>
<td>Multicore Computers and Computer Clusters (S. 118)</td>
<td>2 W</td>
<td>3</td>
<td>W. Tichy, Pankratius, Victor</td>
<td></td>
</tr>
<tr>
<td>24606</td>
<td>Models of Parallel Processing (S. 161)</td>
<td>3 S</td>
<td>5</td>
<td>T. Worsch</td>
<td></td>
</tr>
<tr>
<td>24622</td>
<td>Algorithms in Cellular Automata (S. 165)</td>
<td>2/1 S</td>
<td>3</td>
<td>T. Worsch</td>
<td></td>
</tr>
<tr>
<td>24293/24649</td>
<td>Multicore Programming in Practice: Tools, Models, Languages (S. 151)</td>
<td>2 W/S</td>
<td>3</td>
<td>V. Pankratius, W. Tichy</td>
<td></td>
</tr>
</tbody>
</table>
Module: Service Technology

Subject: Informatics
Module coordination: Stefan Tai
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and rounded to the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Service Technology [IW4INAIFB1]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25770</td>
<td>Service Oriented Computing 1 (S. 288)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Tai</td>
</tr>
<tr>
<td>25772</td>
<td>Service Oriented Computing 2 (S. 289)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>S. Tai, R. Studer</td>
</tr>
<tr>
<td>25820</td>
<td>Lab Class Web Services (S. 295)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>S. Tai, R. Studer, G. Satzger, C. Zirpins</td>
</tr>
</tbody>
</table>
Module: Cloud Computing

Subject: Informatics
Module coordination: Stefan Tai
Credit points (CP): 8

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and rounded to the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student is familiar with the fundamentals of Cloud Computing and has acquired further knowledge through additional seminar studies or through lab practice.

Content
Theory and practice of cloud computing.
Please also refer to the class descriptions.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25776</td>
<td>Cloud Computing (S. 291)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Tai, Kunze</td>
</tr>
<tr>
<td></td>
<td>Seminar eOrganization (S. 390)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>S. Tai</td>
</tr>
<tr>
<td>25820</td>
<td>Lab Class Web Services (S. 295)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>S. Tai, R. Studer, G. Satzger, C. Zirpins</td>
</tr>
</tbody>
</table>
Module: Web Service Engineering

Subject: Informatics
Module coordination: Stefan Tai
Credit points (CP): 8

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and rounded to the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student is familiar with the fundamentals of Web Service Engineering and has acquired further knowledge through additional seminar studies or through lab practice.

Content
Theory and practice of Web service engineering.
Please also refer to the class descriptions.

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25774</td>
<td>Web Service Engineering (S. 290)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Zirpins</td>
</tr>
<tr>
<td>SemAIFB5</td>
<td>Seminar eOrganization (S. 390)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>S. Tai</td>
</tr>
<tr>
<td>25820</td>
<td>Lab Class Web Services (S. 295)</td>
<td>2</td>
<td>W</td>
<td>4</td>
<td>S. Tai, R. Studer, G. Satzger, C. Zirpins</td>
</tr>
</tbody>
</table>

Module Handbook: Version 04.03.2010 Information Engineering and Management (M.Sc.)
Module: Web Data Management

Module key: [IW4INAIFB4]

Subject: Informatics
Module coordination: Rudi Studer
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The lecture Semantic Web Technologies II [25750] is obligatory and has to be absolved.

Learning Outcomes
Students
- develop ontologies for semantic web technologies und choose suitable representation languages,
- are able to provide data and applications via a cloud-based infrastructure
- transfer the methods and technologies of semantic web technologies and cloud computing to new application sectors,
- evaluate the potential of semantic web technologies and the cloud computing approaches for new application sectors.

Content
The module Web Data Management covers the basic principles, methods and applications for intelligent systems in the World Wide Web. Cloud Services are essential for the decentralized, scalable provision of data and applications as well as the methods of semantic web based on the description of data and services via metadata in form of so called ontologies. Formal principles and practical aspects such as knowledge modeling and available representation language tools for ontologies are covered in detail. Methods for the realization of intelligent systems within the World Wide Web are treated and applications as in Web 2.0 or Service Science are discussed and evaluated. Furthermore the application of modern Cloud technologies for the use of software and hardware as a service via internet is introduced. Cloud technologies allow the efficient implementation of applications on distributed computer clusters and permit a high scalability as well as new business models in the internet.

Courses in module Web Data Management [IW4INAIFB4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25748</td>
<td>Semantic Web Technologies I (S. 281)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>R. Studer, S. Rudolph</td>
</tr>
<tr>
<td>25750</td>
<td>Semantic Web Technologies II (S. 282)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>S. Agarwal, S. Grimm, E. Simperl, A. Harth</td>
</tr>
<tr>
<td>25776</td>
<td>Cloud Computing (S. 291)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>S. Tai, Kunze</td>
</tr>
</tbody>
</table>
Module: Intelligent Systems and Services

Module key: [IW4INAIFB5]

Subject: Informatics
Module coordination: Rudi Studer
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students
- know the different machine learning procedures for the supervised as well as the unsupervised learning,
- identify the pros and cons of the different learning methods,
- apply the discussed network learning methods in specific scenarios,
- compare the practicality of methods and algorithms with alternative approaches.

Content
In the broader sense learning systems are understood as biological organisms and artificial systems which are able to change their behavior by processing outside influences. Network leaning methods based on symbolic, statistic and neuronal approaches are the focus of Computer Sciences.

In this module the most important network learning methods are introduced and their applicability is discussed with regard to different information sources such as data texts and images considering especially procedures for knowledge acquirement via data and text mining, natural analogue procedures as well as the application of organic learning procedures within the finance sector.

Courses in module Intelligent Systems and Services [IW4INAIFB5]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25742</td>
<td>Knowledge Discovery (S. 280)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
</tr>
<tr>
<td>25762</td>
<td>Intelligent Systems in Finance (S. 285)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
</tr>
<tr>
<td>25772</td>
<td>Service Oriented Computing 2 (S. 289)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
</tr>
<tr>
<td>25860sem</td>
<td>Special Topics of Knowledge Management (S. 296)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications (S. 273)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
</tr>
<tr>
<td>25724</td>
<td>Database Systems and XML (S. 278)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
</tr>
<tr>
<td>25070p</td>
<td>Advanced Lab Applied Informatics (S. 200)</td>
<td></td>
<td>W/S</td>
<td>4</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s)
- R. Studer
- D. Seese
- S. Tai, R. Studer
- R. Studer
- H. Schmeck
- A. Oberweis
Module: Semantic Technologies

Module key: [IW4INAIFB6]

Subject: Informatics
Module coordination: Rudi Studer
Credit points (CP): 8

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25750</td>
<td>Semantic Web Technologies II (S. 282)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>S. Agarwal, S. Grimm, E. Simperl, A. Harth</td>
</tr>
<tr>
<td>25070s</td>
<td>Seminar in Applied Informatics (S. 201)</td>
<td>2</td>
<td>W/S</td>
<td>3</td>
<td>A. Oberweis, H. Schmeck, D. Seese, W. Stucky, R. Studer, S. Tai</td>
</tr>
</tbody>
</table>
Module: Ubiquitous Computing

Subject: Informatics

Module coordination: Hartmut Schmeck

Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Ubiquitous Computing [IW4INAIFB7]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week C/E/T</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24146</td>
<td>Ubiquitous Computing (S. 136)</td>
<td>2/0 W</td>
<td>4</td>
<td>W. Juling</td>
<td></td>
</tr>
<tr>
<td>25702</td>
<td>Algorithms for Internet Applications (S. 273)</td>
<td>2/1 W</td>
<td>5</td>
<td>H. Schmeck</td>
<td></td>
</tr>
<tr>
<td>25704</td>
<td>Organic Computing (S. 274)</td>
<td>2/1 S</td>
<td>5</td>
<td>H. Schmeck, S. Mostaghim</td>
<td></td>
</tr>
<tr>
<td>24149</td>
<td>Network and IT-Security Management (S. 140)</td>
<td>2/1 W</td>
<td>5</td>
<td>H. Hartenstein</td>
<td></td>
</tr>
<tr>
<td>24146p</td>
<td>Advanced Lab in Ubiquitous Computing (S. 137)</td>
<td>2/0 W/S</td>
<td>4</td>
<td>H. Schmeck</td>
<td></td>
</tr>
</tbody>
</table>
Module: Organic Computing

Subject: Informatics
Module coordination: Hartmut Schmeck
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25704</td>
<td>Organic Computing (S. 274)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>H. Schmeck, S. Mostaghim</td>
</tr>
<tr>
<td>25706</td>
<td>Nature-inspired Optimisation (S. 276)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>S. Mostaghim, P. Shukla</td>
</tr>
<tr>
<td>25700sp</td>
<td>Special Topics of Efficient Algorithms (S. 272)</td>
<td>2/1</td>
<td>W/S</td>
<td>5</td>
<td>H. Schmeck</td>
</tr>
<tr>
<td>25760</td>
<td>Complexity Management (S. 283)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>D. Seese</td>
</tr>
</tbody>
</table>
Module: eCollaboration

Module key: [IW4INAIFB9]

Subject: Informatics
Module coordination: Andreas Oberweis
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
The course Datenbanksysteme und XML [25724] has to be attended

Learning Outcomes
The students
- can use languages and methods for planning and design of eCollaboration,
- know the basics of XML, as well as appropriate data models and are capable of generating XML documents,
- are able to understand the difficulties to manage complex systems and processes,
- know the outer frame of IT in an enterprise and know which functions IT has within an enterprise,
- are able to evaluate, select and to use appropriate tools taking into account the current situation.

Content
ECollaboration covers all forms of cooperation and coordination in electronic networks, and is practiced in many forms. The ubiquitous availability of new information and communication technologies in increasingly becoming smaller and more powerful devices enables new forms of eCollaboration. These will not only change the business world and public administration, but will also change fundamentally the private lives of people. This module teaches methodological foundations of applied computer science for eCollaboration applications covering languages for modelling of structured and unstructured processes of eCollaboration and methods for the design and analysis of eCollaboration scenarios. In addition, this module imparts knowledge of software systems to support eCollaboration (e.g., groupware systems, workflow management systems, document management systems).

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25724</td>
<td>Database Systems and XML (S. 278)</td>
<td>2/1 W</td>
<td>5</td>
<td></td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>25735</td>
<td>Document Management and Groupware Systems (S. 279)</td>
<td>2 S</td>
<td>4</td>
<td></td>
<td>S. Klink</td>
</tr>
<tr>
<td>25788</td>
<td>Strategic Management of Information Technology (S. 293)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>T. Wolf</td>
</tr>
<tr>
<td>25760</td>
<td>Complexity Management (S. 283)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>D. Seese</td>
</tr>
<tr>
<td>25784</td>
<td>Management of IT-Projects (S. 292)</td>
<td>2/1 S</td>
<td>5</td>
<td></td>
<td>R. Schätzle</td>
</tr>
</tbody>
</table>
Module: Development of Distributed Business Information Systems

Module key: IW4INAIFB10

Subject: Informatics

Module coordination: Andreas Oberweis

Credit points (CP): 9

Learning Control / Examinations

The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites

None.

Conditions

The course Verteilte Datenbanksysteme: Basistechnologie für eBusiness [25722] has to be attended

Learning Outcomes

Die Studierenden

• are familiar with the requirements and limitations of distributed database systems,
• can ensure error-free operation and the consistency of distributed databases,
• can master methods and concepts of essential algorithms in distributed systems,
• are able to use methods of IT project management appropriate to current project phases and project contexts,
• can model and analyse an information system and evaluate alternative designs systematically.

Content

An enterprise information system contains the complete application software to store and process data and information in an organisation including design and management of databases, workflow management and strategic information planning. Due to global networking and geographical distribution of enterprises as well as the increasing acceptance of eCommerce the application of distributed information systems becomes particularly important.

This module teaches concepts and methods for design and application of information systems.

Courses in module Development of Distributed Business Information Systems [IW4INAIFB10]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25722</td>
<td>Distributed Database Systems: Basic Technology for e-Business (S. 277)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>A. Oberweis</td>
</tr>
<tr>
<td>25791</td>
<td>n.n. (S. 294)</td>
<td>2/0</td>
<td>W</td>
<td>4</td>
<td>R. Kneuper</td>
</tr>
<tr>
<td>25764</td>
<td>IT Complexity in Practice (S. 287)</td>
<td>2/1</td>
<td>W</td>
<td>5</td>
<td>Kreidler</td>
</tr>
<tr>
<td>25774</td>
<td>Web Service Engineering (S. 290)</td>
<td>2/1</td>
<td>S</td>
<td>5</td>
<td>C. Zirpins</td>
</tr>
</tbody>
</table>
5.6 Law

Module: Intellectual Property Law

Module key: [IW4JURA4]

Subject: Law
Module coordination: Thomas Dreier
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
Keine.

Conditions
None.

Learning Outcomes

Content

Courses in module Intellectual Property Law [IW4JURA4]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24812</td>
<td>Internet Law (S. 191)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>T. Dreier</td>
</tr>
<tr>
<td>24121</td>
<td>Copyright (S. 123)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>T. Dreier</td>
</tr>
<tr>
<td>24661</td>
<td>Patent Law (S. 182)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>N.N.</td>
</tr>
<tr>
<td>24136/24609</td>
<td>Trademark and Unfair Competition Law (S. 131)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>Y. Matz, P. Sester</td>
</tr>
<tr>
<td>24583</td>
<td>Computer Contract Law (S. 157)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>M. Bartsch</td>
</tr>
<tr>
<td>24815</td>
<td>Grundlagen des Patentrechts (S. 192)</td>
<td>2/0</td>
<td>W/S</td>
<td>3</td>
<td>K. Melullis</td>
</tr>
</tbody>
</table>
Module: Private Business Law

Module key: [IW4JURA5]

Subject: Law
Module coordination: Peter Sester
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
For the courses
- Civil Law for Advanced [24650]
- Law of Contracts [24671],

basic knowledge in civil law as taught in the courses Civil Law for Beginners [24012], Advanced Civil Law [24504], and Commercial and Corporate Law [24011] is required.

Conditions
None.

Learning Outcomes
The student
- has gained in-depth knowledge of German company law, commercial law and civil law;
- is able to analyze, evaluate and solve complex legal and economic relations and problems;
- is well grounded in individual labour law, collective labour law and commercial constitutional law, evaluates and critically assesses clauses in labour contracts;
- recognizes the significance of the parties to collective labour agreements within the economic system and has differentiated knowledge of labour disputes law and the law governing the supply of temporary workers and of social law;
- possesses detailed knowledge of national earnings and corporate tax law and is able to deal with provisions of tax law in a scientific manner and assesses the effect of these provisions on corporate decision-making.

Content

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
<th>Responsible Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24650</td>
<td>Civil Law for Advanced (S. 177)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>P. Sester</td>
</tr>
<tr>
<td>24671</td>
<td>Law of Contracts (S. 187)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>P. Sester</td>
</tr>
<tr>
<td>24167</td>
<td>Employment Law I (S. 144)</td>
<td>2</td>
<td>W</td>
<td>3</td>
<td>A. Hoff</td>
</tr>
<tr>
<td>24668</td>
<td>Employment Law II (S. 184)</td>
<td>2</td>
<td>S</td>
<td>3</td>
<td>A. Hoff</td>
</tr>
<tr>
<td>24168</td>
<td>Tax Law I (S. 145)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
<td>D. Dietrich</td>
</tr>
<tr>
<td>24646</td>
<td>Tax Law II (S. 176)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
<td>D. Dietrich</td>
</tr>
</tbody>
</table>
Module: Public Business Law

Module key: [IW4JURA6]

Subject: Law
Module coordination: Indra Spiecker genannt Döhmann
Credit points (CP): 9

Learning Control / Examinations
The assessment mix of each course of this module is defined for each course separately. The final mark for the module is the average of the marks for each course weighted by the credits and truncated after the first decimal.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Courses in module Public Business Law [IW4JURA6]

<table>
<thead>
<tr>
<th>ID</th>
<th>Course</th>
<th>Hours per week</th>
<th>Term</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>24632</td>
<td>Telecommunications Law (S. 170)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>24082</td>
<td>Public Media Law (S. 112)</td>
<td>2</td>
<td>W</td>
<td>3</td>
</tr>
<tr>
<td>24666</td>
<td>European and International Law (S. 183)</td>
<td>2/0</td>
<td>S</td>
<td>3</td>
</tr>
<tr>
<td>24140</td>
<td>Environmental Law (S. 133)</td>
<td>2</td>
<td>W</td>
<td>4</td>
</tr>
<tr>
<td>24018</td>
<td>Data Protection Law (S. 107)</td>
<td>2/0</td>
<td>W</td>
<td>3</td>
</tr>
</tbody>
</table>

Responsible Lecturer(s):
- I. Spiecker genannt Döhmann
- C. Kirchberg
6 Courses

6.1 Mandatory

Course: Business Administration in Information Engineering and Management
Course key: [26500]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Information Engineering and Management [IW4WWIM] (S. 19)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from exercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
Basic knowledge from Operations Research (linear programming) and from decision theory are expected.

Conditions
None.

Learning Outcomes
The student is able to

• transfer models from Business Administration to situations in business whose basic conditions are changed due to the implementation of information and communication technology,
• apply methods from Business Administration (Decision theory, game theory, operations research, etc.) to questions of Information Engineering and Management,
• analyze the potential to automate the decision making process in businesses by data bases,
• describe the process to extract relevant data for decision making from operational accounting systems.

Content
In this lecture, classical Business Administration is applied to businesses in an information- and communication technological environment. The process to extract relevant data for decision making from operational accounting systems receives special attention. In order to do so, topics such as activity-based costing and transaction costs models are addressed. The automation of the decision making process in businesses by data bases is another focus of the module. To solve such issues within a company, relevant methods such as decision theory and game theory are lectured. Finally, complex business relevant questions in a dynamically changing environment are addressed by presenting models and methods from system dynamics.

Basic Literature
Course: Principles of Information Engineering and Management

Lecturers: Christof Weinhardt, Jan Kraemer, Clemens van Dinther
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Information Engineering and Management [IW4WWIWI] (S. 19)

Learning Control / Examinations
The assessment of this course is a written examination (following §4(2), 1 SPO) and by submitting written papers as part of the exercise (following §4(2), 3 SPO). The total grade for this lecture will consist to 90% of the grade achieved in the written examination and to 10% of the assignments during the exercises.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students should be able to understand and analyze the central role of information as an economic good, a production factor, and a competitive factor in today’s societies. Students are supposed to be able to identify, evaluate, price, and market information goods with the help of the concepts and methods taught in the lecture. Furthermore, students learn basic aspects about information systems and information flows within and between organizations, as well as their design parameters.

Content
Information plays a central role in today’s society. The resulting structures and processes cannot be explained intuitively with traditional approaches of economic theory. Formerly, information has only been implicitly treated as a production factor; its role as a competitive factor used to be neglected. In order to deal with the central role of information we developed the concept of the “information lifecycle” that systematizes all phases from information generation to information distribution. The state of the art of economic theory is presented across this information lifecycle within the lectures. The content of the lecture is deepened in accompanying lecture courses.

Media
- PowerPoint slides
- eLearning Platform Ilias

Basic literature
Course: Markov Decision Models I

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 5 Hours per week: 2/1/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Models in Information Engineering and Management [IW4WWOR] (S. 20), Stochastic Modelling and Optimization [IW4OR7] (S. 57)

Learning Control / Examinations
The assessment consists of an 1h written exam following Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3 (according to Section 4(2), 3 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques of stochastic modelling. Students are able to properly describe and analyze basic stochastic systems.

Content
Markov Chains, Poisson Processes, Markov Chains in Continuous Time, Queuing Systems

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature

Complementary literature
Bremaud, P. (1999): Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues; Springer
6.2 Elective
Course: Data Protection Law

Lecturers: Indra Spiecker genannt Döhmman
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Public Business Law [IW4JURA6] (S. 101)

Learning Control / Examinations
Assessment will consist of a written exam (following §4(2), 1 SPO).

Prerequisites
Keine.

Conditions
None.

Learning Outcomes
Increasing significance of information technology for data processing and interconnectedness of the society by means of telecommunication does not only enhance the social and economical relevance of data in general, it raises the question about legal rules for the protection of personalised data as well. The problem for those who are responsible for the application of law is that national rules in this area are in constant flux due to technological progress and Europeanisation of law. Additionally there is a vast number of sector-specific regulation (such as labour law). Bearing all this in mind, the lecture’s main focus is the presentation of the basic principles of the German Federal Act on Data Protection (Bundesdatenschutzgesetz). In doing so, new concepts of data protection like self-data protection or system data protection will be analysed. A further focal point is the examination of evolution of sector-specific data protection law, considering as example regulation of data protection in connection with teleservice or mediaservice. Students should learn how to negotiate their ways in the interaction of different levels of legal norms and solve simple problems of data protection law.

Content
After illustrating contents and history of data protection law there will be presented backgrounds with respect to Community law and under constitutional law. Further on, the German Federal Act on Data Protection will be focussed. At this will be set forth basic principles of regulation (such as necessity), personalised data as an object of regulation, rights of those who are affected as well as the legitimacy of different procedures of data processing. Oranisational regulations, particularly data security official will be approached as well. Further on, in a case study current concepts of data protection and the problem of video surveillance will be discussed. Finally, there are three units on sector-specific regulation of telecommunication and teleservice / mediaservice.

Media
abstracts, sketches on blackboard, slides

Basic literature
Will be announced in the course.

Complementary literature
Will be announced in the course.

Remarks
In cooperation with the House of Competence, Students should be rhetorical trained asking and answering questions (short-answer-and-question-technique). Therefor most likely a coach will attend several lessons.
Course: Networked IT-Infrastructures

Lecturers: Wilfried Juling
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Dynamische IT-Infrastrukturen [IW4INDITI] (S. 81)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
Dependencies according to the module.

Learning Outcomes
The goal of this lecture is to introduce the fundamental models, approaches and technologies used in today's digital telecommunication networks. The topics covered in this lecture are strongly aligned with the OSI Reference Model, a broadly accepted layer model for describing communication systems.

Content
The lecture introduces formal methods to describe communication in general. After a brief discussion covering the basics of signal processing as well as physical constraints of telecommunication technologies, the lecture follows the architectural pattern of the OSI Reference Model to point out its given systematics. Based on elementary network technologies like Ethernet and Token Ring the lecture outlines essential problems concerned with frame alignment, shared or controled medium access or error processing. Further topics deal with the realization of worldwide networks regarding protocols, technologies and algorithms used to construct them. Particularly, technical solutions and algorithms from the TCP/IP stack of the Internet Reference Model are discussed. Furthermore, the functionality and application scope of modern components to interconnect heterogenous networks are presented. Finally dedicated communication technologies like ISDN and higher level application protocols like HTTP or SMTP are introduced to indicate the pervasion of network communication technologies towards people.

Media
Slides.

Basic literature

Complementary literature
Course: Algorithm Design

Lecturers: Dorothea Wagner, Peter Sanders
Credit points (CP): 6 Hours per week: 3/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Introduction to Algorithmics [IW4INEALGT] (S. 66)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students
• get a deep insight into the most important subareas of algorithmics,
• get a broad algorithmic understanding,
• get the ability to understand and determine the running times of algorithms,
• get the knowledge of fundamental algorithms and data structures, as well as the ability to apply them to new problems.

Content
The Lecture “Algorithm Design” (german name is “Algorithmentechnik”) deepens the most important subareas of algorithmics. This, for example, includes graph algorithms, advanced data structures, design principles for algorithms, algorithmic geometry, and combinatorial optimization. Moreover, different methodic approaches are deepened. For Example, randomized algorithms, approximation algorithms, parallel algorithms, online algorithms, and algorithm engineering.

Basic literature
None

Complementary literature
• Reinhard Diestel. Graph Theory. Springer-Verlag, 2005.
Course: Practical Course in Algorithm Design

Lecturers: Peter Sanders, Dorothea Wagner, Marcus Krug
Credit points (CP): 5
Hours per week: 4
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Algorithms: Design and Analysis [IW4INAA] (S. 64), Advanced Algorithms: Engineering and Applications [IW4INALGOB] (S. 65)

Learning Control / Examinations

Prerequisites
Lecture Algorithmische Technik

Conditions
None.

Learning Outcomes
The purpose of the practical course in algorithm design is to make learned knowledge work. The students are given varying topics from algorithmics, which they have to implement in small working groups. Possible topics are, for example, algorithms for flow problems, shortest path problems, or clustering techniques. In this way students learn to write efficient code.

Content
In the practical course Algorithm Engineering the students are given miscellaneous questions from algorithmics, which they have to implement independently in small working groups. The main focus lies on object-oriented programming with Java or C++. Linear programming may also occur.
Course: Seminar in Algorithm Design

Course key: [24079s]

Lecturers: Dorothea Wagner
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students shall

• conduct literature research starting from a given topic, identify, locate, evaluate and summarize relevant literature.
• compose their written elaboration (and later their bachelor/masters thesis) with a minimum of introductory effort, and thereby respect given templates similar to those enforced in standard scientific publication processes.
• devise a presentation in the context of the scientific topic. To this end, techniques are presented that enable the processing and the presentation of content in a way suitable for the audience.
• present their research results in a written form similar to standard scientific dissemination.

Content
Various current topics that build upon the contents of the associated lectures.
Course: Public Media Law

Lecturers: Christian Kirchberg
Credit points (CP): 3 Hours per week: 2 Term: Wintersemester Level: 4 Teaching language: Deutsch
Part of the modules: Public Business Law [IW4JURA6] (S. 101)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
As the traditional media (print, radio, TV) the “new media” (online-services and the Internet) is governed by public law, yet with a different extent of regulation and with apparent effects on private law. The main influences for the media law are constitutional law and European community law. The lectures aims at providing an overview of the common grounds and differences of the current media law regime and of the conceivable perspectives of media convergence. Current developments in politics and economics, which are relevant for public media law, will be used as examples in the lecture. Besides, it is planned to attend a court hearing of the Federal Constitutional Court (Bundesverfassungsgericht) and/or the Federal Court (Bundesgerichtshof).

Content
Initially, the lecture will deal with the constitutional basis of the media law regime. i.e. the responsibilities of the Federal and the State legislatures, freedom of speech, freedom of information, constitutional media rights (Art. 5 para. 1 Constitutional Law) and its limitations by general laws, the ban on censorship and the counterstatement law. In addition, the European community principles on broadcasting and media law will be part of the lecture. Next will be an overview of the individual media laws, namely the broadcasting law (especially Rundfunkstaatsvertrag) the press law of the States and the statute on the so-called “telemedia” services. Finally, the protection of minors in the media will be dealt with (Act on Protection of Minors and Treaty on the Protection of Minors in the Media).

Basic literature
To understand the legal framework it is necessary for the students to have the relevant statutes, for example “Telemediarecht, Telekommunikations- und Multimediarecht”, beck-Texte im dtv , 7. Auflage 2007. As an introduction it is recommended to read: Frank Fechner, Medienrecht, Verlag Mohr Siebeck, Verlag Mohr Siebeck, 8. Auflage 2007.
Course: Wireless Sensor-Actuator-Networks

Lecturers: Martina Zitterbart
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of this lecture is to present topics in research. As sensor networks are more and more becoming part of our daily-life, this lecture does not only focus on classical topics, such as time-synchronization and routing, but also on security and safety.

Content
Due to the emerging miniaturization of microcontrollers during the past years a new field of research established: wireless sensor networks. These are networks that consist of huge amounts of tiny, autonomous sensor nodes which are able to fulfill some assigned sensing task totally unattended and self-organizing. One important characteristic is their restricted resources wrt computational power, memory and communication capacity, which is due to the node's scarce energy resources. Under these conditions, traditional communication architectures and protocols seem to be not well suited. The lecture will cover essential concepts, protocols and architectures which were developed with respect to the special needs of those networks. Topics of the course will be: hardware platforms for sensor networks, media access control protocols, naming and addressing, time synchronization, localization of sensor nodes, topology control, a bunch of specialized routing protocols, service- and data-centric view of communication, security, and robustness.

Media
Slides.

Basic literature
Course: Biosignale und Benutzerschnittstellen

Lecturers: Tanja Schultz, Wand
Credit points (CP): 6 Hours per week: 4/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Biosignalverarbeitung [IW4INBSV] (S. 82)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Content
Complementary literature
Will be announced in the lecture.
Course: Parallel Algorithms

Lecturers: Peter Sanders
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
Knowledge from lecture Algorithmtechnik is required.

Conditions
None.

Learning Outcomes
The Students are to learn basic techniques for the design of parallel algorithms as well as a selection of important parallel algorithms.

Content
Models and their relationship to real machines:
- Shared memory: PRAM
- Message passing, BSP
- Circuits
Analysis: speedup, efficiency, scalability
Basic techniques:
- SPMD
- Parallel divide and conquer
- Collective communication
- Load balancing
Examples of real algorithms:
- Collective Communication (also for large data sets): broadcast, reduce, prefix sums, all-to-all exchange
- Matrix arithmetic
- Sorting
- List ranking
- Minimum spanning trees
- Load balancing: master worker with adaptive problem size, random polling, random distribution

Media
Slides (pdf), scientific articles

Complementary literature
- Sanders, Worsch. Parallele Programmierung mit MPI – ein Praktikum
- Kumar, Grama, Gupta und Karypis. Introduction to Parallel Computing.
- JáJá. An Introduction to Parallel Algorithms
Course: High Performance Communication

Lecturers: Martina Zitterbart
Credit points (CP): 4
Hours per week: 2/0
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Networking [IW4INNW] (S. 75)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

The goal of the course is to introduce the fundamental technologies of today's and future wide area networks.

Content

The main focus of this course are current developments in the area of network technologies. Part of this is the well-established Multi-Protocol Label Switching (MPLS) and the precursor ATM (Asynchronous Transfer Mode). Additionally, methods to support Quality of Service, signalling of requirements for Quality of Service, and the establishment of network-internal switching and routing systems are discussed. The lecture also goes into current developments in the domain of optical networks (SONET: Synchronous Optical Networking, WDM: Wavelength Division Multiplexing).

Media

Slides.

Basic literature

Complementary literature

Course: Workflowmanagement-Systems
Course key: [24111]

Lecturers: Jutta Mülle
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Innovative Concepts of Data and Information Management [IW4INIKDI] (S. 78)

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture Communications and Database Systems [24574].

Conditions
None.

Learning Outcomes
A goal of the course is that the participants are able to model workflows, to explain modelling aspects and their relationships, to compare modelling methods, and to evaluate the usability of these methods in different application areas. They should understand the technical construction of workflow-management systems with the most important components and different architectures and implementation alternatives. Finally, the participants should have obtained an overview on actual relevant standardization proposals and how to use these approaches, and they should be aware of actual research topics.

Content
Workflow Management Systems (WFMS) support the management of business processes according to pre-defined process descriptions. Managing processes flexibly, i.e., handle deviations, e.g., in order to catch exceptions, adapt processes to modified process environments or to support ad-hoc workflows, becomes more and more important.

The course starts with discussing WFMS in the context of business-information systems and their relationship with the more common business-process modelling. Petri nets and pi-calculus are introduced as basic formalisms. Then, methods to model workflows and the design process for workflow-management applications are presented in detail and supplemented with exercises. An advanced aspect is new research in WFMS technology. In particular, the use of internet techniques like web services and standardization approaches for process modeling, orchestration, and choreography in service-oriented architectures will be presented.

In the realization part of the course, various implementation techniques and architectural issues to realize workflow-management systems as well as diverse system types and concrete workflow-management systems are presented.

Media
Slides.

Basic literature

Complementary literature
Course: Multicore Computers and Computer Clusters

Lecturers: Walter F. Tichy, Pankratius, Victor
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software Systems [IW4INSWS] (S. 69), Parallelverarbeitung [IW4INPV] (S. 88)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Students are able to:
- explain the fundamental concepts of parallel computing;
- describe and apply parallel programing models;
- explain the basic definitions and properties of system architectures of multicore computers and computer clusters, including networks and system software;
- describe parallel algorithms and derive their complexity.

Content
- This course conveys the theory and practical aspects of multicore computers and computer clusters.
- System architectures as well as programing concepts are covered.
- Network technology, selected high speed networks (e.g. Gigabit, Ethernet, Myrinet, Infiniband) and communication libraries are surveyed.
- Resource management, scheduling, distributed/parallel file systems, programing models (e.g. MPI, transactional memory, Javaparty), and parallel algorithms are introduced.

Media
Lecture presentations

Complementary literature
Additional literature will be announced in class.
Course: Distributed Data Management

Lecturers: Klemens Böhm
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”.

Conditions
None.

Learning Outcomes
At the end of the course, the participants should be able to explain the pros and cons of distributed data management. They should have understood that subtle differences in the problem formulation can lead to very different solutions. In particular, the participants should be able to explain and differentiate the fundamental approaches to guarantee consistency in a distributed environment and to explain and classify approaches for data management in highly distributed environments (e.g., Peer-to-Peer systems or sensor networks) and for query processing.

Content
In modern information systems, distribution is a fundamental issue. Centralised, monolithic database architectures will probably not play an important role any more in many scenarios. However, there are various unsolved principal problems in the field of distributed data management, or issues where existing solutions are not satisfactory. Truly, there are many products available, promising to facilitate distributed data management. However, these solutions are not always appropriate, application programmers has to develop large parts of the functionality on their own, or elegant, theoretically solid solutions lead to unsatisfactory runtime behaviour. (Therefore, you should not just choose this course if you are interested in the fundamental problems of distributed data management. If you have a special interest in practical aspects and applications, these topics are important as well.) The course introduces you to the theory of distributed data management and makes you familiar with the corresponding algorithms and methods. Topics of this course include correct and fault-tolerant concurrent executions of transactions in distributed environments (classical solutions as well as very recent developments) and data management in highly distributed environments.

Media
Slides.

Basic literature
Course: Heterogene parallele Rechnensysteme

Lecturers: Wolfgang Karl
Credit points (CP): 3
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Parallelverarbeitung [IW4INPV] (S. 88)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Content
Course: Data Warehousing and Mining

Lecturers: Klemens Böhm
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture Communications and Database Systems [24574].

Conditions
This course cannot be combined with the courses Knowledge Discovery [25742] and Data Mining [25375].

Learning Outcomes
At the end of the lecture, the participants should be aware of – and able to explain – the necessity of data warehousing and of data mining concepts. They should be able to assess and compare different approaches of management and analysis of large datasets with respect to efficiency and applicability. The participants should have gained an insight into the current research issues in the area of data warehousing and data mining and should understand which problems are currently unsolved.

Content
Data warehouses and data mining raise much interest from practitioners with huge amounts of data, e.g., in retail, finance and the insurance sector. Both warehousing and mining are motivated by the desire for keeping track of large and possibly distributed datasets and for extracting interesting relations from such data, ideally with minimal effort. A data warehouse is a repository which is fed with data from one or more operational database systems. The data is preprocessed allowing for a fast evaluation of complex analytical queries (OLAP, Online Analytical Processing). In contrary, data mining provides techniques for discovering patterns in large datasets.

Media
Slides.

Basic literature
• Jiawei Han, Micheline Kamber: Data Mining: Concepts and Techniques. 2nd edition, Morgan Kaufmann Publishers, March 2006.

Complementary literature
Further literature will be mentioned at the end of each chapter in the lecture slides.
Course: Analysis and modeling of human motion sequences

Lecturers: Annika Wörner, Tanja Schultz
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Biosignalverarbeitung [IW4INBSV] (S. 82), Motion centered Human-Machine Interface [IW4INBMMI] (S. 84)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

• Relating to the discussed working field, the basics of data processing in the field of captured image sequences will be introduced as the students should take the relations of different processing steps.
• A general overview of the research field of motion analysis including image processing should be given.
• The students should learn the analysing, structuring and a formal description of problems in the research area of motion capturing, motion recognition and synthesis. The student should be able to realise the learned methods due to a further self studying in practical examples
• The student should be able to apply the presented methods and is able to transfer them to similar scenarios.
• The student should be introduced to the basic methods of image processing and to the relationships of the different processing steps.

Content
Within the lecture an introduction to the basic principles of the analysis and modeling of human motion relating to captured image sequences is given. The objectives of the field of motion analysis is discussed which are settled in different research areas. Relating to the specific goals the basic processing methods of the essential data processing procedures are explained. These data processing steps in detail contain the methods of capturing and processing image data, like video sequences, as well as the biomechanical and kinematic modeling of motion.
Due to a statistical modelling and the recognition of the motion sequences Hidden Markov Models are introduced. The methods are also demonstrated within actual research work and results.

Complementary literature
Will be announced in the lecture.
Course: Copyright

Lecturers: Thomas Dreier
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Written exam 100% (§4, Abs. 2, 1 of the SPO).

Prerequisites
None.

Conditions
none

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of copyright that builds upon, and goes beyond the knowledge the students have already acquired in the general lecture of “Industrial and intellectual property law”. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Content
The course deals with the subject matter of copyright, the rights of authors, licensing, limitations and exceptions to copyright, term of protection, neighbouring rights, enforcement and collective administration of rights. The course does not merely focus on German copyright law, but likewise puts European and international copyright law into perspective. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Media
transparancies

Basic literature
Schulze, Gernot Meine Rechte als Urheber Verlag C.H.Beck, current edition

Complementary literature
Additional literature tba in class.

Remarks
It is possible that this course will be taught in the summer instead of the winter semester.
Course: Subdivision algorithm

Lecturers: Hartmut Prautzsch

Credit points (CP): 3 **Hours per week:** 2
Term: Wintersemester **Level:** 4
Teaching language: Deutsch

Part of the modules: Curves and Surfaces [IW4INKUF] (S. 85)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students should gain sound knowledge about subdivision techniques.

Content
Subdivision algorithms and methods to analyze them.
Course: Web Engineering

Lecturers: Martin Nußbaumer
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Applied Web Engineering [IW4INPWE] (S. 71), Dynamische IT-Infrastrukturen [IW4INDITI] (S. 81)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
• Students know fundamentals as well as current methodologies and techniques in the field of Web Engineering
• Students have gained insight into existing Web-oriented application platforms and development frameworks, and have the basic knowledge for system design close to current practices.
• Students can apply methods for analyzing current standards and technologies of the Web. Students are able to understand and interpret scientific papers and standard specifications and are confident in using the domain-specific terminology.
• Students are able to analyze, structure and describe problems in the field of Web Engineering as well as to design Web-based system architectures.

Content
This lecture will discuss the systematic construction of Web-based applications and systems by focusing on the different phases and aspects of the Web application lifecycle. It helps students to look at the Web phenomenon from different perspectives - e.g. as a Web designer, analyst, architect, component engineer, program manager, product manager or CIO. Students learn how to engineer Web applications and agile systems from requirements engineering, planning, design, development, testing, deployment and up to operation, maintenance and evolution. Many examples are shown and discussed, demonstrating the need for expecting change and staying agile. As this is not a programming course, students will be introduced to the core technology aspects and are encouraged to consolidate the details.

Media
Slides

Basic literature
Will be announced in the lecture.
Course: Reading Group

Course key: [24125/24673]

Lecturers: Ralf Reussner, Klaus Krogmann, Michael Kuperberg
Credit points (CP): 1 Hours per week: 1
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software Systems [IW4INSWS] (S. 69), Software-Methodik [IW4INSWM] (S. 70)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Through critical reading and analysis of scientific publications, the participants of the reading group learn to evaluate and to review related work and scientific publications in general. Thus, they learn how to write good papers, and how to avoid the usual pitfalls. By analysing cutting-edge research papers, the participants gain additional knowledge in the area of software engineering, and the discussions of the reading group complement the conventional self-study for the lectures and exams. The reading group also serves as a forum for networking with peers working in the area of software engineering.

Content

The contents of the reading group cover a broad area, from multi-core programming and performance prediction for enterprise software, over SOA and software evolution and evaluation of software architectures. The concrete scientific publications that are read and discussed are suggested by the participants, and the organisers then select papers that promise the largest benefits to the participants. Thus, the publications are selected dynamically, allowing for new and “hot” papers to be read and discussed. Additionally, visionary and ground-breaking papers of the last few years are discussed where appropriate.
Course: Specification and Verification of Software

Lecturers: Bernhard Beckert

Credit points (CP): 5 **Hours per week:** 3

Term: Sommersemester **Level:** 4

Teaching language: Deutsch

Part of the modules: Software Systems [IW4INSWS] (S. 69)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

By looking at some selected typical examples the students will come to know and understand the

* theoretical basis,
* the central concepts and methods,
* case studies

of formal program development and verification.

Students will be able to read expressions from the specification language of the chosen methods, and be able understand how proof obligations are derived from verification tasks.

Content

The predicate logic introduced in the lecture „Formale Systeme“ contains too many idealizations to be useful for realistic specification and verification. Extensions to a predicate logic with types, interpreted (fixed) domains and partial functions will be introduced to compensate this deficiency. Set theory is at the heart of many program development and verification methods. An axiomatisation of set theory will be presented together with hints to its applications, e.g., within the specification languages UML+OCL, Z or B. To formalise and prove properties of programs a program logic is needed. Building on the students acquaintance with typed predicate logic and modal logic a modal program logic will be introduced; e.g., Hoare calculus, Dynamic Logic or a similar system. This introduction covers syntax, semantics and rules of a calculus. In addition to proof rules for an abstract programming language also some proof rules for a realistic language, e.g., Java, C, C# or Spec# will be demonstrated.

Complementary to the logic based approach to formal specification is the approach based on abstract machine models. We will present e.g., UML state charts, EventB, B-machines or AMS (Abstract State Machines).

The lecture finally covers a short introduction into theory and application of abstract data types.

Media

Lecture notes and slides are available from the course website

Basic literature

Lecture Notes: Formal Specification and Verification http://i12www.ira.uka.de/ pschmitt/FormSpez/skript.ps

Complementary literature

Verification of Object-Oriented Software: The KeY Approach
Bernhard Beckert, Reiner Hähnle, Peter H. Schmitt (Eds.)
Springer-Verlag, LNCS 4334.
Course: Telematics

Lecturers: Martina Zitterbart
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
This course details selected protocols, architectures, techniques, and algorithms, which were already presented in the communications part of the course Communication and Database Systems [24574]. Thus, overall knowledge and knowledge about problems that occur within a world-wide and dynamic network as well as solutions that are applied in order to avoid these problems is imparted in this course.

Content
This course addresses protocols, architectures, techniques, and algorithms that are used, e.g., for Internet routing and establishing of reliable end-to-end communication associations. In addition to different media access control mechanisms in local area networks further communication systems, e.g., line-switched ISDN, are detailed. It is intended that students additionally understand which possibilities for network management and administration currently exist.

Media
Slides.

Basic literature

Complementary literature
- Internet standards
- Selected journal articles
Course: Multimedia Communications

Lecturers: Roland Bless
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Future Networking [IW4INFN] (S. 74), Networking [IW4INNW] (S. 75)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
The communication part of Kommunikation und Datenhaltung (recommended).

Conditions
None.

Learning Outcomes
Objective of the lecture is to present techniques, protocols, and latest developments in Internet-based multimedia communications. Especially in the context of increasing amount of voice communications over the Internet (Voice over IP), key technologies and protocols such as RTP and SIP are intensively discussed so that their function and principles are understood in detail.

Content
This lecture describes techniques and protocols to transmit audio and video data over the Internet. Topics are audio/video conferences, audio/video transport protocols, Voice over IP SIP for signaling, establishment and control of multimedia sessions, RTP for transport of multimedia data over the Internet, RTSP for control of A/V streams, ENUM, A/V Streaming, Middleboxes and Caches, DVB, and Video on Demand.

Media
Slides. Protocol traces.

Basic literature

Complementary literature
Alan B. Johnston SIP – understanding the Session Initiation Protocol 2nd ed., Artech House, 2004
Course: Sprachtechnologie und Compiler

Course key: [24134]

Lecturers: Gregor Snelting
Credit points (CP): 8 Hours per week: 4/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Language Technology and Compiler [IW4INCOMP1] (S. 68)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Trademark and Unfair Competition Law

Lecturers: Yvonne Matz, Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of trademark rights in the national as well as the European and International context. The course deals with the structure of trademark rights, especially with the procedures of registration and the claims, that result from the infringements of trademark rights, as well as with the right of other marks in the MarkenG.

Content
The course deals with the subject matter of trademark rights: what is a trademark, how can I get the registration of a trademark, what rights and claims do owner of trademarks have, which other marks do exist? The students shall learn about the rules of national, European an international trademark law.

Basic literature
Course: Signals and Codes

Lecturers: Jörn Müller-Quade
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Computer security [IW4INSICH] (S. 61), Advanced Topics in Cryptography [IW4INFKRYP] (S. 62)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
Recommendation: Kenntnisse zu Grundlagen aus der Linearen Algebra und der Wahrscheinlichkeitstheorie sind hilfreich.

Conditions
None.

Learning Outcomes
• The student should get an insight into the contemporary methods of signal- and coding theory.
• He / she should be able to analyze given systems and to perform changes to adapt a system to different conditions.
• Furthermore the student will be capable to understand ongoing research in the topic of the lecture.

Content
The course covers essentially the question of how the exchange of information can be realized reliably and efficiently. Already in 1948, Claude Shannon showed in a landmark paper that reliable communication even via a disturbed channel (such as telephone or radio network) is in principle possible. Over the past 60 years, in this context, a variety of ideas and methods developed to address the problem of so-called channel coding. The lecture gives an insight and overview about the important parts of signal- and coding-theory.

Basic literature
Todd Moon, “Error Correction Coding”, Wiley, 2005
Weitere Literatur wird in der Vorlesung bekannt gegeben.

Complementary literature
Will be annonced in the lecture.
Course: Environmental Law

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Public Business Law [IW4JURA6] (S. 101)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the SPO.
The assessment will be offered in every winter term and can be repeated at every regular examination date.

Prerequisites
None.
Knowledge of Law, esp. Public Law I or II are recommended.

Conditions
None.

Learning Outcomes
Environmental law is a field of law that influences management in many regards. Students shall develop a feeling for the many different aspects of environmental law and its instruments. Aside from so-called “classical” approaches such as law-and-order students will learn about other, economic influenced, instruments such as the gathering and the transfer of information or the market for certifiates. On this basis, the course will center around immissions and waste management law. Additionally, water law, protection of soil law and nature protection law will be covered. Students shall be enabled to deal with easy cases in regard to environmental law.

Content
The lecture begins with an introduction into the special problems faced by environmental law. Different instruments, according to common goods theory, will be presented. In the main part of the lecture, immissions law, waste management law, water law, protection of soil law and nature protection law will be analyzed.

Media
abstracts, sketches on blackboard, slides

Basic literature
Will be announced in the course.

Complementary literature
Will be announced in the course.
Course: Information Integration and Web Portals

Lecturers: Jutta Mülle
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Innovative Concepts of Data and Information Management [IW4INIKDI] (S. 78)

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”.

Conditions
None.

Learning Outcomes
The students obtain...

- Knowledge about state-of-the-art technologies (e.g., J2EE, JSF, .NET, XML) for building web applications and ability to evaluate their usage in concrete scenario.
- Proficiency in architectural approaches for building scalable web applications and integration of heterogeneous systems (e.g., multi-tier architectures, Model-View-Controller, mediator architectures, service-oriented architectures).
- Ability to analyze integration problems at different levels (presentation, services, information, technology).
- Proficiency in applying virtual and materialized integration approaches to concrete scenarios.
- Knowledge about core concepts and technologies for service-oriented architectures.
- Knowledge about potentials of ontologies for integration on service and information level.

Content
Building web portals, bundling an information offer from different information sources for a specific target group, serves as a showcase problem for the lecture. Using a fictional sample port, this problem is approached from different viewpoints within the three major parts of the lecture. The first part is dedicated to scalable and maintainable web applications. Multi-tier architectures and component frameworks (J2EE, .NET) are the main topics. In addition to that, the principle of separation of content, layout and behavior is illustrated for different web technologies (e.g., JSP, JSF, AJAX). The second part follows the theme of integration of autonomous systems, which are typically encountered in inter-organizational cooperation. Within this part, information integration approaches (virtual vs. materialized) and service-oriented integration are presented and assessed. Usage potentials of ontologies for integration scenarios complement this part. The third part is dedicated to recent developments and real-world systems and products, presented by company representatives in the areas of portal, web and integration technology.

Media
- Slides.
- Tutorial materials (Execution-Environment, Source-Code, Examples).

Basic literature

Complementary literature
- Serge Abiteboul, Peter Buneman, Dan Suciu: Data on the Web: from Relations to Semistructured Data and XML, Morgan Kaufmann, 1999, ISBN: 155860622X
Course: Principles of Automatic Speech Recognition

Lecturers: Alexander Waibel, Stüker
Credit points (CP): 6 Hours per week: 4
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Sprachverarbeitung [IW4INSV] (S. 83)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students are introduced to the principles of the automatic recognition of speech. They are going to get to know the basic layout of a speech recognition system as well as the application of concepts and methods from the area of machine learning, that are utilized in automatic speech recognition.

In order to gain a deeper understanding and in order to motivate the applied techniques, the students shall get to understand the basic concept of human speech production. From this the students shall be able to derive the construction of a speech recognition system.

Further, the students shall be able to analyze different application scenarios for speech recognition systems, and, based on the complexity of the application scenario, be able to design an appropriate speech recognition system.

In particular, the students shall study the details of the components of a speech recognition system - pre-processing, acoustic model, language model and search. After completing this class the students shall be able to implement and apply these components themselves. The students will further gain the ability to access and evaluate the performance of concrete instances of speech recognition systems.

Finally, the students shall be introduced to the principles of advanced techniques in automatic speech recognition, such as the use of model space and feature space adaption and their application.

Content
This class explains the layout of state-of-the-art speech recognition systems. The layout will be motivated based on the human speech production process und its properties. The class treats all processing steps of automatic speech recognition systems in detail: signal pre-processing, training of suitable, statistical models, and the actual recognition process.

The focus will be on statistical methods, as they are being used in current speech recognition systems. In this way the state-of-the-art of the area of automatic speech recognition will be communicated. Further the class will introduce alternative Methods, which were the foundation of the current methods and which are still being used in special circumstances.

Using sample applications und examples from current research projects, the current state-of-the-art and the performance of current systems will be illustrated.

In addition to the basic techniques, the class will also introduce advanced technologies in speech recognition, in order to illustrate the training and application of modern, high-performing speech recognition systems.

Basic literature
• Xuedong Huang, Alex Acero, Hsiao-wuen Hon, Spoken Language Processing, Prentice Hall, NJ, USA, 2001

Complementary literature
• Lawrence Rabiner and Ronald W. Schafer, Digital Processing of Speech Signals, Prentice Hall, 1978
• Schukat-Talamazzini, Automatische Spracherkennung
Course: Ubiquitous Computing

Lecturers: Wilfried Juling
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment will consist of an oral exam (20 min) following § 4 Abs. 2 Nr. 2 SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of this course is to introduce the foundations, the methods and the techniques of ubiquitous computing. After this course, students have gained knowledge and insights of existing ubiquitous computing systems and are enabled to design and evaluate such systems for the usage in everyday life and industrial environments.

Content
The course starts with an survey on ubiquitous computing in general and introduces a selection of representative work in this field. Basic paradigms and concepts are introduced, which provide the methodological background for the analysis and evaluation of ubiquitous computing systems. The course continues with an in-depth examination of the requirements and the device technology for embedded ubiquitous systems, communication networks and standards (e.g. Zigbee, RFID). Further, ubiquitous computing middleware is considered. A major aspect is context-aware computing. The emphasis is on the investigation of architectures and algorithms for context recognition in respect to formal and practical aspects. Finally, new human-computer interfaces and possibilities of the human-computer interaction are presented and discussed.

Media
Slides

Basic literature
Weiser and Brown The Coming Age of Calm Technology Xerox PARC, 1996
Vannevar Bush As we may think The Atlantic Monthly, July 1945
J. Raskin Computers by the Millions An Apple Document from 1979

Complementary literature
• L. Hallanäs, J. Redström Abstract Information Appliances Symposium on Designing Interactive Systems 2004
• Sinem Coleri Ergen ZigBee/IEEE 802.15.4 Summary September 10, 2004

Module Handbook: Version 04.03.2010 Information Engineering and Management (M.Sc.)
Course: Advanced Lab in Ubiquitous Computing

Lecturers: Hartmut Schmeck
Credit points (CP): 4 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Ubiquitous Computing [IW4NAIFB7] (S. 95)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Content
Course: Consulting in Practice

Lecturers: Klemens Böhm, Dürr
Credit points (CP): 1 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Innovative Concepts of Data and Information Management [IW4NIKDI] (S. 78)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
At the end of the course, the participants
• have gained knowledge and understanding for the activities of the consulting process in general,
• have gained function-specific knowledge and understanding of IT consulting,
• have an overview about consulting companies,
• know concrete consulting examples,
• have experienced how effective teams work and
• have got an insight into the professional field “consulting”.

Content
The market for consulting services grows annually by 20% and is therefore one of the leading growth sectors and professional fields in the future. This trend is in particular driven by the IT industry. Here, widely used standard software moves the focus of the future professional field from software development to consulting. In this context, consulting services have usually a broad definition, reaching from pure IT-focused consulting (e.g., deployment of SAP) to strategic consulting (strategy, organisation etc).

In contrast to common rumors, a qualification in business studies is not a must. This opens up a diversified and exciting field with exceptional development perspectives for computer science students. The copurse deals thematically with the two fields consulting in general and function-specific consulting (with IT consulting as an example).

The structure of the course is oriented along the phases of a consulting project:

• Diagnosis: The consultant as an analytic problem solver.
• Strategic adjustment/redesign of the core processes: Optimisation/redesign of essential business functionality to solve the diagnosed problems in cooperation with the client.
• Implementation: Installation of the solutions in the client’s organisation for assuring the implementation.

Emphasised topics in the course are:
• Elementary problem solving: Problem definition, structuring of problems and focusing through the usage of tools (e.g., logic and hypothesis trees), creative techniques, solution systems etc.
• Obtaining information effectively: Access of information sources, interview techniques etc.
• Effective communication of findings/recommendations: Analysis/planning of communication (media, audience, formats), communication styles (e.g., top-down vs. bottom-up), special topics (e.g., arrangement of complex information) etc.
• Efficient teamwork: Tools for optimising efficient work, collaboration with clients, intellectual and process leadership in the team etc.

Media
Slides
Course: Traffic Telematics

Lecturers: Jerome Härrer, Hannes Hartenstein
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Wireless Networking [IW4INWN] (S. 72), Future Networking [IW4INFN] (S. 74)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Network and IT-Security Management

Lecturers: Hannes Hartenstein
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
Basics in computer networks, according to the lectures Kommunikation und Datenhaltung [24574] and Vernetzte IT-Infrastrukturen [24074] respectively are required.

Conditions
Dependencies according to the module description.

Learning Outcomes
The goal of this lecture is to introduce the basics of network and IT-security management. Technical as well as underlying management concepts should be described.

Content
The lecture covers architectures, models, protocols and tools for controlling and monitoring of heterogeneous networks. Additionally, issues related to security and reliability are also covered. The lecture presents technical solutions as well as corresponding management concepts. The first part of the lecture introduces management architecture in particular the Internet management architecture based on the SNMP protocol. Afterwards corresponding tools, platforms, and operational implementations are presented. Furthermore public IP coordination and current trends are described. In the IT-Security management part of the lecture the concept of a security process is introduced based on the BSI Grundschutz. Additional topics are access and identity management as well as firewalls, intrusion detection and prevention. Besides theoretical method and concepts, practical examples are shown.

Media
Slides

Basic literature

Complementary literature
Course: Advanced Web Applications

Lecturers: Sebastian Abeck
Credit points (CP): 4 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Web Applications and Web Technologies [IW4INWAWT] (S. 67)

Learning Control / Examinations

Prerequisites
Knowledge in the areas of communication systems (esp. Web technologies) and software engineering.

Conditions
None

Learning Outcomes
To understand the architecture of multi-layered and service-oriented applications.
To be able to model the software architecture of a Web application.
To understand the major principles of traditional application development and the corresponding development process.
To comprehend how high-level process models are systematically refined in order to be mapped to a service-oriented architecture.

Content
The course consists of the following course units:

• BASICS OF ADVANCED WEB APPLICATIONS: Multilayered application architectures, especially Service Oriented Architectures (SOA) and the development of both traditional and advanced, service-oriented Web applications based on current standards such as XML (Extensible Markup Language) and WSDL (Web Services Description Language) are described.
• SERVICE DESIGN: The development process is extended by two aspects, (i) the mapping of business processes onto service-oriented Web applications and (ii) the design of the needed services.
• USER INTERACTION: This course unit deals with model-driven software development of advanced, human-centered Web applications based on UML (Unified Modeling Language) and MDA (Model-driven Architecture).
• IDENTITY MANAGEMENT: The main functional components of identity management are introduced and the specific needs of a service-oriented solution are derived.
• IT MANAGEMENT: The course unit investigates process-oriented management standards, which can be implemented by using standardized management components.

Media
(1) Learning material: Each course unit is covered by a course document (incl. short description, learning goals, index, glossary, references)
(2) Teaching material: slides (integral part of the course documents)

Basic literature

Complementary literature
(2) Thomas Stahl, Markus Völter: Modellgetriebene Softwareentwicklung, dpunkt Verlag, 2005.
Course: Empirical Software Engineering

Lecturers: Walter F. Tichy
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software-Methodik [IW4INSWM] (S. 70)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Mikroprozessoren II

Lecturers: Wolfgang Karl
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Parallelverarbeitung [IW4INPV] (S. 88)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Employment Law I

Lecturers: Alexander Hoff

Credit points (CP): 3 **Hours per week:** 2

Term: Wintersemester **Level:** 4

Teaching language: Deutsch

Part of the modules: Private Business Law [IW4JURA5] (S. 100)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this lecture to provide a solid insight into individual-related labour law. The students will understand the importance of labour law as an integral part of social market economy. They will be able to review contractual provisions in employment contracts and to evaluate labour law conflicts.

Content
Students will be introduced to all labour law regulations concerning the beginning, enforcement and termination of an employment. The lecture provides an introduction into procedural matters. A labour court’s trial will be attended.

Basic literature
tba at the beginning of the course.
Course: Tax Law I

Lecturers: Detlef Dietrich
Credit points (CP): 3
Hours per week: 2/0
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Private Business Law [IW4JURA5] (S. 100)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The target of the lecture is an introduction to national business tax law. The legal norms, spread on several individual tax laws, which are decisive for the taxation of the companies and their owners, will be treated. The focus is on basic fiscal knowledge realizable in practice as a component of modern business economics.

Content
Except for a basic knowledge of the existing German company types and the annual financial statements (balance sheet, statement of earnings), no fiscal previous knowledge is required. The lecture intends to give a current global overview about the most important elements of law. The focus is on trade or business companies in the most common forms such like sole traders, partnerships and corporations.

Media
transparencies

Basic literature
- Grashoff Steuerrecht, Verlag C. H. Beck, last edition
- Tipke/Lang Steuerrecht, Verlag C. H. Beck, last edition
Course: Randomized Algorithms

Lecturers: Thomas Worsch
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students know the important approaches and techniques for the use of randomization in algorithms, as well as tools for their analysis.

Students are able to find weak points in deterministic algorithms, to develop randomized approaches to eliminate them, and to assess them using tools from probability theory.

Content
Randomized algorithms are not deterministic. Their behavior depends on the outcome of random experiments. One of the first uses is Rabin’s randomized test for primality. Meanwhile for a multitude of problems randomized algorithms have been described which are faster (at least in some sense) than deterministic algorithms. In addition, sometimes randomized algorithms are easier to understand and/or implement than deterministic algorithms.

During the course not only different kinds of randomized algorithms (Las Vegas, Monte Carlo, …) are presented; the foundations from probability theory needed e.g. for the analysis of the time complexity are presented, too. Also, important concepts like Markov chains are treated. Since stochastic methods are gaining importance in more and more areas in computer science, the course will also be useful outside the area of randomized algorithms.

Topics: probabilistic complexity classes, routing in hypercubes, game theory, random walks, randomized graph algorithms, randomized hashing, randomized online algorithms

Media
lecture notes and slides in pdf format;

Basic literature
• J. Hromkovic : Randomisierte Algorithmen, Teubner, 2004
• M. Mitzenmacher, E. Upfal: Probability and Computing, Cambridge Univ. Press, 2005
• R. Motwani, P. Raghavan: Randomized Algorithms, Cambridge Univ. Press, 1995

Complementary literature
• E. Behrends: Introduction to Markov Chains, Vieweg, 2000
• A. Borodin, R. El-Yaniv: Online Computation and Competitive Analysis, Cambridge Univ. Press, 1998
Course: Medical Simulation Systems I
Course key: [24173]

Lecturers: Rüdiger Dillmann, Röhl, Speidel

Credit points (CP): 3
Hours per week: 2

Term: Wintersemester
Level: 4

Teaching language: Deutsch

Part of the modules: Algorithmen der Computergraphik [IW4INACG] (S. 86)

Learning Control / Examinations

Prerequisites

None.

Conditions

None.

Learning Outcomes

The student gains insight into medical computer science. In particular, special methods and algorithms in medical image acquisition, image processing, segmentation, registration and visualization are covered. After attending the lecture, the student should be able to analyze a given problem, choose appropriate methods and design a system in the field of preoperative diagnosis and intraoperative assistance.

Content

The research field of medical computer science and simulation systems is an expanding area with lots of ongoing research projects. Systems are needed for preoperative diagnosis as well as intraoperative assistance. The lecture covers the process chain starting with image acquisition up to intraoperative assistance.

The lecture focuses on imaging, image processing, segmentation, registration and visualization with augmented reality. The design of special systems system in the field of preoperative diagnosis and intraoperative assistance is shown and explained on different examples. Numerous examples of research projects and clinical life give an insight in this area of computer science.

Media

Slides.
Course: Meshes and point clouds

Lecturers: Hartmut Prautzsch
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Curves and Surfaces [IW4INKUF] (S. 85), Algorithmen der Computergraphik [IW4INACG] (S. 86)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are introduced into an active research area and will be acquainted with the important specifics techniques.

Content
Data structures for point clouds and triangular meshes, triangulation algorithms, marching cubes, fairing and mesh smoothing, parametrization, hierarchical representations, segmentation, deformation transfer, animation.
Course: Praktikum Multilingual Speech Processing

Lecturers: Tanja Schultz
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Sprachverarbeitung [IW4INSV] (S. 83)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: **Motion based machine interface**
Course key: [24288/24893]

Lecturers: Annika Wörner, Köhler, Schulz
Credit points (CP): 3
Hours per week: 4
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Motion centered Human-Machine Interface [IW4INBMMI] (S. 84)

Learning Control / Examinations

Prerequisites
The students should be willing to work together in a project group and should have fun with object orientated programming.

Conditions
None.

Learning Outcomes
- Within the practica the theoretical methods, presented in the lecture are realized by the students in practise.
- The students should get practical experience in the handling of captured motion data and its application relating to its analysis and the classification as well as they should get the ability to implement the results in the application of a motion based machine interface.
- In addition to the technical knowledge the students should learn methods and procedures of the planning, structuring and execution of a small project.

Content
In the field of human machine interaction the impact of human motion analysis is increasing. Examples of successful products are the „Sony Eye Toy“ or the „Nintendo Wii“.

The objective of the practica is the design and the realisation of a motion based input control. Examples may be the design of a simple computer game or a program control. The exact task is defined in a preliminary discussion together with the students.

The main components should be managed by a motion based input control.

The motion data capturing can be done by webcams connected with a video based data processing. Alternatively a motion control by acceleration sensors like the Java Sun Spots can be realised.

The realization of the defined task is done in a Java based Software framework called VAMOS. Within this framework classes for the capturing of the sensors outputs as well as some algorithms for the data processing are already included.

Knowledge in Java and object oriented programming is essential. In addition to the technical knowledge the students should learn methods and procedures of the planning, structuring and execution of a small project.
Course: Multicore Programming in Practice: Tools, Models, Languages [24293/24649]

Lecturers: Victor Pankratius, Walter F. Tichy
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software Systems [IW4INSWS] (S. 69), Parallelverarbeitung [IW4INPV] (S. 88)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Content
Course: Praktikum Automatic Speech Recognition

Lecturers: Alexander Waibel, Stüker
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Sprachverarbeitung [IW4INSV] (S. 83)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
Recommendation:
The prior completion or parallel attendance of the Lehrveranstaltung „Principles of Automatic Speech Recognitions“ is of advantage.

Conditions
None.

Learning Outcomes
• The students experience the implementation of algorithms from the area of automatic speech recognition in the example of the Janus Recognition Toolkit.
• The students learn to autonomously study an existing software using an existing documentation and under human supervision.
• The students improve their teamwork skills and their ability to conduct a project in a team, managing the project flow themselves.
• The student learns to communicate with his co-students taking this class, as well as with the supervisor of the class.
• After completion of this class, the student will be familiar with the use of the speech recognition system Janus Recognition Toolkit.
• This class teaches the necessary steps in designing and training a speech recognition system.
• The students learn the basic skills for participating and conducting competitive evaluations for automatic speech recognition systems.

Content
• Using the „Janus“ speech recognition system, which has been developed at our institute, the students shall learn through consecutive exercises the methods for training and evaluating a state-of-the-art speech recognition system.
• The open object structure of Janus makes it possible, to gain insight into every stage of the training and recognition process, and to enhance the understanding of the methods applied.
• During the first half of the class, the students complete a tutorial for learning the use of the Janus Recognition Toolkit and the use of the scripting language Tcl/Tk which is necessary in order to control Janus.
• During the second half of the class the students will train in teamwork a speech recognition system for a surprise language, and will participate in a competitive evaluation.

Complementary literature
• A. Waibel, K.F. Lee: Readings in Speech Recognition
• F. Jelinek: Statistical Methods of Speech Recognition
• Schukat-Talamazzini: Automatische Spracherkennung
Course: Practical Course Web Technologies

Lecturers: Sebastian Abeck, Gebhart, Hoyer, Link, Pansa

Credit points (CP): 5 Hours per week: 2/0

Term: Winter-/Sommersemester Level: 4

Teaching language: Deutsch

Part of the modules: Web Applications and Web Technologies [IW4INWAWT] (S. 67)

Learning Control / Examinations

Prerequisites
Participation in the lecture Advanced Web Applications [24153/24604]

Conditions
None

Learning Outcomes
To comprehend the Web technologies used in a real project environment.
To understand and to be able to formulate in one’s own words the task of the practical work.
To apply the Web technologies in order to solve the task.
The results can be documented and presented in a clear and comprehensible way.

Content
The student becomes a member of one of the project teams of the research group and receives a well-defined task, in which he/she develops a part of an advanced Web application using latest Web technologies.

Examples for such tasks are:
- Extension of a Web-based student support system using portal technologies
- Monitoring of an existing Web service implementation using the Java Framework
- Extension of an access control on a service-oriented web application using an existing identity management solution

Media
Templates to efficiently document the results of the practical work (e.g. project documents, presentation material)

Basic literature
- Team guidelines of the research group
- Lecture notes “Advanced Web Applications”

Complementary literature
Literature basis of the respective project team
Course: Seminar Vom Mensch zum Roboter

Lecturers: Annika Wörner, Feldmann, Köhler
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Motion centered Human-Machine Interface [IW4INBMMI] (S. 84)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Database Systems

Lecturers: Klemens Böhm
Credit points (CP): 4
Hours per week: 2/1
Term: Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Communication and Database Systems [IW4INKD] (S. 77)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
Recommendation: It is recommended but not required to participate at lectures covering communication networks, system architecture and software engineering.

Conditions
None.

Learning Outcomes
The student
• is able to explain the benefits of database technology,
• has understood the development of database applications including its models and methods,
• is able to set up and query simple databases,
• is familiar with the terminology and the fundamentals of the underlying theory.

Content
Database systems are one of the crucial software fundamentals in modern information systems. Therefore, they belong to the core subjects in university curriculums in the area of computer science. The goal of the lecture is to obtain the basic knowledge to work with database systems. Key aspects are database models for design and implementation (ER models, relational model), languages for database systems (SQL) and its theoretical foundation (relational algebra) as well as aspects of transaction processing, data integrity and views.

Media
Slides.

Basic literature
• Andreas Heuer, Kai-Uwe Sattler, Gunther Saake: Datenbanken - Konzepte und Sprachen, 3. Aufl., mitp-Verlag, Bonn, 2007
• Alfons Kemper, André Eickler: Datenbanksysteme. Eine Einführung, 7. Aufl., Oldenbourg Verlag, 2009

Complementary literature
Course: Introduction in Computer Networks

Course key: [24519]

Lecturers: Hannes Hartenstein
Credit points (CP): 4 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Communication and Database Systems [IW4INKD] (S. 77)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature

Complementary literature
Course: Computer Contract Law

Lecturers: Michael Bartsch
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to provide students with knowledge in the area of contract formation and formulation in practice that builds upon the knowledge the students have already acquired concerning the legal protection of computer programs. Students shall understand how the legal rules depend upon, and interact with, the economic background and the technical features of the subject. The contract drafts shall be prepared by the students and will be corporately completed during the lecture. It is the aim of the course that students will be able to formulate contracts by themselves.

Content
The course deals with contracts from the following areas:

- Contracts of programming, licencing and maintaining software
- Contracts in the field of IT employment law
- IT projects and IT Outsourcing
- Internet Contracts

From these areas single contracts will be chosen and discussed (e.g. software maintenance, employment contract with a software engineer). Concerning the respective contract the technical features, the economic background and the subsumption in the national law of obligation (BGB-Schuldrecht) will be discussed. As a result different contractual clauses will be developed by the students. Afterwards typical contracts and conditions will be analysed with regard to their legitimacy as standard business terms (AGB). It is the aim to show the effects of the german law of standard business terms (AGB-Recht) and to point out that contracts are a means of drafting business concepts and market appearance.

Media
transparancies

Basic literature
- Langenfeld, Gerrit Vertragsgestaltung Verlag C.H.Beck, III. Aufl. 2004
- Heussen, Benno Handbuch Vertragsverhandlung und Vertragsmanagement Verlag C.H.Beck, II. Aufl. 2002
- Schneider, Jochen Handbuch des EDV-Rechts Verlag Dr. Otto Schmidt KG, III. Aufl. 2002

Complementary literature

Complementary literature
tba in the transparencies
Course: Multilinguale Mensch-Maschine-Kommunikation

Lecturers: Tanja Schultz, Putze
Credit points (CP): 6
Hours per week: 4/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Biosignalverarbeitung [IW4INBSV] (S. 82), Sprachverarbeitung [IW4INSV] (S. 83)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Content
Complementary literature
Xuedong Huang, Alex Acero und Hsiao-wuen Hon, Spoken Language Processing, Prentice Hall PTR, NJ, 2001
Course: Network Security: Architectures and Protocols

Lecturers: Marcus Schöller
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course aims at teaching fundamental concepts of the design of secure communication protocols. More advanced topics include existing security protocols of the internet and local networks.

Content
The lecture Network Security: Architectures and Protocols considers challenges and technologies in the design of secure communication protocols, as well as topics of data security and privacy. Complex systems like Kerberos will be discussed explicitly and their design decision considering security aspects will be outlined. A special focus is set on PKI-basics, infrastructures, as well as on specific PKI-formats. Furthermore, an emphasis is set on the commonly used security protocols IPSec, TLS/SSL, and protocols of infrastructure security.

Media
Slides.

Basic literature

Complementary literature
- Carlisle Adams and Steve Lloyd. Understanding PKI. Addison Wesley, 2003
Course: Data Privacy Protection in Interconnected Information Systems

[24605]

Lecturers: Buchmann
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Innovative Concepts of Data and Information Management [IW4NIKDI] (S. 78)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
At the end of the lecture, the participants are aware of the objectives and basic principles of informational self-determination. The participants are able to name and explain the fundamental challenges and impacts of data privacy protection for both individuals and society. Furthermore, the participants are expected to know and to apply current methods and technologies for data privacy protection, e.g., spatial and temporal cloaking. The objective of the lecture is to enable the participants to assess and analyze the risks of unknown technologies towards privacy, to propose methods that can be expected to deal with such risks, and to measure the effectiveness of the methods proposed.

Content
This lecture is intended to explain the impacts of interconnected information systems on data privacy. The lecture addresses both current information systems that can be observed on the Internet and information systems that are under development yet. In order to tackle these challenges, a number of technical methods have been proposed and discussed in research and practice. The lecture introduces such approaches, and points out how effective they are in ensuring data privacy. An examination of the social implications of data privacy challenges and privacy enhancing technologies concludes the lecture.

Basic literature
Will be announced within the lecture slides.
Course: Models of Parallel Processing

Lecturers: Thomas Worsch
Credit points (CP): 5 Hours per week: 3
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Parallelverarbeitung [IW4INPV] (S. 88)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students know the basic methods of parallel processing and different possibilities to realize them on models which use different approaches to parallelism, and the relevant basic notions from computational complexity.
Students are able to assess the efficiency of parallel algorithms for different parallel models, to identify weak points and to develop approaches to remove them.

Content
• Models of the first machine class (Turing machines, cellular automata, random access machines with weak instruction sets) and models of the second machine class (PRAM, uniform circuit families, alternating TM, tree CA, RAM with powerful instruction sets) and models „beyond“ the second machine class (NL-PRAM)
• aspects of physical realizability
• MPI

Media
Slides.

Basic literature
Vollmar, Worsch: Modelle der Parallelverarbeitung, Teubner

Complementary literature
Scientific articles of journals and conferences.
Course: Kognitive Modellierung

Lecturers: Tanja Schultz, Putze
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Biosignalverarbeitung [IW4INBSV] (S. 82), Sprachverarbeitung [IW4INSV] (S. 83)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Algorithms for Planar Graphs

Lecturers: Dorothea Wagner
Credit points (CP): 3/5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The module aims at providing students with an overview on the field of planar graphs and especially focuses on algorithmic aspects. The students obtain a systematic understanding of the central concepts and techniques for tackling algorithmic questions on planar graphs, which builds upon the students' knowledge in the areas of graph theory and algorithmics. In this course problems are reduced to their algorithmic core and are afterwards, if possible from a complexity theoretical point of view, solved efficiently. The students learn to apply the presented methods and techniques autonomously to related problems. With the obtained knowledge they are able to to work on current research problems in the area of planar graphs.

Content
A planar graph is defined as a graph that can be drawn in the plane such that no edges intersect. Planar graphs have many interesting properties that can be used to solve several problems in a particularly simple, fast and elegant way. In addition, some problems that are (NP-)hard in general graphs can be efficiently solved in planar graphs. The lecture presents a selection of these problems and corresponding algorithmic approaches.

Complementary literature
Course: Graphisch-geometrische Algorithmen

Course key: [24618]

Lecturers: Alfred Schmitt, Umlauf

Credit points (CP): 5 Hours per week: 2/1/0

Term: Sommersemester Level: 4

Teaching language: Deutsch

Part of the modules: Algorithmen der Computergraphik [IW4INACG] (S. 86)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Algorithms in Cellular Automata

Lecturers: Thomas Worsch
Credit points (CP): 3 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students get acquainted with the basic and important approaches to and techniques for fine-grained parallel algorithms. They are able to develop simple CA algorithms themselves which use these techniques and to assess the quality.

Content
Cellular automata are an important model for fine-grained parallelism, which was developed by John von Neumann using a suggestion by S. Ulam.

In the course important basic algorithms (e.g. for synchronization) and techniques for the design of efficient fine-grained algorithms are introduced. The application of these algorithms in different problem areas shown. Besides self-replication, which was von Neumann's motivation, pattern transformations and problem known from sequential algorithms like sorting, this also includes typical parallel problems like leader election and the modelling of real phenomena.

Contents:
- computational complexity
- pattern recognition
- self-reproduction
- sorting
- synchronization
- leader election
- discretization of continuous systems
- sandpile model

Media
lecture notes and slides in pdf format; computer demonstrations

Complementary literature
Course: Selected topics in Cryptography

Lecturers: Jörn Müller-Quade
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Topics in Cryptography [IW4INFKRYP] (S. 62)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
• The student will be taught that the cryptographic security of applications exceeds the question of good encryption
• The most important cryptographic building blocks for larger security applications are to be understood and can be used
• The difficulties in the composition (e.g. in a modular design) of security applications should be understood, as well as new techniques which enable a modular design.

Content
• Basic security protocols such as fair coin toss over the phone, Byzantine Agreement, Dutch Flower Auctions, Zero Knowledge
• Threat models and security definitions
• Modular design and protocol composition
• Security definitions of simulatability
• Universal Composability
• Deniability as an additional safety feature
• Electronic Voting
Course: Rationale Splines

Lecturers: Hartmut Prautzsch
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Curves and Surfaces [IW4INKUF] (S. 85)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
A deep fundamental geometric understanding for the construction of curves and surfaces used in CAD, CAGD, and Computer Vision

Content
Projective spaces, quadrics, rational curves, rational Bézier and B-Spline representation, offset curves and surfaces, parametrization of quadrics, triangular patches on quadrics, cyclides.
Course: Model Driven Software Development

Lecturers: Ralf Reussner, Steffen Becker
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software-Methodik [IW4INSWM] (S. 70)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
Course: Symmetric encryption

Lecturers: Jörn Müller-Quade
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an oral exam (approx. 20 minutes) according to sec. 4 subsec. 2 no. 2 study and examination regulations.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows the most important algorithms and primitives of symmetric encryption,
• read and understand the latest scientific articles,
• can evaluate the security of given algorithms and recognizes problems

Content
This lecture provides the theoretical and practical aspects of symmetric cryptography.
• Historical ciphers will be covered if they are useful for assessing the security of current ciphers.
• Furthermore, block ciphers are covered. The two most important types of attacks (differential and linear cryptanalysis) will be presented.
• Furthermore, hash functions are covered. Here, attacks are in the focus and techniques to forge meaningful messages through the use of “meaningless collisions”.

Course key: [24629]
Course: Telecommunications Law

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Public Business Law [IW4JURA6] (S. 101)

Learning Control / Examinations
The assessment consists of an written exam (following §4(2), 1 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Telecommunications is the technical basis of the Information Engineering and Management. In which way for example UMTS is regulated, is of relevant importance for the supply of services in the world of the mobile contents services. The central defaults of the telecommunications regulation are in the telecommunications law (TKG). This was completely amended due to community-legal defaults 2004. The lecture procures for apprehending the basics of legal framework of the information society the essential knowledge in telecommunication law.

Content
The lecture offers an overview of the new TKG. The whole range of the regulation is treated: Of the material-legal instruments of the competition-creative economic regulation (market -, entrance -, payment regulation as well as special supervision of abuse) and the non-economic regulation (customer protection; Broadcasting; Assignment of frequencies, numbers and rights of way; secrecy of telecommunications; Data security and public security) up to the institutional arrangement of the regulation. To assist in the understanding the technical and economic bases are clarified as well as community and constitutional default sat at the beginning of the lecture.

Media
Content structure

Basic literature
Since the law material is to be partly compiled in the discourse with the studying, a current version of the TKG is to be bring along to the lecture.
Further literature will be announced in the lecture.

Complementary literature
TBA
Course: Moderne Entwicklungsumgebung am Beispiel von .NET
Course key: [24634]

Lecturers: Walter F. Tichy, Gelhausen, Ladani
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software-Methodik [IW4INSWM] (S. 70)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Performance Engineering of Enterprise Software Systems
Course key: [24636]

Lecturers: Ralf Reussner, Samuel Kounev
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software-Methodik [IW4INSWM] (S. 70)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Modern enterprise software systems (e.g., based on the Java EE or Microsoft .NET technologies) are expected to satisfy increasingly stringent requirements for performance and scalability. There are numerous studies, for example in the areas of e-business, manufacturing, telecommunications, health care and transportation that have shown that a failure to meet performance requirements can lead to serious financial losses, loss of customers and reputation, and in some cases even to loss of human lives. To avoid the pitfalls of inadequate quality of service, it is important to evaluate analyze the expected performance and scalability characteristics of systems during all phases of their life cycle. The methods used to do this are part of the discipline called Performance Engineering. Performance Engineering helps to estimate the level of performance a system can achieve and provides recommendations to realize the optimal performance level. At every stage, performance evaluation is carried out with a specific set of goals and constraints.

The aim of the course is to provide an introduction to the major methods and techniques for performance engineering evaluation of enterprise systems. The students will first be introduced to modern performance measurement techniques including platform benchmarking, application profiling and system load testing. The different types of workload models typically used in performance evaluation studies will be discussed. An overview of current benchmarks for enterprise systems will be given. Following this, modern state-of-the-art methods for modeling and performance prediction will be introduced. The students will be acquainted with the major types of performance models used in practice and with their advantages and disadvantages. Finally, an overview of current design-oriented performance meta-models will be given. Throughout the course, case studies of real-life systems will be presented to illustrate the developed concepts.

Content
The lecture covers the following topics:

1. Introduction to performance engineering of enterprise software systems
 a. Lifecycle of a system
 b. Foundations
 c. Approaches to performance engineering
 d. Capacity planning

2. Performance measurement techniques
 a. Performance metrics
 b. Average performance and variability
 c. Modeling of measurement errors
 d. Comparing alternatives on the basis of measurements
 e. Tools and techniques for performance measurements
 f. Design of performance experiments

3. Benchmarking of enterprise software systems
 a. Benchmarking methodologies
b. Overview over popular benchmarks

c. Applications of benchmarks

4. Model-based performance predictions

a. Operation analysis

b. Characterisation of usage profile

c. Modeling techniques (e.g. Petri nets)

d. Analysis models for performance prediction

e. Design-oriented performance meta-models

5. Case studies

Media

Slides

Basic literature

Complementary literature

Course: Algorithms for Routing

Lecturers: Dorothea Wagner
Credit points (CP): 3/5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of this course is to give the students a first impression on the problem of route planning and thereby applying knowledge from the fields of graph theory and algorithmics. On one hand, occurring problems are reduced to their algorithmic core and then solved efficiently. On the other hand, several modeling aspects and their interpretations are discussed. Students learn to apply the presented methods and techniques to related problems autonomously.

Content
Finding optimal routes in transportation networks is an everyday problem. While formerly routes used to be planned manually at the kitchen table using maps, automated route planning established in most parts of today's society: the best railway itinerary is obtained from the Internet while routes in road networks are often computed by mobile devices. An approach to compute best connections emerges from graph theory. The transportation network is modeled as a directed graph wherein the route is computed by a shortest path algorithm. When using travel times as metric in the graph, the resulting route is the provably quickest connection. Dijkstra’s algorithm - developed in 1959 - solves the shortest path problem optimally. However, realistic transportation networks are by far too big (the road network of Western and Central Europe consists of approximately 45 Million segments) for Dijkstra’s algorithm to be fast enough for practical use. Hence, current research focuses on the development of so-called speed-up techniques for Dijkstra’s algorithm. Thereby these methods use a two-phased approach: in a preprocessing step the network is enriched with additional information which is then used to accelerate Dijkstra’s algorithm during the computation of shortest paths.

This course gives an overview of state-of-the-art algorithms for efficient route planning, from which some are discussed in more detail.

Complementary literature
Course: Mobile Communications

Lecturers: Oliver Waldhorst
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of the course is to introduce the technical foundations of mobile communication systems (signal propagation, medium access, etc.). An additional focus is on topics of current research (Mobile IP, Ad hoc Networks, Mobile TCP, etc.).

Content
The course "Mobile Communications" uses prominent examples for systems of currently deployed mobile communication systems, to explain typical architectures of such systems, e.g. mobile telecommunication systems, wireless personal, local, and metropolitan area networks. Additional topics related to current research efforts include TCP/IP-based communication over mobile networks and positioning systems. The goal of the course is not to teach facts on particular architectures and standards, but to show typical problems in mobile communications and present typical solutions. The fundamental principles of digital wireless transmissions including the frequency bands, signal propagation, modulation, and multiplexing are explained by application examples.

Media
Slides.

Basic literature
J. Schiller; Mobilkommunikation; Addison-Wesley, 2003.

Complementary literature
H. Kaaranen, A. Ahtiainen, et. al., UMTS Networks – Architecture, Mobility and Services, Wiley Verlag, 2001.
B. A. Miller, C. Bisdikian, Bluetooth Revealed, Prentice Hall, 2002
What You Should Know About the ZigBee Alliance http://www.zigbee.org.
H. Holma, WCDMA For UMTS, HSPA Evolution and LTE, 2007
Course: Tax Law II

Lecturers: Detlef Dietrich
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Private Business Law [IW4JURA5] (S. 100)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the target of the lecture to provide extended knowledge in business administration related theory of taxation in the field of economics and law, based on the general lecture “introduction to corporate tax law”. The students obtain the basis for an economic examination of the fiscal prescriptions and are able to assess the impact on business decisions. The emphasis is on such tax law regulations which allow possibilities for action and decision to the taxpayer.

Content
The lecture requires basic knowledge of commercial law and company law as well as of earnings tax law. Basic and current questions of German corporate taxation are systematically prepared in topic blocs; foils, leaflets and supplementary references are distributed in the individual sessions. There is room for discussion. A recent text collection of the tax laws will be necessary.

Media
transparencies

Basic literature
- Spangemacher, Gewerbesteuer, Band 5, Grüne Reihe, Erich Fleischer Verlag
- Falterbaum/Bolk/Reiß/Eberhart, Buchführung und Bilanz, Band 10, Grüne Reihe, Erich Fleischer Verlag
- Tipke, K./Lang, J., Steuerrecht, Köln, in der neuesten Auflage.
- Jäger/Lang Körperschaftsteuer, Band 6, Grüne Reihe, Erich Fleischer Verlag
- Lippross Umsatzsteuer, Band 11, Grüne Reihe, Erich Fleischer Verlag
- Plückebaum/Wendt/ Niemeier/Schllerenkämper Einkommensteuer, Band 3, Grüne Reihe, Erich Fleischer Verlag
Course: Civil Law for Advanced
Course key: [24650]

Lecturers: Peter Sester
Credit points (CP): 3
Hours per week: 2/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Private Business Law [IW4JURA5] (S. 100)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course intents to build up extensive knowledge in german corporate law, trade law and civil law especially in contract law. It is designed for students who have already passed the courses Civil Law for Beginners [24012], Advanced Civil Law [24504], and Commercial and Corporate Law [24011/24509]. At the end students should be able to think through complex legal and economic questions.

Content
The course will focus on corporate law, trade law and civil law, especially contract law. We will discuss legal problems on the basis of selected examples in a application orientated way.

Basic literature
Course: Computational complexity theory, with a view towards cryptography
Course key: [24652]

Lecturers: Jörn Müller-Quade
Credit points (CP): 5 Hours per week: 3
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Topics in Cryptography [IW4INFKRYP] (S. 62)

Learning Control / Examinations
The assessment consists of an oral exam (approx. 20 minutes) according to sec. 4 subsec. 2 no. 2 study and examination regulations.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows the theoretical foundations of the complexity analysis of a problem of algorithm,
• understands and explains the structure of common computational complexity classes such as P, NP, or BPP,
• is able to assess the asymptotic complexity of a given problem.

Content
What is an “efficient” algorithm? Can every algorithmic task be solved efficiently? Or are there inherently hard problems? Computational complexity provides a rigorous, mathematical foundation to reason about problems like these. In this course, we will discuss concepts such as
• machine model, time and space complexity, separations,
• nondeterminism, reductions, completeness,
• the polynomial hierarchy,
• probabilism, one-way functions,
• alternation, interactive proofs, zero-knowledge,

and illustrate them with practical examples. The course provides an outlook to applications of computational complexity theory, with a view towards cryptography."
Course: Component Based Software Engineering

Lecturers: Ralf Reussner, Michael Kuperberg, Klaus Krogmann
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software Systems [IW4INSWS] (S. 69), Software-Methodik [IW4INSWM] (S. 70)

Learning Control / Examinations
The assessment is described in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
- F. Griffel, Componentware, dPunkt Verlag, 1998
Course: Embedded Security

Lecturers: Jörn Müller-Quade
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Topics in Cryptography [IW4INFKRYP] (S. 62)

Learning Control / Examinations
The assessment consists of an oral exam (approx. 20 minutes) according to sec. 4 subsec. 2 no. 2 study and examination regulations.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student should

• be able to evaluate the security of embedded systems and can identify security problems.
• have an overview of the theoretical and practical aspects of security issues of embedded systems

Content
In the last few years it has been shown that the way of embedding security modules (hardware and software) is one of the key problems for quality of service. This became publicly known, e.g. through power analysis. This is an attack on hardware for cryptographic applications that makes use of properties of the implementation. The power consumption is used to gain information about the secret key. Such attacks have continued to expand, as well as the countermeasures.

In the lecture, these side-channel attacks (e.g. differential power analysis) and possible countermeasures will be presented. Further more, “correlative attacks” will be dealt with. They provide a unified description of side channel attacks. These attacks and countermeasures are presented with many examples.
Course: Software Development for modern, parallel platforms
Course key: [24660]

Lecturers: Walter F. Tichy, Pankratius, Otto
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software Systems [IW4INSWS] (S. 69), Parallelverarbeitung [IW4INPV] (S. 88)

Learning Control / Examinations

Prerequisites
Basic knowledge in the fields of software engineering and programming languages as for example taught in the lecture Multikern-Rechner und Rechnerbündel [24112] in the winter term is necessary.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced in the lecture.

Complementary literature
Will be announced in the lecture.
Course: Patent Law

Lecturers: N.N.
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

It is the aim of this course to provide students with knowledge in the area of patent law and the business of technical intellectual property that builds upon, and goes beyond the knowledge the students have already acquired in the general lecture of Industrial and intellectual property law. Students shall understand how the legal rules depend upon, and interact with, the economic background and the legislative policy in the field of technical intellectual property, particularly in the field of information and communication technologies. Students shall learn about the rules of national, European and international patent law as well as know-how protection law and to apply these legal rules in practical cases, in particular in the area of utilizing technical intellectual property through agreements and lawsuits. The conflict between the monopoly of a patent and the antitrust law policies in Europe will be reviewed with the students.

Content

The course deals with the subject matter of the law of technical intellectual property, in particular inventions, patents, utility models, design patents, know-how, the rights and obligations of employees as creators of technical IP, licensing, limitations and exceptions to patenting, term of protection, enforcement of the rights and defence against these in invalidation and revocation actions. The course does not merely focus on German patent law, but likewise puts European, US and international patent law into perspective. Students shall understand how the legal rules depend upon, and interact with, the economic background and the legislative policy in the field of technical intellectual property, particularly in the field of information and communication technologies. Students shall learn about the rules of national, European and international patent law as well as know-how protection law and to apply these legal rules in practical cases, in particular in the area of utilizing technical intellectual property through agreements and lawsuits. The conflict between the monopoly of a patent and the antitrust law policies in Europe will be reviewed with the students.

Media

transparancies

Basic literature

Complementary literature

tba in the transparencies
Course: European and International Law

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Public Business Law [IW4JURA6] (S. 101)

Learning Control / Examinations
The assessment consists of a written exam (following §4(2), 1 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Due to the Europeanization of national law, the examination of European law is indispensable for everyone aiming to gain basic legal knowledge. Hardly any national activity can be imagined without the consideration of presetting of European Community law. By comparison, the influence of international law is of small importance. In light of this, the lecture predominantly deals with European law and imparts the knowledge of the EU law necessary for the students in order to comprehend how the national law is being covered by European Community law defaults. Afterwards, the student should be able to solve questions regarding European legislation in a problem-oriented manner. As the subject matter partly will be acquired in discourse with the students, it is necessary to acquire a corpus juris (e.g. Beck-Texte "Europarecht").

Content
The lecture predominantly deals with the European law: in the origin, this contains an analysis of history from the EEC to EC and EU, of participants (parliament, commission, council, European Court of Justice), of sources of law (regulations, directives, final judgements, opinions, recommendations) and legislative procedure. Further, the lecture focuses on the basic liberties of the EC, which enable a free flow of goods (for example of beer not matching the German purity law), persons (like the professional footballer Bosman), services (like entrepreneurial activities) and capital. In addition, the charter of fundamental rights of the EC and the rules of competition will be discussed, in each case in the light of a concrete legal case. Moreover, the fundamental rights of the European Convention on Human Rights (ECHR) are being introduced. Concluding, a short survey of international law, especially of the World Trade Organization (WTO), will be given.

Media
Content structure

Basic literature
Further details will be announced in the lecture.

Complementary literature
Further details will be announced in the lecture.
Course: Employment Law II

Lecturers: Alexander Hoff
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Private Business Law [IW4JURA5] (S. 100)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Based on the knowledge gained in the lecture on Labour Law I, the students are to gain a deeper insight into labour law.

Content
Students will gain insight into the statutory rights of employees and tariff law. They learn about the importance of employers associations and unions for the economy and gain adequate knowledge of laws concerning industrial action, supply of temporary workers and social security law.

Basic literature
Tba at the beginning of the course.
Course: Simulation of Computer Networks

Lecturers: Hannes Hartenstein
Credit points (CP): 4
Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
Basics in computer networks, according to the lectures Kommunikation und Datenhaltung are required. Additionally the lecture Wahrscheinlichkeitstheorie und Statistik is required.

Conditions
Dependencies according to the module description.

Learning Outcomes
Goal of this lecture is to introduce on the one hand the theoretical basics of simulation of computer networks, and on the other hand practical insights into running simulation studies. An important issue is the modeling of the different building blocks used insimulations.

Content
The simulation of computer networks is a method to quickly and cost-efficiently study and evaluate protocols and therefore is an important tool for network research. While analytical approaches often have to fight against the complexity of the scenarios and field studies cause high costs concerning hardware, simulations allow to efficiently investigate on the parameter space with respect to network topologies, communication patterns and dependencies among protocols. However, simulations results are only of relevance if a precise modeling, simulation run and evaluation has been done. The lecture impart knowledge on the necessary basics with respect to mathematics and algorithms as well as practical experiences in the usage of simulators and simulation tools.

Media
Slides

Basic literature
Course: Curves ans surfaces in CAD I

Lecturers: Hartmut Prautzsch, Umlauf
Credit points (CP): 3
Hours per week: 2
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Curves and Surfaces [IW4NKUF] (S. 85), Algorithmen der Computergraphik [IW4INACG] (S. 86)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Knowledge of basic techniques enabling the student to attend advanced courses as „Curves and Surfaces II and III“, „Rational Splines“ or „Subdivision algorithm“

Content
Bèzier-and B-spline techniques, constructive algorithms, underlying geometric structures, as described in the book “Bèzier-and B-spline techniques”.
The first course covers curves and tensor product surfaces, the second course is on constructions of smooth free form surfaces and the third course is devoted to box splines, multivariate splines, fair surfaces, scattered data interpolation and selected topics.

Basic literature
- Prautzsch, Boehm, Paluszny: Bézier and B-Spline Techniques, Springer 2002

Complementary literature
- de Boor: A practical guide to splines, 2001
Course: Law of Contracts

Lecturers: Peter Sester
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Private Business Law [IW4JURA5] (S. 100)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course will provide an overview of the forming of an contract. The purpose is to translate legal and economic aspects in a contract to secure the volitional position. The course will also consider international questions.

Content
The purpose of the course is to provide students with an understanding of the legal basics of forming a business contract. By means of special examples an overview of typical corporate contracts will be given. The course discusses the Limited (GmbH), ordinary partnership (OHG), limited partnership (KG), European Economic Interest Grouping (EWIV), club (Verein) and the public limited company (Aktiengesellschaft). In addition it will also focus on international relations.

Basic literature
Tba at the beginning of the course.
Course: Next Generation Internet

Lecturers: Roland Bless
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Networking Labs [IW4INNL] (S. 73), Future Networking [IW4INFN] (S. 74), Networking [IW4INNW] (S. 75)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Objective of the lecture is to present latest developments in Internet-based networks and to explain the related advanced methods and techniques that are used. Furthermore, architectural principles of the current Internet are discussed and it is described which new challenges threaten the Internet architecture.

Content
In the main focus of the lecture are latest developments in the area of Internet-based network technologies. At first architectural principles of the current Internet are described and discussed. Next, nowadays and future challenges are presented. Methods to support quality of service (QoS), signaling of QoS requirements as well as IPv6 and multicast support for group communications are described. Application of the presented technologies in IP-based networks are discussed. Advanced approaches like active and programmable networks are presented in this lecture and recent developments in peer-to-peer networks.

Media
Slides

Basic literature

Complementary literature
Ralf Steinmetz, Klaus Wehrle (Eds) Peer-to-Peer Systems and Applications LNCS 3854, Springer 2005
Course: Medical Simulation Systems II

Lecturers: Rüdiger Dillmann, Unterhinninghofen, Suwelack
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Algorithmen der Computergraphik [IW4INACG] (S. 86)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student will gain insight into the field of medical informatics. In particular methods concerning medical fluid and structure mechanics as well as finite-element-methods are imparted. On successful completion of this lecture the student will be able to conceive systems and to make important design decisions correctly. Furthermore team work and free speech are trained.

Content
The lecture deals with the field of medical simulation systems. Continuing lecture Medical Simulation Systems I, modeling and simulation of biological systems are considered. The focus is on solid mechanics for describing soft tissue and on fluid mechanics for describing blood flow. Furthermore finite element methods are presented as a numerical technique for the computation of the simulations. Insights in clinical problems and applications as well as in clinical validation methods complete the lecture.

Media
Slides.
Course: Recht der Informationsordnung

Course key: [24793]

Lecturers: Indra Spiecker genannt Döhmann
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Internet Law

Lecturers: Thomas Dreier
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the aim of this course to give the students an overview of the legal rules that are touched upon when the Internet is used as a means of communications and for doing business. These legal rules range from the law governing domain names, issues concerning the electronic formation of contracts, distance and electronic commerce contracts, to the issue liability and questions of unfair competition. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Content
The course deals with the legal rules that are touched upon when the Internet is used as a means of communications and for doing business. These legal rules range from the law governing domain names, issues concerning the electronic formation of contracts, distance and electronic commerce contracts, to the issue liability and questions of unfair competition. Students shall understand how the legal rules depend upon, and interact with, the economic background, legislative policy and information and communication technologies. Students shall learn about the rules of national, European and international copyright law and to apply these legal rules in practical cases.

Media
Slides

Basic literature
Script, Internetrecht (Internet Law)

Complementary literature
Additional literature tba in class.

Remarks
It is possible that this course will be taught in the summer instead of the winter semester.
Course: Grundlagen des Patentrechts

Lecturers: K. Melullis
Credit points (CP): 3 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Practical Course Data Warehousing and Mining

Lecturers: Klemens Böhm
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Theory and Practice of Data Warehousing and Mining [IW4INDWMTP] (S. 79)

Learning Control / Examinations
The assessment will be an “Erfolgskontrolle anderer Art” and consists of several parts (projects, experiments, presentations and reports, according to §4, Abs 2 of the SPO). The course will be assessed with “passed” or “failed” (according to §9, Abs. 3 of the SPO). In order to get the passed assessment for the practical course, every part of the assessment must be passed successfully.

Prerequisites
None.

Conditions
None.

Learning Outcomes
In this practical course, the students should transfer the theoretical knowledge from the lecture “Data Warehousing and Mining” into practice. In this process, the students will also learn how to work with common tools and how to deploy them. In the data warehousing block, the students should learn how to set up data warehouses and should become familiar with the data-cube model. In the data mining block, the students should become familiar with the common data-mining techniques. They will be confronted with the typical problems in data mining and will learn how to develop solutions. Furthermore, the students should learn to work in teams in order to work on various projects successfully.

Content
The practical course data warehousing and mining will deepen the theoretical knowledge from the lecture “Data Warehousing and Mining”, with a focus on practical aspects and common tools. The course is divided into two blocks, data warehousing and data mining. The data warehousing block focuses on data preprocessing and building data warehouses. The data-mining block roughly follows the KDD process with practical knowledge-discovery examples in businesses. With such examples, the different data-mining concepts are investigated. The focus is on techniques for clustering, classification and discovering frequent itemsets and association rules. Working in teams is another important aspect in the whole course.

Media
- Slides.
- Practical course notes.

Complementary literature
Course: **Praktikum Simulation von Rechnernetzen**

Course key: [24878]

Lecturers: Hannes Hartenstein

Credit points (CP): 5 **Hours per week:** 0/2
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Part of the modules: Networking Labs [IW4INNL] (S. 73), Dynamische IT-Infrastrukturen [IW4INDITI] (S. 81)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
Course: Practical Course Web Engineering

Lecturers: Wilfried Juling, Martin Nußbaumer, Matthias Keller, Frederic Majer
Credit points (CP): 5 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Applied Web Engineering [IW4INPWE] (S. 71)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The practical course is based on the lecture Web Engineering. The exercise help develop a fundamental understanding of server- and client-side technologies and their interaction. According to the lecture the aspects data, interaction, navigation, presentation, communication and processes are covered.

A larger project will be realized in the second half of the practical course, to broaden the knowledge about the whole Web application lifecycle and the project management process. The project and most of the exercises will be carried out in form of teamwork.

Content
The practical course consists of two parts. In the first half the basic technologies and methods of the Web Engineering discipline are introduced. This includes declarative languages like (X)HTML/CSS and XML/XSL as well as component-based approaches and frameworks. Another thematic focus of the course is on Web services as a fundamental building block for realizing service-oriented applications. The second half of the practical course emphasizes the structured and disciplined application of the learnt technologies and methods by realizing a software project.

Media
Slides, web-page.
Course: Practical course: Geometric Modeling

Course key: [24884]

Lecturers: Hartmut Prautzsch, Diziol

Credit points (CP): 3 **Hours per week:** 2

Term: Sommersemester **Level:** 4

Teaching language: Deutsch

Part of the modules: Algorithmen der Computergraphik [IW4INACG] (S. 86)

Learning Control / Examinations

Prerequisites

None.

Conditions

None.

Learning Outcomes

Practical skills to work with free form curves and surfaces. Team work.

Content

Classical techniques of computer aided geometric design, interpolation, periodic curves, approximation, tensor product surfaces, curvature, offsets, ball pivoting algorithm.

AC++ library is used and it has to be extended.

Complementary literature

Course: Praktikum Biosignale
Lecturers: Tanja Schultz, Wand
Credit points (CP): 3
Hours per week: 2
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Biosignalverarbeitung [IW4INBSV] (S. 82), Motion centered Human-Machine Interface [IW4INBMMI] (S. 84)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Content
Course: Security

Lecturers: Jörn Müller-Quade
Credit points (CP): 6 Hours per week: 3/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows the theoretic background and the basic mechanisms of computer security and cryptography
• understands the mechanisms of computer security and can explain them,
• can read and understand the current scientific papers,
• can evaluate the safety procedures and can recognize hazards,
• can adapt mechanisms of computer security to new environment.

Content
• Theoretical and practical aspects of computer security
• Development of safety goals and classification of threats
• Presentation and comparison of different formal access control models
• Formal description of authentication systems, presentation and comparison of different authentication methods (passwords, biometrics, challenge-response protocols)
• Analysis of typical vulnerabilities in programs and web applications and development of appropriate protective protection methods / avoidance strategies
• Introduction to key management and Public Key Infrastructure
• Presentation and comparison of current safety certifications
• Block ciphers, hash functions, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (e.g., Diffie-Hellman)
• Furthermore, an introduction to provable security is provided, which presents some of the key security concepts (e.g. IND-CCA).
• Presentation of combinations of cryptographic modules using currently used protocols such as Secure Shell (SSH) and Transport Layer Security (TLS).
Course: Private and Social Insurance

Course key: [25050]

Lecturers: Wolf-Rüdiger Heilmann, Besserer

Credit points (CP): 2.5 **Hours per week:** 2/0

Term: Wintersemester **Level:** 4

Teaching language: Deutsch

Part of the modules: Insurance Management I [IW4BWLFBV6] (S. 33), Insurance Management II [IW4BWLFBV7] (S. 34)

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation).
The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Getting to know basic terms and functioning of private and social insurance.

Content
Basic terms of insurance, i.e. characteristics, judicial and political background and functioning of private and social insurance as well as their economic and societal and political meaning.

Complementary literature

• Jahrbücher des GDV. Die deutsche Versicherungswirtschaft.

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science.
Course: Advanced Lab Applied Informatics

Course key: [25070p]

Lecturers: Andreas Oberweis, Hartmut Schmeck, Detlef Seese, Wolffried Stucky, Rudi Studer, Stefan Tai

Credit points (CP): 4
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4

Teaching language: Deutsch

Learning Control / Examinations

The assessment of this course are practical work, presentations and a written seminar thesis according to §4(2), 3 of the examination regulation. Practical work, presentations and a written thesis are weighted according to the course.

Prerequisites

None.

Conditions

None.

Learning Outcomes

Students are able to

- implement a prototype at the computer based on the given topic.
- write the thesis with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
- give presentations in a scientific context in front of an auditorium. These techniques are presented and learned during the course.
- present results of the research in written form generally found in scientific publications.

Content

The lab intensifies and extends specific topics which are discussed within corresponding lectures. Knowledge of these lecture topics is an advantage but not a precondition.

Media

Slides, access to internet resources

Basic literature

Literature will be given individually.

Remarks

The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre
Course: Seminar in Applied Informatics

Lecturers: Andreas Oberweis, Hartmut Schmeck, Detlef Seese, Wolffried Stucky, Rudi Studer, Stefan Tai

Credit points (CP): 3 Hours per week: 2

Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Semantic Technologies [IW4INAIFB6] (S. 94)

Learning Control / Examinations
The assessment is done according to §4(2), 3 of the examination regulation in form of an evaluation of the seminar presentation and a written seminar report. The weighting of the individual marks (presentation and report) is announced at the beginning of the seminar.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are able to

• do literature search based on a given topic: identify relevant literature, find, assess and evaluate this literature.
• write the seminar thesis (and later the Bachelor-/Masterthesis) with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
• give presentations in a scientific context in front of an auditorium. These techniques are presented and learn during the seminar.
• present results of the research in written form generally found in scientific publications.

Content
The seminar intensifies and extends specific topics which are discussed within corresponding lectures. The actual topics are changing each semester. Knowledge of these lecture topics is an advantage but not a precondition.

Media
Slides, Access to internet resources

Basic literature
Literature will be given individually.

Remarks
The title of this course is a generic one. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre
Course: Nonlinear Optimization I
Course key: [25111]

Lecturers: Oliver Stein
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical Programming [IW4OR6] (S. 56)

Learning Control / Examinations
The assessment consists of a written exam (60 minutes) according to Section 4(2), 1 of the examination regulation.
The exam takes place in the semester of the lecture and in the following semester.
The examination can also be combined with the examination of Nonlinear Optimization II [25113]. In this case, the duration of the written examination takes 120 minutes.
In a combined examination of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more than 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.
In a combined examination of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more than 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- knows and understands fundamentals of nonlinear optimization,
- is able to choose, design and apply modern techniques of nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. The lecture is structured as follows:
- Introduction, examples, and terminology
- Existence results for optimal points
- First and second order optimality conditions for unconstrained problems
- Optimality conditions for unconstrained convex problems
- Numerical methods for unconstrained problems (line search, steepest descent method, variable metric methods, Newton method, Quasi Newton methods, CG method, trust region method)

Constrained problems are the contents of part II of the lecture.
The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
- W. Alt, Nichtlineare Optimierung, Vieweg, 2002
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Nonlinear Optimization II

Lecturers: Oliver Stein

Credit points (CP): 4.5 Hours per week: 2/1

Term: Sommersemester Level: 4

Teaching language: Deutsch

Part of the modules: Mathematical Programming [IW4OR6] (S. 56)

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to §4(2), 1 of the examination regulation. The exam takes place in the semester of the lecture and in the following semester. The exam can also be combined with the examination of Nonlinear Optimization I [25111]. In this case, the duration of the written exam takes 120 minutes.
In a combined exam of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more then 50% of the exercise points, the grade of the passed exam is improved by a third of a grading step.
In a combined exam of Nonlinear Optimization I [25111] and Nonlinear Optimization II [25113], upon attaining more then 50% of the computer exercise points, the grade of the passed exam is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows and understands fundamentals of nonlinear optimization,
• is able to choose, design and apply modern techniques of nonlinear optimization in practice.

Content
The lecture treats the minimization of smooth nonlinear functions under nonlinear constraints. For such problems, which occur very often in economics, engineering, and natural sciences, we derive optimality conditions that form the basis for numerical solution methods. Part I of the lecture treats unconstrained optimization problems. Part II of the lecture is structured as follows:
• Topology and first order approximations of the feasible set
• Theorems of the alternative, first and second order optimality conditions for constrained problems
• Optimality conditions for constrained convex problems
• Numerical methods for constrained problems (penalty method, multiplier method, barrier method, interior point method, SQP method, quadratic optimization)

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
• W. Alt, Nichtlineare Optimierung, Vieweg, 2002
• M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming, Wiley, 1993

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Special Topics in Optimization II

Course key: [25126]

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical Programming [IW4OR6] (S. 56)

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. Examination are held in the semester of the lecture and in the following semester. Upon attaining more then 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student knows and understands fundamentals of a special topic in continuous optimization.

Content

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
Course: Special Topics in Optimization I

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical Programming [IW4OR6] (S. 56)

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. Examination are held in the semester of the lecture and in the following semester. Upon attaining more then 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student knows and understands fundamentals of a special topic in continuous optimization.

Content

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online (www.ior.kit.edu).
Course: Seminar in Continuous Optimization

Course key: [25131]

Lecturers: Oliver Stein

Credit points (CP): 3
Hours per week: 2

Term: Winter-/Sommersemester
Level: 4

Teaching language: Deutsch

Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

The assessment is composed of a 15-20 page paper as well as a 40-60 minute oral presentation according to §4(2), 3 of the examination regulation.

The total grade is composed of the equally weighted grades of the written and oral assessments.

The seminar is appropriate for bachelor as well as for master students. Their differentiation results from different assessment criteria for the seminar paper and the seminar presentation.

Prerequisites

See corresponding module information.

Conditions

Attendance is compulsory.

Preferably at least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes

The seminar aims at describing, evaluating, and discussing recent as well as classical topics in continuous optimization. The focus is on the treatment of optimization models and algorithms, also with respect to their practical application.

The student is introduced to the style of scientific work. By focused treatment of a scientific topic the student learns the basics of scientific investigation and reasoning.

For further development of a scientific work style, master students are particularly expected to critically question the seminar topics.

With regard to the oral presentations the students become acquainted with presentation techniques and basics of scientific reasoning. Also rhetoric abilities may be improved.

Content

The current seminar topics are announced under http://kop.ior.kit.edu at the end of the preceding semester.

Basic literature

References and relevant sources are announced at the beginning of the seminar.
Course: Global Optimization I

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical Programming [IW4OR6] (S. 56)

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. The examination can also be combined with the examination of Global Optimization II [25136]. In this case, the duration of the written examination takes 120 minutes.

In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more than 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step. In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more than 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
 • knows and understands the fundamentals of deterministic global optimization,
 • is able to choose, design and apply modern techniques of deterministic global optimization in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.

Part I of the lecture treats methods for global optimization of convex functions under convex constraints. It is structured as follows:
 • Introduction, examples, and terminology
 • Existence results
 • Optimality in convex optimization
 • Duality, bounds, and constraint qualifications
 • Numerical methods

Nonconvex optimization problems are treated in part II of the lecture.
The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
 • W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
 • C.A. Floudas Deterministic Global Optimization Kluwer 2000
 • R. Horst, H. Tuy Global Optimization Springer 1996
 • A. Neumaier Interval Methods for Systems of Equations Cambridge University Press 1990

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Global Optimization II

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical Programming [IW4OR6] (S. 56)

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. The examination is held in the semester of the lecture and in the following semester. The examination can also be combined with the examination of Global Optimization I [25134]. In this case, the duration of the written examination takes 120 minutes.
In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more than 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step.
In a combined examination of Global Optimization I [25134] and Global Optimization II [25136], upon attaining more than 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows and understands the fundamentals of deterministic global optimization,
• is able to choose, design and apply modern techniques of deterministic global optimization in practice.

Content
In many optimization problems from economics, engineering and natural sciences, numerical solution methods are only able to efficiently identify local optimizers, while it is much harder to find globally optimal points. This corresponds to the fact that by local search it is easy to find the summit of the closest mountain, but that the search for the summit of Mount Everest is rather elaborate.
The global solution of convex optimization problems is subject of part I of the lecture.
Part II of the lecture treats methods for global optimization of nonconvex functions under nonconvex constraints. It is structured as follows:
• Introduction and examples
• Convex relaxation
• Interval arithmetic
• Convex relaxation via αBB method
• Branch and bound methods
• Lipschitz optimization

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature
• W. Alt Numerische Verfahren der konvexen, nichtglatten Optimierung Teubner 2004
• C.A. Floudas Deterministic Global Optimization Kluwer 2000
• R. Horst, H. Tuy Global Optimization Springer 1996
• A. Neumaier Interval Methods for Systems of Equations Cambridge University Press 1990

Remarks
Part I and II of the lecture are held consecutively in the same semester.
Course: Mixed Integer Programming I
Course key: [25138]

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical Programming [IW4OR6] (S. 56)

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. Examinations are held in the semester of the lecture and in the following semester. Upon attaining more than 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step. Upon attaining more than 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step. The examination can also be combined with the examination of Mixed Integer Programming II [25140]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• knows and understands the fundamentals of linear mixed integer programming,
• is able to choose, design and apply modern techniques of linear mixed integer programming in practice.

Content
Many optimization problems from economics, engineering and natural sciences are modeled with continuous as well as discrete variables. Examples are the energy minimal design of a chemical process in which several reactors may be switched on or off, or the time minimal covering of a distance with a vehicle equipped with a gear shift. While optimal points can be defined straightforwardly, for their numerical identification an interplay of ideas from discrete and continuous optimization is necessary. The lecture treats methods for the numerical solution of optimization problems which depend linearly on continuous as well as discrete variables. It is structured as follows:
• Existence results
• Concepts of linear optimization
• Mixed-integer linear programming (Gomory cuts, Benders decomposition)

Part II of the lecture treats nonlinear mixed integer programs. The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online (kop.ior.kit.edu).
Course: Mixed Integer Programming II
Course key: [25140]

Lecturers: Oliver Stein
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical Programming [IW4OR6] (S. 56)

Learning Control / Examinations
The assessment of the lecture is a written examination (60 minutes) according to §4(2), 1 of the examination regulation. Examination are held in the semester of the lecture and in the following semester. Upon attaining more then 50% of the exercise points, the grade of the passed examination is improved by a third of a grading step. Upon attaining more than 50% of the computer exercise points, the grade of the passed examination is improved by a third of a grading step. The examination can also be combined with the examination of Mixed Integer Programming I [25138]. In this case, the duration of the written examination takes 120 minutes.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- knows and understands the fundamentals of convex and of nonconvex mixed integer programming,
- is able to choose, design and apply modern techniques of nonlinear mixed integer programming in practice.

Content
Many optimization problems from economics, engineering and natural sciences are modeled with continuous as well as discrete variables. Examples are the energy minimal design of a chemical process in which several reactors may be switched on or off, or the time minimal covering of a distance with a vehicle equipped with a gear shift. While optimal points can be defined straightforwardly, for their numerical identification an interplay of ideas from discrete and continuous optimization is necessary. Part I of the lecture deals with linear mixed integer programs. Part II treats methods for the numerical solution of optimization problems which depend nonlinearly on continuous as well as discrete variables. It is structured as follows:
- Concepts of convex optimization
- Mixed integer convex programming (branch and bound methods)
- Mixed integer nonconvex programming
- Generalized Benders decomposition
- Outer approximation methods
- Heuristics

The lecture is accompanied by computer exercises in which you can learn the programming language MATLAB and implement and test some of the methods for practically relevant examples.

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next three years is available online (kop.ior.kit.edu).
Course: Modern Market Research

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
See module description.

Prerequisites
Basic knowledge of statistics.

Conditions
None.

Learning Outcomes

Content

Basic literature
Further literature references are announced in the script.
Course: Marketing and Operations Research
Course key: [25156]

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
Basics of Operations Research are required.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced in the lecture. Further literature references are announced in the script.
Course: Corporate Planning and Operations Research

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
See module description.

Prerequisites
Basics of operations research are assumed.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced in the lecture. Further literature references are announced in the script.
Course: e-Business & electronic Marketing

Lecturers: Wolfgang Gaul
Credit points (CP): 2.5 Hours per week: 1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Information Technology and Business Information
Course key: [25162]

Lecturers: Bruno Neibecker
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Strategy, Innovation and Data Analysis [IW4BWLMAR3] (S. 39), Behavioral Approaches in Marketing and Data Analysis [IW4BWLMAR4] (S. 40), Successful Market Orientation [IW4BWLMAR5] (S. 41)

Learning Control / Examinations
Examination performance will consist of a written exam according to the description of the module (written exam following §4(2), 1 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes
(see description of the course)

Content
The goal of the course is to create a text that is comprehensive, practical, applied, and managerial and that presents a balanced coverage of both, quantitative and qualitative approaches. It takes the perspective of users of marketing research and sets out to reflect the current trends in the use of computers (e.g. statistical packages and online research). The course covers as main topics an introduction to interactive multimedia systems, techniques of internet marketing research, methods of primary data collection including questionnaires and scaling of psychological attributes, methods of observation, program analyzer, psychobiological methods, content analysis and cognitive response approach, experimental designs and panels, secondary data collection, management support systems, a case study in marketing decision support and an overview of philosophy of science.

Basic literature
(Literature is in English and German, see German description)
Course: International Marketing

Lecturers: Wolfgang Gaul

Credit points (CP): 2.5 Hours per week: 1

Term: Sommersemester Level: 4

Teaching language: Deutsch

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
For lecture preparation and follow-up there is a recommended script, original literature and selected current study results.

Course: Marketing and Innovation

Lecturers: Wolfgang Gaul
Credit points (CP): 2.5 Hours per week: 1/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Strategic and Innovative Decision Making in Marketing

Lecturers: Bruno Neibecker
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Strategy, Innovation and Data Analysis [IW4BWLMAR3] (S. 39), Successful Market Orientation [IW4BWLMAR5] (S. 41)

Learning Control / Examinations
Examination performance will consist of a written exam accorcing to the description of the module (written exam following §4(2), 1 of the examination regulation).

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
(see description of the course)

Content
The course places emphasis on the role of marketing in strategic planning. The planning and implementation stages are discussed using a case study in business portfolio analysis, talking about experience effects, approaches in defining strategic business units. A critical view on established paradigms versus weak signals from management practice is given. Further topics are innovation and diffusion models, behavioral approaches to innovative decision processes and a discussion on Porter's single diamond theory and globalization.

Basic literature
(Literature is in English and German, see German description)
Course: Behavioral Approaches in Marketing

Lecturers: Bruno Neibecker
Credit points (CP): 4.5 **Hours per week:** 2/1
Term: Wintersemester **Level:** 4
Teaching language: Deutsch
Part of the modules: Behavioral Approaches in Marketing and Data Analysis [IW4BWLMA4] (S. 40), Successful Market Orientation [IW4BWLMA5] (S. 41)

Learning Control / Examinations
Examination performance will consist of a written exam according to the description of the module (written exam following §4(2), 1 of the examination regulation).

Prerequisites
None.

Conditions
(see description of the module)

Learning Outcomes

Content
This course gives an introduction to consumer behavior and the influence of cognitive and emotional information processing on consumer decision making. The contribution of advertising response models is considered and faced with social and environmental aspects (e.g. cross-cultural influences) on consumer behavior, mass communication and internet advertising. In addition, a scientific case study on the effectiveness of TV-commercials is discussed. Central issues of the course:
- Case Studies in brand management and advertising response.
- Psychological factors (research design and test marketing / arousal / effectiveness of TV-commercials as case studies).
- Emotions in marketing.
- Information processing and retention in memory (schema theory / visual information processing).
- Complex advertising response models (attitude towards the ad / attitude towards the brand / persuasion / context effects in learning / decision making / Means-end-theory and strategic advertising).
- Social processes (culture / subculture / cross cultural influence / product design).
- Neuromarketing.

Basic literature
(Literature is in English and German, see German description)
Course: Entrepreneurship and Marketing

Lecturers: Wolfgang Gaul
Credit points (CP): 2.5 Hours per week: 1/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
See module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The Student should ...

Content
Course: Data Analysis and Operations Research

Lecturers: Wolfgang Gaul
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
See module description.

Prerequisites
Basics of data analysis and operations research are assumed.

Conditions
None.

Learning Outcomes

Content
Course: Master Seminar in Marketing

Lecturers: Wolfgang Gaul
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Master Seminar zu Marktforschung

Lecturers: Wolfgang Gaul
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Master Seminar in Quantitative Marketing and OR

Course key: [25194]

Lecturers: Wolfgang Gaul
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Master-Seminar Marketing Planning

Lecturers: Wolfgang Gaul
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced at the beginning of the semester.
Course: Master Seminar in Entrepreneurship, Innovation and International Marketing
Course key: [25196]

Lecturers: Gaul
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Content
Complementary literature
Wird zur Seminarvorbereitung bekannt gegeben.
Course: Seminar zum strategischen u. verhaltenswissenschaftlichen Marketing

Lecturers: Bruno Neibecker
Credit points (CP): 3
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
The student is evaluated based on the written work, a presentation of the results in front of an audience and his contribution to the discussion.

Prerequisites
Keine.

Conditions
Keine.

Learning Outcomes
At the seminar (with a “Referat” as its goal) the student should be able to do a literature review based on a predefined topic in the context of marketing research. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The student learns to present his results in a paper and in front of an audience on a academic level.

Content
In the seminar the student should learn to apply the research methods to a predefined topic area. The topics are based on research questions in marketing. This problem analysis requires an interdisciplinary examination. As a special option, the implementation of methodological solutions for market research can be accomplished and discussed with respect to its application.

Basic literature
Will be allocated according the individual topics.

Remarks
• Students from Bachelor and Master Course can visit the seminar. The research topic as well as the evaluation of the work and the presentation will have a different focus between Bachelor and Master Course.
Course: Management Accounting

Lecturers: Torsten Lüdecke
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations
The assessment consists of a written exam (60 min) taking place in the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
This course aims at providing students with the understanding of the purposes of alternative costing systems as well as the use of relevant information for decision making. The course will also examine techniques for the purpose of cost management and accounting for control.

Content
- Design of Cost Systems
- Cost Classifications, Cost Behavior, and Principles of Cost Allocation
- Activity-based Costing
- Product Costing
- Production Decisions
- Cost-based Pricing
- Cost Management
- Decisions under Risk
- Cost Accounting for Control

Complementary literature
Course: Valuation

Lecturers: Martin E. Ruckes
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: F1 (Finance) [IW4BWLFBV1] (S. 30), F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Students learn to assess and compare corporate investment projects from a financial point of view.

Content
Firms prosper when they create value for their shareholders and stakeholders. This is achieved by investing in projects that yield higher returns than their according cost of capital. Students are told the basic tools for firm and project valuation as well as ways to implement these tools in order to enhance a firm’s value and improve its investment decisions. Among other things, the course will deal with the valuation of firms and individual projects using discounted cash flow and relative valuation approaches and the valuation of flexibility deploying real options.

Complementary literature
Course: Corporate Financial Policy

Lecturers: Martin E. Ruckes
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are told profound knowledge about appropriate financing of firms.

Content
The course deals with the theory of corporate finance:
 • Financing contracts
 • Financing capacity
 • Issuance of securities
 • Capital structure
 • Payout policy
 • Liquidity management
 • Corporate acquisitions and restructurings

Complementary literature
Course: Financial Intermediation

Lecturers: Martin E. Ruckes

Credit points (CP): 4.5 Hours per week: 3

Term: Wintersemester Level: 3

Teaching language: Deutsch

Part of the modules: F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are introduced to the theoretical fundamentals of financial intermediation.

Content
- Arguments for the existence of financial intermediaries
- Bank loan analysis, relationship lending
- Competition in the banking sector
- Stability of the financial system
- The macroeconomic role of financial intermediation

Complementary literature
Course: Market Microstructure

Course key: [25240]

Lecturers: Torsten Lüdecke
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations

Prerequisites
Knowledge of the content of the course Asset Pricing [26555] is assumed.

Conditions
None.

Learning Outcomes
This lecture makes students familiar with the fundamental models of trading in financial markets. It starts with generic design features of financial markets which are used to frame price discovery as the key element of the trading process. The link between market design and market quality is pointed out by using alternative measures of market quality. Seminal models of market microstructure are used to show how dealer inventoy and/or asymmetric information affect market prices and the pricing of securities. Theoretical models are shown to provide predictions which are consistent with empirical evidence.

Content
The focus of this lecture is on the question how the microstructure of financial markets affects price discovery and market quality. First, issues in designing market structure are presented and linked to fundamental dimensions of market quality, i.e. liquidity and trading costs. In particular, the services and privileges of market makers are stressed. The main part of the lecture covers inventory-models of dealer markets and models of information-based trading. The final part gives attention to some econometric models to analyze the short-term behavior of security prices.

Media
Slides.

Basic literature
keine

Complementary literature
See reading list.
Course: Seminar in Finance

Lecturers: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
The student gets in touch with scientific work. Through profound working on a specific scientific topic the student is meant to learn the foundations of scientific research and reasoning in particular in finance.
Through the presentations in this seminar the student becomes familiar with the fundamental techniques for presentations and foundations of scientific reasoning. In addition, the student earns rhetorical skills.

Content
Within this seminar different topics of current concern are treated. These topics have their foundations in the contents of certain lectures.
The topics of the seminar are published on the website of the involved finance chairs at the end of the foregoing semester.

Basic literature
Will be announced at the end of the foregoing semester.
Course: Exchanges

Lecturers: Jörg Franke
Credit points (CP): 1.5 Hours per week: 1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students learn about current developments regarding organisation of exchanges and securities trading.

Content
• Organisation of exchanges: Changing Zeitgeist - Corporates instead of cooparative structures
• Market models: order driven vs. market maker - Liquidity provision for less frequently traded securities
• Trading systems: The end of an era? - No more need for running traders?
• Clearing: Diversity instead of uniformity - Safety for all?
• Settlement: Increasing importance - Does efficient settlement assure the “value added” of exchanges in the long run?

Complementary literature
Educational material will be offered within the lecture.
Course: Business Strategies of Banks

Lecturers: Wolfgang Müller
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: F2 (Finance) [IW4BWFBV2] (S. 31)

Learning Control / Examinations
Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are told the basics of commercial banking.

Content
The management of a bank is in charge of the determination and implementation of business policy - taking into account all relevant endogenous and exogenous factors - that assures the bank’s success in the long run. In this context, there exists a large body of banking models and theories which are helpful in describing the success and risk of a bank. This course is meant to be the bridging of banking theory and practical implementation. In the course of the lectures students will learn to take on the bank management’s perspective.
The first chapter deals with the development of the banking sector. Making use of appropriate assumptions, a banking policy is developed in the second chapter. The design of bank services (ch. 3) and the adequate marketing plan (ch. 4) are then built on this framework. The operational business of banks must be guided by appropriate risk and earnings management (ch. 5 and 6), which are part of the overall (global) bank management (ch. 7). Chapter eight, at last, deals with the requirements and demands of bank supervision as they have significant impact on a bank’s corporate policy.

Complementary literature
- A script is disseminated chapterwise within the lecture.
- Hartmann-Wendels, Thomas; Pfingsten, Andreas; Weber, Martin; 2000, Bankbetriebslehre, 2. Auflage, Springer
Course: Multivariate Methods

Lecturers: Wolf-Dieter Heller
Credit points (CP): 5 Hours per week: 2/2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Statistical Methods in Risk Management [IW4STAT2] (S. 59)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
- Dobson A.J.: An Introduction to Statistical Modelling, Chapman and Hall
Course: Stochastic Calculus and Finance

Lecturers: Svetlozar Rachev
Credit points (CP): 4,5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Mathematical and Empirical Finance [IW4STAT1] (S. 58)

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None

Learning Outcomes
After successful completion of the course students will be familiar with many common methods of pricing and portfolio models in finance. Emphasis will be put on both finance and the theory behind it.

Content
The course will provide rigorous yet focused training in stochastic calculus and finance. The program will cover modern approaches in stochastic calculus and mathematical finance. Topics to be covered:

Media
transparencies, exercises.

Basic literature
To be announced in lecture.

Complementary literature
- An Introduction to Stochastic Integration (Probability and its Applications) by Kai L. Chung, Ruth J. Williams, Birkhaueser
- Methods of Mathematical Finance by Ioannis Karatzas, Steven E. Shreve, Springer 1998
Course: Stochastic and Econometric Models in Credit Risk Management [25337]

Lecturers: Svetlozar Rachev
Credit points (CP): 5 Hours per week: 2/2
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Statistical Methods in Risk Management [IW4STAT2] (S. 59)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
The deregulation of European markets and the advent of monetary union has resulted in greater liquidity and more competition, creating a truly homogeneous European credit market. Second, given the low level of nominal interest rates, investors are willing to take on more credit risk to boost returns. Third, the regulatory authorities are set to accept the use of internal models for risk management. This will enable banks to better identify and measure credit risk and therefore manage it more effectively.

The course is intended as a mathematically rigorous introduction to the stochastic and econometric models used in credit risk modeling. We will start with a review on term-structure models, and then continue with pricing credit risk and credit risk derivatives using

- firm’s value models,
- intensity models,
- pricing credit derivatives.

Basic literature
David Lando, Credit Risk Modeling: Theory and Applications, Princeton Series in Finance, 2004
Course: Operational Risk and Extreme Value Theory

Lecturers: Svetlozar Rachev
Credit points (CP): 5 Hours per week: 2/2
Term: Winter-/Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Statistical Methods in Risk Management [IW4STAT2] (S. 59)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Operational risk is defined as a consequence of critical contingencies most of which are quantitative in nature and many important questions regarding economic capital allocation for operational risk remain open. The existing quantitative models for operational risk (as well as for market and credit risk) make various assumptions about “normality” and practically exclude extreme and rare events. In this course we formalize the theory of operational risk and apply the extreme value theory for the purpose of calculating the economic capital requirement against unexpected operational losses.

Basic literature
Marcelo G. Cruz: Modelling, Measuring and Hedging Operational Risk, Wiley, NY, 2001
Course: Finance and Banking

Lecturers: Karl-Heinz Vollmer
Credit points (CP): 5 Hours per week: 2/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical and Empirical Finance [IW4STAT1] (S. 58)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature

- Andrew Harvey: The Econometric Analysis of Time Series, 2nd Ed. 1993
- Andrew C. Harvey: Time Series Models, 2nd Ed.
- Granger/Newbold: Forecasting Economic Time Series 2nd Ed.
- Elton/Gruber: Modern Portfolio Theory and Investment Analysis, 1995
- Byrne, Peter, Decision-Making in Property Development, 2nd Ed. 1996
Course: Statistical Methods in Financial Risk Management

Lecturers: Svetlozar Rachev
Credit points (CP): 4,5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Introduction of statistical methods, topics commonly covered by courses on advanced statistics and econometrics supplemented by the latest scientific results in this area

Content
Part 2: Optimal portfolio management: portfolio construction, long/short investing, transaction costs and turnover, performance analysis, asset allocation, benchmark timing. Integrating the equity portfolio management process, active versus passive portfolio management, tracking error (backward-looking versus forward looking tracking error, the impact of portfolio size, benchmark volatility and portfolio betas on tracking error), equity style management (types of equity styles, style classification system), passive strategies(constructing an index portfolio, index tracking and cointegration), active investing (top-down and bottom-up approaches to active investing, fundamental law of active management, strategies based on technical analysis, technical analysis and statistical pattern recognition, market-neutral strategies and statistical arbitrage), Application of Multifactor Risk Models(Risk Decomposition, Portfolio construction and Risk Control, Assessing the exposure of a portfolio, Risk control against a stock-market index, Tilting a portfolio).

Media
transparencies, exercises.

Basic literature
• Fat-Tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio selection, and Option Pricing, Rachev, S., Menn C. and Fabozzi F. , John Wiley, Finance, 2005

Remarks
URL: http://www.statistik.uni-karlsruhe.de/

Lecturers: Karl-Heinz Vollmer

Credit points (CP): 5 Hours per week: 2/2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical and Empirical Finance [IW4STAT1] (S. 58)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature

• Bierwag: Duration-Analysis: Managing Interest Rat Risk, 1987
• Andrew Harvey: The Econometric Analysis of Time Series, 2nd. Ed. 1993
• Andrew Harvey: Time Series Models, 2nd. Ed. 1994
• Granger/Newbold: Forecasting Economic Time Series; 2nd. Ed. 1986
• Pindyck, Rubinfeld: Econometric Models and Economic Forecasts, 1998
• B. Rolfes: Gesamtbanksteuerung, 1999
Course: Portfolio and Asset Liability Management

Lecturers: Svetlozar Rachev
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Englisch

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Introduction and deepening of various portfolio management techniques in the financial industry.

Content
Portfolio theory: principles of investment, Markowitz-portfolio analysis, Modigliani-Miller theorems and absence of arbitrage, efficient markets, capital asset pricing model (CAPM), multi factorial CAPM, arbitragepricing theory (APT), arbitrage and hedging, multi factorial models, equity-portfolio management, passive strategies, active investment
Asset liability: statistical portfolio analysis in stock allocation, measures of success, dynamic multi seasonal models, models in building scenarios, stochastic programming in bond and liability management, optimal investment strategies, integrated asset liability management

Media
transparencies, exercises.

Basic literature
To be announced in lecture.

Complementary literature
To be announced in lecture.
Course: Financial Time Series and Econometrics

Lecturers: Svetlozar Rachev
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Mathematical and Empirical Finance [IW4STAT1] (S. 58), Risk Management and Econometrics in Finance [IW4STAT3] (S. 60)

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
After successful completion of the course students will have the knowledge and qualification to comprehend the essential models -incl. state of the arts science- in financial econometrics, as well as risk measurement and management.

Content
Financial econometrics is the econometrics of financial markets. It is a quest for models that describe financial time series such as prices, returns, interest rates, financial ratios, defaults, and so on. The economic equivalent of the laws of physics, econometrics represents the quantitative, mathematical laws of economics.

After giving definitions of financial markets’ instruments and processes, and a quick overview of basic statistical notions, the present course provides students with valuable tools in regression analysis, modelling univariate time series, ARIMA and ARCH modelling. The stress is always put on the application to financial markets. All illustrations and exercises are based on real market data and situations.

Media
transparencies lecture, exercises

Basic literature
Course: Game Theory II

Lecturers: Siegfried Berninghaus
Credit points (CP): 4.5
Hours per week: 2/2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Applied Strategic Decisions [IW4VWL2] (S. 49)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation. The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
See corresponding module information.
Basic knowledge of mathematics and statistics is assumed.

Conditions
None.

Learning Outcomes
This course teaches advanced knowledge in strategic decision theory. Latest developments in game theory are discussed. The student learns to judge complex strategic problems and to offer adequate solutions.

Content
This lecture aims at amplifying the students’ knowledge in game theory. Main topics are further concepts of non-cooperative game theory, cooperative game theory, evolutionary game theory and bargaining theory.

Media
Folien, Übungsblätter.

Basic literature

Complementary literature
Course: Experimental Economics

Lecturers: Siegfried Berninghaus, Kroll
Credit points (CP): 4.5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an 80 min written exam. The lecturer may offer the opportunity to reach up to 10 points by writing a seminar thesis and a presentation to an individually announced topic.

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
The students should learn
- how to gain scientific experience and knowledge (philosophy of science),
- how Game Theory and Experimental Economics influenced each other in scientific research,
- about the methods as well as the strengths and weaknesses of Experimental Economics,
- some examples of experimental research, such as markets and market equilibria, coordination games, bargaining, decision making under risk,
- how to evaluate data.

Content
Experimental Economics have become a separate field in Economics. Nearly all fields of the economic discipline use economic experiments to verify theoretical results. Besides being used for empirical validation, this method is applied in political and strategic consulting. The lecture gives an introduction to experimental methods in economics and shows differences to experiments in natural sciences. Scientific studies are used to show exemplary applications.

Media
Classroom experiments or experiments in the computer laboratory will be conducted. To some extent, slides are made available online.

Complementary literature
- Strategische Spiele; S. Berninghaus, K.-M. Ehrhart, W. Güth; Springer Verlag, 2nd ed., 2006.
- Experimental Methods: A Primer for Economists; D. Friedman, S. Sunder; Cambridge University Press, 1994.
Course: Data Mining

Lecturers: Gholamreza Nakhaeizadeh

Credit points (CP): 5 Hours per week: 2

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: Statistical Methods in Risk Management [IW4STAT2] (S. 59)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Part one: Data Mining
Why Data Mining?

• What is Data Mining?
• History of Data Mining
• Conferences and Journals on Data Mining
• Potential Applications

Data Mining Process:
• Business Understanding
• Data Understanding
• Data Preparation
• Modeling
• Evaluation
• Deployment
• Interdisciplinary aspects of Data Mining
• Data Mining tasks
• Data Mining Algorithms (Decision Trees, Association Rules,
 Regression, Clustering, Neural Networks)
• Fuzzy Mining
• OLAP and Data Warehouse
• Data Mining Tools
• Trends in Data Mining

Part two: Examples of application of Data Mining

• Success parameters of Data Mining Projects
• Application in industry
• Application in Commerce

Basic literature

• Jiawei Han, Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann, ISBN 1558609016, 2006.

• David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Mining , MIT Press, Fall 2000

Course: Advanced Econometrics of Financial Markets

Lecturers: Svetlozar Rachev
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Mathematical and Empirical Finance [IW4STAT1] (S. 58), Risk Management and Econometrics in Finance [IW4STAT3] (S. 60)

Learning Control / Examinations
The assessment of this course consists of a written examination (following §4(2), 1 SPO) and of possible additional assignments during the course (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
After successful completion of the course students will have attained both knowledge and competency to comprehend the theories behind portfolio management of major financial institutions. Hence students can adapt this understanding to the more specialised needs of the intermediary.

Content

Media
transparencies, exercises.

Basic literature
Course: Auction Theory

Lecturers: Karl-Martin Ehrhart, Stefan Seifert
Credit points (CP): 4.5
Hours per week: 2/2
Term: Wintersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Written exam of 80 mins (§4(2), 1 SPO). Exam is offered each semester.

Prerequisites
We suggest to attend either Game Theory I or Economics of Uncertainty beforehand.

Conditions
None.

Learning Outcomes
The student
- understands problems of auction design and empirical methods,
- designs and analyzes auction design,
- evaluates empirically demo-experiments.

Content
Auction theory is based on game theory. Practical aspects and experiences are also discussed. Main topics are: Single- and multi-unit auctions, procurement auctions, license auctions, electronic auctions (e.g. eBay, C2C, B2B), multi-attributive auctions.

Complementary literature
Milgrom, P.: Putting Auction Theory to Work, Cambridge University Press, 2004
Ausubel, L.M. und P. Cramton: Demand Reduction and Inefficiency in Multi-Unit Auctions, University of Maryland, 1999
Course: Facility Location and Strategic Supply Chain Management
Course key: [25486]

Lecturers: Stefan Nickel
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4 (2), 1 of the examination regulation.
The exam takes place in every semester.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WW1OR] is assumed.

Conditions
None.

Learning Outcomes
The lecture covers basic quantitative methods in location planning in the context of strategic Supply Chain Planning. Besides the discussion of several criteria for the evaluation of the locations of facilities, the students are acquainted with classical location planning models (planar models, network models and discrete models) and advanced location planning models designed for Supply Chain Management (single-period and multi-period models). The exercises accompanying the lecture offer the possibility to apply the considered models to practical problems.

Content
Since the classical work “Theory of the Location of Industries” of Weber from 1909, the determination of an optimal location of a new facility with respect to existing customers is strongly connected to strategical logistics planning. Strategic decisions concerning the location of facilities as production plants, distribution centers or warehouses are of high importance for the rentability of supply chains. Thoroughly carried out, location planning allows an efficient flow of materials and leads to lower costs and increased customer service.
Subject of the course is an introduction to the most important terms and definitions in location planning as well as the presentation of basic quantitative location planning models. Furthermore, specialized location planning models for Supply Chain Management will be addressed as they are part in many commercial SCM tools for strategic planning tasks.

Complementary literature
- Domschke, DrexI: Logistik: Standorte, 4. Auflage, Oldenbourg, 1996
- Love, Morris, Wesolowsky: Facilities Location: Models and Methods, North Holland, 1988

Remarks
The lecture is offered in every summer term.
The planned lectures and courses for the next three years are announced online.
Course: Tactical and Operational Supply Chain Management
Course key: [25488]

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (120 minutes) according to Section 4(2), 1 of the examination regulation. The exam takes place in every the semester.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
None.

Learning Outcomes
The main goal of the lecture is the presentation of fundamental techniques from procurement and distribution logistics. A further aspect is set on methods from inventory management and lot sizing. Students acquire the ability to efficiently utilize quantitative models from transportation planning (long-distance and distribution planning), inventory management and lot sizing in production. The introduced methods will be discussed in more detail and illustrated with case-studies in the accompanying exercises.

Content
The planning of material transport is an essential element of Supply Chain Management. By linking transport connections across different facilities, the material source (production plant) is connected with the material sink (customer). The general supply task can be formulated as follows (cf. Gudehus): For given material flows or shipments, choose the optimal (in terms of minimal costs) distribution and transportation chain from the set of possible logistics chains, which asserts the compliance of delivery times and further constraints. The main goal of the inventory management is the optimal determination of order quantities in terms of minimization of fixed and variable costs subject to resource constraints, supply availability and service level requirements. Similarly, the problem of lot sizing in production considers the determination of the optimal amount of products to be produced in a time slot.

The course includes an introduction to basic terms and definitions of Supply Chain Management and a presentation of fundamental quantitative planning models for distribution, vehicle routing, inventory management and lot sizing. Furthermore, case studies from practice will be discussed in detail.

Complementary literature
- Domschke: Logistik: Transporte, 5. Auflage, Oldenbourg, 2005
- Ghiani, Laporte, Musmanno: Introduction to Logistics Systems Planning and Control, Wiley, 2004
- Gudehus: Logistik, 3. Auflage, Springer, 2005

Remarks
The lecture is offered in every winter term. The planned lectures and courses for the next three years are announced online.
Course: Seminar in Discrete Optimization
Course key: [25491]

Lecturers: Stefan Nickel
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
The assessment consists of a written seminar thesis of 20-25 pages and a presentation of 40-60 minutes (according to §4(2), 3 of the examination regulation).
The final mark for the seminar is the weighted average of the marks for the assessed assignments (seminar thesis 50 %, presentation 50%).
The seminar can be attended both by Bachelor and Master students. A differentiation will be achieved by different valuation standards for the seminar thesis and presentation.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [W1OR] is assumed.

Conditions
Attendance is compulsory.
If possible, at least one module of the institute should be taken before attending the seminar.

Learning Outcomes
The seminar aims at the presentation, critical evaluation and exemplary discussion of recent questions in discrete optimization.
The focus lies on optimization models and algorithms, also with regard to their applicability in practical cases (especially in Supply Chain and Health Care Management).
The students get in touch with scientific working: The in-depth work with a special scientific topic makes the students familiar with scientific literature research and argumentation methods. As a further aspect of scientific work, especially for Master students the emphasis is put on a critical discussion of the seminar topic.
Regarding the seminar presentations, the students will be familiarized with basic presentational and rhetoric skills.

Content
The topic of the seminar will be announced at the end of the preceding term on the internet.

Basic literature
Literature and relevant sources will be announced at the beginning of the seminar.

Remarks
The seminar is offered in each term.
Course: Enterprise Hospital

Lecturers: Stefan Nickel, Hansis
Credit points (CP): 2 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is an oral examination (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the lecture and the following lecture.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students gain insight into fundamental work flows in hospitals. They learn that the application of Operations Research methods can also be useful in so-called non-profit-organisations. In addition, the most important application areas for mathematical models, e.g. personnel planning or quality management, will be discussed.

Content
The lecture „Enterprise hospital“ presents internal organization structures, work conditions and work environments at the example of hospitals and relates this to common and expected conditions of other service industries.
Covered topics include normative environment, intra-organizational structure, personnel management, quality, external networking and market appearance. Students have the possibility to participate in a final exam.

Remarks
The lecture is held in every semester.
The planned lectures and courses for the next three years are announced online.
Course: Production Planning and Scheduling
Course key: [25494]

Lecturers: Jörg Kalcsics
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (120 min) according to Section 4 (2), 1 of the examination regulation. The exam takes place at the beginning of the no lecture phase. Repetition exams are offered after the successive semester.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Nach dem Studium dieser Veranstaltung sollten die Studierenden
• die Bedeutung der Produktionsplanung und -steuerung (PPS) für ein Unternehmen einschätzen können,
• die Zielsetzungen und Aufgabenstellungen der PPS im Unternehmen kennen,
• einen Überblick über die grundlegenden PPS-Funktionen haben sowie
• die Methoden zur Analyse der Auftragsabwicklung kennen.

Das Hauptaugenmerk der Veranstaltung liegt auf quantitativen Planungsverfahren zur Losgrößenplanung, sowie der Reihenfolge- und Ablaufplanung.

Content

• Produktionsprogrammplanung
Ziel der Produktionsprogrammplanung ist die Festlegung von Art, Menge und zeitlichem Rahmen der in den nächsten Perioden zu produzierenden Erzeugnisse. Je nach Fristigkeit der Planung werden Entscheidungen über grundsätzlich zu fertigende Produktarten und abzudeckende Marktsegmente unter Beachtung der Unternehmensziele und Ressourcenverfügbarkeiten getroffen, oder aber die in einem vorgegebenen Zeitraum tatsächlich herzustellenden Endprodukte und absatzfähigen Zwischenprodukte.

• Bereitstellungs- und Bedarfsplanung
Gegenstand der Bereitstellungs- und Bedarfsplanung ist die Bestimmung von Art, Menge und Bereitstellungstermin der Verbrauchsfaktoren, die für die Erzeugung des zuvor geplanten Produktionsprogramms benötigt werden. Da in der Produktionsprogrammplanung überwiegend Endprodukte betrachtet wurden (Primärbedarfe), muss nun insbesondere eine Planung für die untergeordneten Erzeugnisse, d.h. Zwischen- und Vorprodukte, unter Einbeziehung der Arbeitspläne und Stücklisten folgen (Sekundärbedarfe). Oftmals fällt hierunter auch die Aufgabe der Zusammenfassung von Fertigungsaufträgen zu Losen und die Beschaffungsplanung.

• Produktionsprozeßplanung

Complementary literature

Remarks
The lecture is held irregularly.
The planned lectures and courses for the next three years are announced online.
Course: Operations Research in Health Care Management

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is a 120 minutes written examination (according to §4(2), 1 of the examination regulation). The examination is held in the term of the lecture and the following lecture.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
None.

Learning Outcomes
The target of this lecture is to show possible applications of well-known methods of Operations Research applied to health services. The students gain the ability to use quantitative models for the operations planning and logistics in a hospital environment, e.g. appointment, transportation, operating room planning or nurse rostering as well as inventory management and layout planning. Furthermore the advantages and benefits of simulation models and OR methods to plan home health care services are discussed.

Content
In the last years reforms of the German health system, e.g. the introduction of the G-DRG-system, have put an increasing cost pressure on hospitals. Therefore their target is to improve quality, transparency, and efficiency of hospital services, e.g. by reducing the length of stay of patients. To achieve this, processes have to be analyzed in order to optimize them if necessary. When looking at the targets of optimization not only efficiency but also quality of care and patient satisfaction (e.g. waiting times) have to be taken into account.

Besides hospitals also home health care services and their planning are discussed in this lecture. Because of the demographic development this is an emerging field in the health care sector. Here, e.g. nurse rosters have to be built which give details about which nurse visits which patient at what time. While doing so different targets have to be regarded, e.g. the continuity of nurse-patient relationship or the minimization of the distances the nurses have to travel.

Complementary literature
- Fleßa: Grundzüge der Krankenhausbetriebslehre, Oldenbourg, 2007
- Fleßa: Grundzüge der Krankenhaussteuerung, Oldenbourg, 2008

Remarks
The lecture is held in the summer term 2010.
The planned lectures and courses for the next three years are announced online.
Course: Software Laboratory: OR Models II

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
Successful completion of the course Software Laboratory: OR-Models I [25490]. Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
None.

Learning Outcomes
The course is based on the first part of the software laboratory. The students advance to detailed modelling knowledge and use the software for the implementation of more complex solution methods. An important aspect lies on the practical application possibilities of OR software in combinatorial and nonlinear optimization problems.

Content
The task of solving combinatorial and nonlinear optimization problems imposes much higher requirements on suggested solution approaches as in linear programming. During the course of this software laboratory, students get to know important methods from combinatorial optimization, e.g. Branch
 & Cut- or Column Generation methods and are enabled to solve problems with the software system Xpress-MP IVE with its modeling language Mosel. In addition, issues of nonlinear optimization, e.g. quadratic optimization, are addressed. As an important part of the software laboratory, students get the possibility to model combinatorial and nonlinear problems and implement solution approaches in the software system. The software laboratory also introduces some of the most frequently used modelling and programming languages that are used in practice to solve optimization problems.

Remarks
The course is offered in every summer term. The planned lectures and courses for the next three years are announced online.
Course: Practical seminar: Health Care Management (with Case Studies) [25498]

Lecturers: Stefan Nickel
Credit points (CP): 7 Hours per week: 2/1/2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists in a case study and the writing of a corresponding paper (according to §4(2), 1 of the examination regulation).

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
None.

Learning Outcomes
The practical seminar will take place in a hospital in Karlsruhe such that the students are confronted with real problems. The target of this seminar is to develop solutions for these problems using well-known methods of Operations Research. Consequently the students’ ability to analyze processes and structures, to collect relevant data as well as to develop and solve models will be promoted.

Content
Processes in a hospital are often grown historically (“We have always done it this way”), so that there has not been the need to analyze processes until reforms of the health system have put increasing pressure on hospitals. Consequently, nowadays hospitals look for possibilities to improve their processes. The students are confronted with case studies and are asked to develop a solution. Therefore they have to collect and analyze relevant data, processes and structures. When developing the solution the students have to bear in mind that besides the economic efficiency also the quality of care and patient satisfaction (e.g. measured in waiting time) may not be neglected in the health care sector.

Complementary literature
- Fleßa: Grundzüge der Krankenhausbetriebslehre, Oldenbourg, 2007
- Fleßa: Grundzüge der Krankenhaussteuerung, Oldenbourg, 2008

Remarks
The lecture is offered irregularly.
The curriculum of the next three years is available online.
Course: Welfare Economics

Lecturers: Clemens Puppe
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam at the end of the semester (according to Section 4 (2), 1 or 2 of the examination regulation.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
The courses Economics I: Microeconomics [25012] and Economics II: Macroeconomics [25014] have to be completed beforehand.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Game Theory I

Lecturers: Siegfried Berninghaus
Credit points (CP): 4.5 Hours per week: 2/2
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (80 minutes) according to Section 4(2),1 of the examination regulation. The exam takes place in the recess period and can be resited at every ordinary examination date.

Prerequisites
Basic knowledge of mathematics and statistics is assumed. See corresponding module information.

Conditions
None.

Learning Outcomes
This course conveys established knowledge in theory of strategic decision making. The students shall be able to analyze strategic problems systematically and to give advice for behavior in concrete economic situations.

Content
Main topic is non-cooperative game theory. Models, solution concepts and applications are discussed for simultaneous as well as sequential games. Different equilibrium concepts are introduced and a short introduction to cooperative game theory is given.

Media
Folien, Übungsblätter.

Basic literature
Gibbons, A primer in Game Theory, Harvester-Wheatsheaf, 1992

Complementary literature
- Binmore, Fun and Games, DC Heath, Lexington, MA, 1991
Course: Advanced Topics in Economic Theory

Lecturers: Clemens Puppe, Marten Hillebrand, Kay Mitusch
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Allocation and Equilibrium [IW4VWL7] (S. 50)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
The focus of the course is the modern economic theory of (general) equilibrium. The course is divided into three parts. The first part introduces the microeconomic foundations of general equilibrium à la Debreu ("The Theory of Value", 1959) and Hildenbrand/Kirman ("Equilibrium Analysis", 1988). The second part considers dynamic (stochastic) equilibrium models with a particular focus on the overlapping generations model which lie at the heart of modern macroeconomics. The third part deals with asymmetric information and introduces the basic models based on Akerlof’s “Market for Lemons.”

The course is largely based on the textbook “Microeconomic Theory” (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green

Basic literature
The course is based on the excellent textbook “Microeconomic Theory” (Chapters 1-5, 10, 13-20) by A.Mas-Colell, M.D.Whinston, and J.R.Green

Remarks
The lecture will be offered in the summer term 2010 for the first time.
Up to now, the lecture was named Advanced Microeconomic Theory.
Course: Decision Theory and Objectives in Applied Politics

Lecturers: Tangian
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Social Choice Theory [IW4VWL9] (S. 52)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.
Learning Outcomes
Content
A decision model usually consists of a utility function which represents the decision maker's preference to be maximized, and constraints which represent financial, juridical and other restrictions. In policy making, the bottle neck is the definition of the utility function which can be viewed as an aggregated indicator for policy monitoring and evaluation. The lecture course deals with theoretical methods for (i) constructing quadratic and additive utility functions, (ii) eliciting the required data from policy makers, (iii) constructing aggregated indicators with their applications to labour market policies (flexicurity, decent work, aiding regions), and (iv) finding equilibrium prices.
Course: Mathematical Theory of Democracy

Lecturers: Tangian
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Social Choice Theory [IW4VWL9] (S. 52)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
The mathematical theory of democracy deals with the quantitative evaluation of the representative capacity of single decision makers and representative bodies like president, parliament, or council of ministers. The model is used to analyse the Athenian democracy with its selection of representatives by lottery, to estimate the popularity of parties and coalitions in Germany, and to revise Arrow's paradox about the inevitability of a dictator. Moreover, the idea of representativeness is applied to non-societal OR-domains like MCDM, DAX predictions, or traffic control, based on the observation that certain objects can represent properties/behavior of other objects.
Course: Theory of Economic Growth

Lecturers: Marten Hillebrand
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Macroeconomic Theory [IW4VWL8] (S. 51)

Learning Control / Examinations
According to the attendance the assessment consists of a written or an oral exam at the beginning of the recess period (according to Section 4 (2), 1 or 2 of the examination regulation.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Basic knowledge in micro- and macroeconomics, as conveyed in the courses Economics I: Microeconomics [25012] and Economics II: Macroeconomics [25014], is assumed.
According the focus of the course quantitativ-mathematical modelling should be in participant's interest.

Conditions
None.

Learning Outcomes

Content
Course: Theory of Business Cycles

Course key: [25549]

Lecturers: Marten Hillebrand
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 3
Teaching language: Englisch
Part of the modules: Allocation and Equilibrium [IW4VWL7] (S. 50), Macroeconomic Theory [IW4VWL8] (S. 51)

Learning Control / Examinations
According to the attendance the assessment consists of a written or an oral exam at the beginning of the recess period (according to Section 4 (2), 1 or 2 of the examination regulation.
The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
Basic knowledge in micro- and macroeconomics, as conveyed in the courses Economics I: Microeconomics [25012] and Economics II: Macroeconomics [25014], is assumed.
According the focus of the course quantitativ-mathematical modelling should be in participant's interest.

Conditions
None.

Learning Outcomes

Content
Complementary literature
Course: Quality Control II

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4.5
Term: Sommersemester
Teaching language: Deutsch
Level: 4

Hours per week: 2/1/2

Part of the modules: Stochastic Modelling and Optimization [IW4OR7] (S. 57)

Learning Control / Examinations
The assessment consists of an 2h written exam following §4(2), 1 SPO combined with quality assurance I. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques in reliability engineering.

Content
Topics overview: Reliability Theory (structure function, reliability of complex systems, modeling and estimating lifetime distributions, systems with repair), Maintenance

Media
Blackboard, Slides, Flash Animations.

Basic literature
Lecture Notes

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Simulation I

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4.5 Hours per week: 2/1/2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Modelling and Optimization [IW4OR7] (S. 57)

Learning Control / Examinations
The assessment consists of an 1h written exam according to Section 4(2), 1 of the examination regulation. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3 (according to Section 4(2), 3 of the examination regulation).

Prerequisites
Foundations in the following fields are required:
 • Operations Research, as lectured in Introduction to Operations Research I [25040] and Introduction to Operations Research II [25043].
 • Statistics, as lectured in Statistics I [25008/25009] and Statistics II [25020/25021].

Conditions
None.

Learning Outcomes
The lecture provides insights into the typical process in planning and conducting simulation studies.

Content
As the world is getting more complex it is often not possible to analytically provide key figures of interest without overly simplifying the problem. Thus efficient simulation techniques become more and more important. In the lecture important basic concepts are presented in terms of selected case studies.
Topics overview: Discrete event simulation, generation of random numbers, generating discrete and continuous random variables, statistical analysis of simulated data.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
 • Lecture Notes

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Simulation II

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4.5 Hours per week: 2/1/2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Modelling and Optimization [IW4OR7] (S. 57)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4(2), 1 SPO. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3 (§4(2), 3 SPO).

Prerequisites
Foundations in the following fields are required:

- Operations Research, as lectured in Introduction to Operations Research I [25040] and Introduction to Operations Research II [25043].
- Statistics, as lectured in Statistics I [25008/25009] and Statistics II [25020/25021].
- Simulation I [25662]

Conditions
not any

Learning Outcomes
The lecture provides insights into the typical process in planning and conducting simulation studies.

Content
As the world is getting more complex it is often not possible to analytically provide key figures of interest without overly simplifying the problem. Thus efficient simulation techniques become more and more important. In the lecture important basic concepts are presented in terms of selected case studies.

Topics overview: Variance reduction techniques, simulation of stochastic processes, case studies.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
- Lecture Notes

Complementary literature

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Quality Control I
Course key: [25674]

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4.5
Hours per week: 2/1/2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Modelling and Optimization [IW4OR7] (S. 57)

Learning Control / Examinations
The assessment consists of an 2h written exam following §4(2), 1 SPO combined with quality management II. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture provides students with knowledge of modern techniques in quality management. Students learn to use the techniques, such as control charts, experimental design, efficiently and targeted.

Content
Topics overview: Introduction to TQM, Statistical Process Control (control charts), Acceptance Sampling (sampling plans), Design and Analysis of Experiments

Media
Blackboard, Slides, Flash Animations.

Basic literature
Lecture Notes

Complementary literature
- Montgomery, D.C. (2005): Introduction to Statistical Quality Control (5e); Wiley.

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Markov Decision Models II

Lecturers: Karl-Heinz Waldmann

Credit points (CP): 4.5 Hours per week: 2/1/2

Term: Sommersemester Level: 4

Teaching language: Deutsch

Part of the modules: Stochastic Modelling and Optimization [IW4OR7] (S. 57)

Learning Control / Examinations

The assessment consists of an 1h written exam following §4(2), 1 SPO. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3.

Prerequisites

None

Conditions

None

Learning Outcomes

The lecture provides students with knowledge on Markov decision processes for analysis to control and optimize stochastic dynamic systems. They are able to apply the theory acquired and to adjust the models to actual problems. They develop the optimality criterion and can solve the resulting optimal value function efficiently to gain optimal policies and the optimal value.

Content

Markov decision models: Foundations, optimality criteria, solution of the optimality equation, optimality of simply structured decision rules, applications.

Media

Blackboard, Slides, Flash Animations, Simulation Software

Basic literature

Lecture Notes

Complementary literature

Remarks

The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Optimization in a Random Environment

Course key: [25687]

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4.5
Hours per week: 2/1/2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Modelling and Optimization [IW4OR7] (S. 57)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4(2), 1 SPO. Credit from the voluntary computer lab is accounted for in the overall grade raising the exam grade by 0.3 (§4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are enabled to apply their knowledge about techniques and methodology on current problems such as the measurement and evaluation of operational risk as required by the Basel II accord. Subject matter of the course will be announced in due time.

Content
The course is concerned with the quantitative analysis of selected problems arising in economics, engineering, and natural sciences. Subject matter of the course will be announced in due time.

Media
Blackboard, Slides, Flash Animations, Simulation Software

Basic literature
Lecture Notes.

Complementary literature
problem-oriented

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: OR-oriented modeling and analysis of real problems (project) Course key: [25688]

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 4.5 Hours per week: 1/0/3
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Stochastic Modelling and Optimization [IW4OR7] (S. 57)

Learning Control / Examinations
Presentation and documentation of the results.

Prerequisites
None

Conditions
None

Learning Outcomes
Students are enabled to apply their knowledge about techniques and methodology on real problems and to develop a practically oriented solution in an OR-lab; e.g. in the public health sector.
Subject matter of the course will be announced in due time.

Content
The course is concerned with the quantitative analysis of selected problems arising in economics, engineering, and natural sciences. Subject matter of the course will be announced in due time.

Media
Blackboard, Slides, OR-Lab

Basic literature
Problem oriented

Complementary literature
problem-oriented

Remarks
The lecture is offered irregularly. The curriculum of the next two years is available online.
Course: Special Topics of Efficient Algorithms

Lecturers: Hartmut Schmeck
Credit points (CP): 5
Hours per week: 2/1
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Organic Computing [IW4INAI1FB8] (S. 96)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Will be announced in the lecture.
Course: Algorithms for Internet Applications

Lecturers: Hartmut Schmeck
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Englisch
Part of the modules: Intelligent Systems and Services [IW4INAIFB5] (S. 93), Ubiquitous Computing [IW4INAIFB7] (S. 95)

Learning Control / Examinations
The assessment consists of a written exam (60 min) (according to Section 4(2), 1 of the examination regulation) and an additional written examination (called ‘bonus exam’, 60 min) (according Section 4(2), 3 of the examination regulation) (the bonus exam may be split into several shorter written tests).
The grade of this course is the achieved grade in the written examination. If this grade is at least 4.0 and at most 1.3, a passed bonus exam will improve it by one grade level (i.e. by 0.3 or 0.4).

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students will learn to master methods and concepts of essential algorithms within Internet applications and to develop capabilities for innovative improvements. The course aims at teaching advanced concepts for the design and application of algorithms with respect to the requirements in networked systems. Based on a fundamental understanding of taught concepts and methods the students should be able to select appropriate concepts and methods for problem settings in their future professional life, and - if necessary - customize and apply them in an adequate way. The students will be capable to find appropriate arguments for their chosen approach to a problem setting.
In particular, the student will - know the structure and elementary protocols of the Internet (TCP/IP) and standard routing algorithms (distance vector and link state routing), - know methods of information retrieval in the WWW, algorithms for searching information and be able to assess the performance of search engines, - know how to design and use cryptographic methods and protocols to guarantee and check confidentiality, data integrity and authenticity, - know algorithmic basics of electronic payment systems and of electronic money, - the architectures and methodologies of firewalls.

Content
Internet and World Wide Web are changing our world, this core course provides the necessary background and methods for the design of central applications of the Internet. After an introduction into Internet technology the following topics are addressed: information retrieval in the www, structure and functioning of search engines, foundations of secure communication, electronic payment systems and digital money, and - if time permits - security architectures (firewalls), data compression, distributed computing on the Internet.

Media
Powerpoint slides with annotations on graphics screen, access to Internet resources, recorded lectures

Basic literature

Complementary literature
• Further references will be given in the course.
Course: Organic Computing

Course key: [25704]

Lecturers: Hartmut Schmeck, Sanaz Mostaghim
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch

Learning Control / Examinations
The assessment of this course consists of a written examination (60 min) (following §4(2), 1 SPO) and of submitting written papers or of writing an additional examination (called “bonus exam”, 60 min) (following §4(2), 3 SPO). The exam will be offered every second semester (summer term) and may be repeated at every ordinary exam date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student acquires the ability to master methods and concepts of Organic Computing and to demonstrate innovation skills regarding the used methods. Therefore the course aims at the teaching of fundamentals and methods of Organic Computing within the context of its applicability in practice. On the basis of a fundamental understanding of the taught concepts and methods the students should be able to choose the adequate methods and concepts, if necessary further develop them according to the situation and use them properly when facing related problems in their later job. The students should be capable of finding arguments for the chosen solutions and express them to others.

Content
The mission of Organic Computing is to tame complexity in technical systems by providing appropriate degrees of freedom for self-organized behaviour adapting to changing requirements of the execution environment, in particular with respect to human needs. According to this vision an organic computer system should be aware of its own capabilities, the requirements of the environment, and it should be equipped with a number of “self-x” properties allowing for the anticipated adaptiveness and for a reduction in the complexity of system management. These self-x properties are self-organisation, self-configuration, self-optimization, self-healing, self-protection and self-explanation. In spite of these self-x properties, an organic system should be open to external control actions which might be necessary to prevent undesired behaviour.

Media
powerpoint slides with annotations using a tablet pc access to applets and Internet ressources lecture recording (camtasia).

Basic literature

Complementary literature
Further references will be announced in class
Course: Nature-inspired Optimisation

Lecturers: Sanaz Mostaghim, Pradhyum Shukla
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Distributed Database Systems: Basic Technology for e-Business

Course key: [25722]

Lecturers: Andreas Oberweis
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Development of Distributed Business Information Systems [IW4INAIFB10] (S. 98)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites
Knowledge of course Database Systems and XML [25724] is expected.

Conditions
None.

Learning Outcomes
Students are familiar with the requirements and limitations of distributed database systems. Based on sound theoretical basis and practical exercises, they are able to design and build a distributed database system. They know methods to ensure error-free operation and the consistency of distributed databases and they are able to identify and to assess current and future application areas of distributed database systems. Furthermore, they know how to use them taking into account aspects of economy.

Content
This lecture deals with tasks in spatially distributed data management under special consideration of aspects of economy. Based on existing general knowledge in the field of database systems, the following topics will be addressed among other things: networked systems, design of distributed databases, distributed transaction concepts, request handling in distributed databases, distributed multi-user control, distributed error handling, and distributed data management on the internet.

Media
Slides, access to internet resources.

Basic literature

Complementary literature
Further literature is given in each lecture.
Course: Database Systems and XML

Lecturers: Andreas Oberweis
Credit points (CP): 5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Intelligent Systems and Services [IW4INAIFB5] (S. 93), eCollaboration [IW4INAIFB9] (S. 97)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) according to §4(2), 1 of the examination regulation in the first week after lecture period.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students know the basics of XML, as well as appropriate data models and are capable of generating XML documents. They are able to use XML database systems and to formulate queries to XML documents. Furthermore, they know to assess the use of XML in operational practice in different application contexts.

Content
Databases are a proven technology for managing large amounts of data. The oldest database model, the hierarchical model, was replaced by different models such as the relational or the object-oriented data model. The hierarchical model became particularly important with the emergence of the Extensible Markup Language XML. XML is a data format for structured, semi-structured, and unstructured data. In order to store XML documents consistently and reliably, databases or extensions of existing data base systems are required. Among other things, this lecture covers the data model of XML, concepts of XML query languages, aspects of storage of XML documents, and XML-oriented database systems.

Media
Slides, access to internet resources.

Basic literature
- W. Kazakos, A. Schmidt, P. Tomchyk: Datenbanken und XML. Springer-Verlag 2002
- R. Elmasri, S. B. Navathe: Grundlagen der Datenbanksysteme. 2002
- G. Vossen: Datenbankmodelle, Datenbanksprachen und Datenbankmanagementsysteme. Oldenbourg 2000
Course: Document Management and Groupware Systems

Lecturers: Stefan Klink
Credit points (CP): 4 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: eCollaboration [IW4INAIFB9] (S. 97)

Learning Control / Examinations
The assessment consists of an 1h written exam in the first week after lecture period according to Section 4(2), 1 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students master the basics of integration and structure of document management systems (DMS) and know the complete DMS process - from document capture of the archiving until retrieval. Students know how to realize operative workflows. They know which activities are needed to carry out the conceptual design and installation of DMS and they are able to apply a DMS as an archive system, workflow system and retrieval system. Furthermore, they know groupware systems exemplarily and can use them for collaborative tasks.

Content
The lecture gives basics of document management and groupware systems. It covers different system categories, their interaction and their use areas and illustrates this with concrete examples. These include document management in the strict sense, scanning, Document Imaging (acquisition and visualization of scanned documents), indexing, electronic archiving, retrieval of relevant documents, workflow, groupware, and office communications.

Media
Slides, access to internet resources.

Basic literature

Complementary literature
Further literature is given in each lecture individually.
Course: Knowledge Discovery

Lecturers: Rudi Studer
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Intelligent Systems and Services [IW4INAI FB5] (S. 93)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Familiarity with fundamental knowledge discovery techniques, especially with standard supervised and unsupervised machine learning algorithms.

Content
The lecture gives an overview about machine learning techniques for knowledge discovery from large data sets. Core topics of the lectures are: CRISP process model, data warehouses and OLAP-techniques, visualization of large amounts of data, supervised learning techniques (in particular decision trees, neural networks, support vector machines and instance based learning), as well as unsupervised learning techniques (in particular association rules and clustering). Further, the lecture covers selected application scenarios such as e.g., Text Mining.

Media
Slides.

Basic literature
- Pang-Ning Tan, Michael Steinbach, Vipin Kumar: Introduction to Data Mining, 2005, Addison Wesley

Complementary literature
None.
Course: Semantic Web Technologies I

Lecturers: Rudi Studer, Sebastian Rudolph
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Web Data Management [IW4INAIFB4] (S. 92)

Learning Control / Examinations
The assessment consists of an 1h written exam following §4, Abs. 2, 1 of the examination regulation or of an oral exam (20 min) following §4, Abs. 2, 2 of the examination regulation.
The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites
Lectures on Informatics of the Bachelor on Information Management (Semester 1-4) or equivalent.

Conditions
None.

Learning Outcomes
• Basic knowledge about the main ideas and the realisation of Semantic Web Technologies

Content
“Semantic Web” denotes an extension of the World Wide Web by meta data and applications in order to make the meaning (semantics) of data on the web usable by intelligent systems, e.g. in e-commerce and internet portals. Central to this is the representation and processing of knowledge in form of ontologies. This lecture provides the foundations for knowledge representation and processing for the corresponding technologies and presents example applications. It covers the following topics:
• Extensible Markup Language (XML)
• Resource Description Framework (RDF) and RDF Schema
• Web Ontology Language (OWL)
• Rule Languages
• Applications

Media
Slides.

Basic literature

Complementary literature
Course: Semantic Web Technologies II

Lecturers: Sudhir Agarwal, Stephan Grimm, Elena Simperl, Andreas Harth

Credit points (CP): 5

Hours per week: 2/1

Term: Sommersemester

Level: 4

Teaching language: Deutsch

Learning Control / Examinations

Written Examination (60 min) according to §4, Abs. 2, 1 of the examination regulations or oral examination of 20 minutes according to §4, Abs. 2, 2 of the examination regulations.

The exam takes place every semester and can be repeated at every regular examination date.

Prerequisites

Lectures on Informatics of the Bachelor on Information Management (Semester 1-4) or equivalent. Semantic Web Technologies I [25748] is recommended.

Conditions

none.

Learning Outcomes

- Detailed knowledge in knowledge representation with ontologies
- Detailed knowledge of acquisition and management of ontologies
- Introduction to Linked Open Data
- Modeling, acquisition and search of semantic web processes

Content

The four central components of the Semantic Web are explained in more detail: knowledge representation, -processing, and -modeling; acquisition and management of ontologies and ontology-based meta data; Linked Open Data and its modeling as well as the modeling, the acquisition and search of semantic web processes.

Media

Slides.

Basic literature

- S. Agarwal: Formal Description of Web Services for Expressive Matchmaking Prof. Dr. Rudi Studer, Prof. Dr. Christof Weinhardt, 2007/05/04, Dissertation an der Universität Karlsruhe (TH), Fakultät für Wirtschaftswissenschaften

Complementary literature

Course: Complexity Management

Lecturers: Detlef Seese
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch

Learning Control / Examinations
The assessment of this course consists of a written examination (60 min) (following §4(2), 1 SPO). The exam will be offered every semester and may be repeated at every ordinary exam date.
Questions are in English, answers are possible in German or in English.
In case that only a small number of candidates apply for the examination there will be offered an oral examination according to Section 4(2),1 of the examination regulation.

Prerequisites
A basic knowledge in informatics is suitable.

Conditions
None.

Learning Outcomes
Students will be enabled to acquire abilities, methods and instruments in the area of complexity management and learn to use them in an innovative way. The students should be enabled to find arguments for the solution of problems in this area. The basic goal of the lecture is to enable to understand the difficulties to manage complex systems and processes.

Content
Complexity is one of the biggest challenges of our time. Central questions are: - Why humans often fail in complex situations? - What is complexity? - What are reasons for complexity? - Which parameters are essential to control complexity? - How systems have to be designed to reduce their complexity and to enable management of complexity?
The lecture gives a survey on fundamental results and handles the following topics: - Understanding of the difficulties produced by complex systems and complex processes - Foundations: modelling complex systems, complexity theory, descriptive, structural and parametric complexity, dynamic systems, topology, dimension, non-linearity, chaos, randomness and emerging structures, human shortcomings, simulation - Complexity of products and production - Complexity of markets - How to improve complexity management? - Decision support by intelligent use of IT

Media
The slides of the lectures will be provided on the website of the lecture.

Basic literature
- Franz Reither: Komplexitätsmanagement. Gerling Akademie Verlag, München 1997
- S. Wolfram: A new kind of Science. Wolfram Media Inc. 2002

Complementary literature
- N. Immerman: Descriptive Complexity; Springer-Verlag, New York 1999
- J. A. Bondy, U.S.R. Murty: Graph Theory, Springer 2008
- Christos H. Papadimitriou: Computational Complexity, Addison-Wesley, Reading, Massachusetts, 1994
- G. Frizelle, H. Richards (eds.): Tackling industrial complexity: the ideas that make a difference. University of Cambridge, Institute of Manufacturing 2002
• M. J. North, Ch. M. Macal: Managing Business Complexity, Discovering Strategic Solutions with Agent-Based Modeling and Simulation, Oxford University Press 2006
• S. Bornholdt, H. G. Schuster (Eds.): Handbook of Graphs and Networks, From the Genome to the Internet, Wiley-VCH, 2003
• Further references will be given in each lecture.

Remarks
The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described content and schedule.
Course: Intelligent Systems in Finance
Course key: [25762]

Lecturers: Detlef Seese
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Intelligent Systems and Services [IW4INAIFB5] (S. 93)

Learning Control / Examinations
The assessment is a written examination.
See the German part for special requirements to be admitted for the examination.

Prerequisites
None.

Conditions
None.

Learning Outcomes
- The students acquire abilities and knowledge of methods and systems from the area of machine learning and learn how to use them in the area of finance, which is the core area of application of this lecture.
- It is taught the ability to choose and change these methods and systems adequate to the situation and to use them for problem solving in the area of finance.
- The students get the ability to find strategic and creative answers in their search for solutions for precisely defined, concrete and abstract problems.
- At the same time the lecture aims to give foundational knowledge and methods in the context of their application in practise. On the basis of the basic understanding of concepts and methods of informatics the students should be able to comprehend quickly the new developments in the area and to use them correctly.

Content
A new generation of computing methods, commonly known as “intelligent systems”, has recently been successfully applied to a variety of business and financial modelling tasks. In many application fields these novel methods outperform traditional statistical techniques. The lecture provides a comprehensive coverage of the area, including foundations and applications. In particular it deals with intelligent software agents, genetic algorithms, neural networks, support vector machines, fuzzy-logic, expert systems and intelligent hybrid systems. The presented applications focus on the finance area and are related to risk management (credit risk, operational risk), financial trading, portfolio management and economic modelling. The lecture is given in cooperation with the company msgGILLARDON. The lecture starts with an introduction of the central problems of application in this area, e.g. decision support for investors, Portfolio selection under constraints, information retrieval from business reports, automatic development of trading rules for the capital market, modelling of time series at the capital market, explanation of phenomena at capital markets by simulation, decision support in risk management (credit risk, operational risk). After this the basics of intelligent systems are discussed. Basic ideas and essential results for different stochastic heuristics for local search are discussed next, especially Hill Climbing, Simulated Annealing, Threshold Accepting and Tabu Search. After this different population-based approaches of evolutionary methods are presented, e.g. Genetic Algorithms, Evolutionary Strategies and Programming, Genetic Programming, Memetic Algorithms and Ant-Algorithms. It follows an introduction into Neural Networks, Support Vector Machines and Fuzzylogic. Softwareagents and agentbased stock market models are the next topic. The lecture ends with an overview on the complexity of algorithmic problems in the area of finance, giving in this way one of the key reasons for the necessity to use heuristics and intelligent systems. Essential examples and basic applications are choosen from the area of finance.

Media
Slides.

Basic literature
There is no text book covering completely the content of the lecture.

Further references will be given in each lecture.
Complementary literature

- Further references will be given in the lecture.

Remarks
The content of the lecture will permanently be adapted to actual developments. This can be the cause to changes of the described contend and schedule.
Course: IT Complexity in Practice

Lecturers: Kreidler
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Development of Distributed Business Information Systems [IW4INAIFB10] (S. 98)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Will be announced in the lecture.
Course: Service Oriented Computing 1

Lecturers: Stefan Tai

Credit points (CP): 5 Hours per week: 2/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Part of the modules: Service Technology [IW4INAIFB1] (S. 89)

Learning Control / Examinations
The assessment of this course is a written examination (60min.) in the first week after lecture period (nach §4(2), 1 SPO).

Prerequisites
Lecture AI2 [25033] is recommended.

Conditions
None.

Learning Outcomes
The course introduces concepts, methods, and techniques of “service-oriented computing”, including languages for (Web) service description, methods and tools for the development of services, and platforms (middleware, runtimes) for the Web-based deployment, delivery, and execution of services. The course provides a solid technical foundation that enables the student to address the increasingly relevant challenges of developing “service-oriented architectures (SOA)” in the industry.

Content
Web services represent the next-generation of Web technology, and are an evolution of conventional distributed middleware. They enable new and improved ways for enterprise computing, including application interoperability and integration, and business process management. Modern software systems are being designed as service-oriented architectures (SOA), introducing increased agility and flexibility at both the software systems and the business level. Web services and SOA thus have a profound impact on software development and the businesses that they support. The course “Service-oriented Computing” introduces the concepts, methods and technology that provide a solid foundation in this area. Topics include:

- Service description
- Service engineering, including development and implementation
- Service composition (aggregation), including process-based service orchestration
- Interoperability formats and protocols
- Service platforms and runtimes (middleware)

Media
Slides, access to internet resources.

Basic literature
Will be announced in the lecture.
Course: Service Oriented Computing 2

Lecturers: Stefan Tai, Rudi Studer
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Service Technology [IW4INAI FB1] (S. 89), Intelligent Systems and Services [IW4INAI FB5] (S. 93)

Learning Control / Examinations
The assessment of this course is a written examination (60min.) in the first week after lecture period (nach §4(2), 1 SPO).

Prerequisites
It is recommended to attend the course Service-oriented Computing 1 [25770] beforehand.

Conditions
None.

Learning Outcomes
Students will extend their knowledge and proficiency in the area of modern service-oriented technologies. Thereby, they acquire the capability to understand, apply and assess concepts and methods that are of innovative and scientific nature.

Content
Building upon basic Web service technologies the lecture introduces select topics of advanced service computing and service engineering. In particular, focus will be placed on new Web-based architectures and applications leveraging Web 2.0, Cloud Computing, Semantic Web and other emerging technologies.

Basic literature
Literature will be announced in the lecture.
Course: Web Service Engineering

Course key: [25774]

Lecturers: Christian Zirpins
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an oral exam (20 min) (following §4(2), 2 SPO).

Prerequisites
None.

Conditions
The course might be combined with the lectures “Applied Informatics II - IT Systems for e-Commerce” and “Service Oriented Computing 1”.

Learning Outcomes
Students will acquire a deep and systematic understanding of service-oriented software systems and their embedding in organizations. Equipped with practical and research-based knowledge, they will be enabled to engineer state-of-art service-oriented applications with Web technologies and gain a broad understanding of tools and methodologies for their own work.

Content
The lecture “Web Service Engineering” covers technical and organizational aspects with respect to the development of modern service-oriented software as socio-technical systems in enterprises and Web environments. It introduces background, state-of-technology and emerging trends of methods, tools and processes for application development with Web services. The topics of the lecture include e.g.:
- Web service foundations and base technologies
- Service-oriented software and enterprise architectures (SOA)
- SOA life cycle and development processes
- Analysis and requirements engineering for SOA
- Service-oriented design and modeling
- Construction and testing of Web service applications
- Web service development tools
- Trends: e.g. development with service mashups / cloud services

Media
Slides in PDF-format will be provided via the course webpages.

Basic literature
Compulsory literature will be announced in the course.
Course: Cloud Computing

Lecturers: Stefan Tai, Kunze
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course introduces concepts, methods, and techniques of Cloud Computing for providing and consuming IT resources, development- and runtime environments, and software applications of all kinds as Web services.

Content
Building on compute and storage virtualization, Cloud Computing provides scalable, network-centric, abstracted IT infrastructure, platforms, and software applications as on-demand services that are billed by consumption. Innovative business models, cost efficiency, and time-to-market are further promises associated with Cloud Computing. The lecture introduces Cloud Computing, covering topics such as:
- Fundamentals (virtualization, service-orientation)
- Cloud architecture
- Commercial Cloud offerings, open source cloud computing stack
- Cloud management
- Cloud service engineering
- Cloud economics, obstacles, and opportunities

Basic literature
Course: Management of IT-Projects

Lecturers: Roland Schätzle
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: eCollaboration [IW4INAIFB9] (S. 97)

Learning Control / Examinations
The assessment of this course is a written examination (60 min) in the first week after lecture period according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students know the terminology of IT project management and typical used methods for planning, handling and controlling. They are able to use methods appropiate to current project phases and project contexts and they know how to consider organisational and social impact factors.

Content
The lecture deals with the general framework, impact factors and methods for planning, handling, and controlling of IT projects. Especially following topics are addressed:

- project environment
- project organisation
- project planning including the following items:
 - plan of the project structure
 - flow chart
 - project schedule
 - plan of resources
- effort estimation
- project infrastructure
- project controlling
- risk management
- feasibility studies
- decision processes, conduct of negotiations, time management.

Media
Slides, access to internet resources.

Basic literature
- B. Hindel, K. Hörmann, M. Müller, J. Schmied. Basiswissen Software-Projektmanagement. dpunkt.verlag 2004

Further literature is given in each lecture individually.
Course: Strategic Management of Information Technology

Lecturers: Thomas Wolf
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: eCollaboration [IW4INAIFB9] (S. 97)

Learning Control / Examinations
The assessment of this course is a written or (if necessary) oral examination according to §4(2) of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students know the outer frame of IT in an enterprise and know which functions IT has within an enterprise. They understand the organization and the content of these functions.

Content
The following topics will be covered: strategic planning of ICT, architecture of ICT, overall planning of ICT, outsourcing, operation and controlling of ICT.

Media
Slides, internet resources

Basic literature
Course: n.n.

Course key: [25791]

Lecturers: Ralf Kneuper
Credit points (CP): 4
Hours per week: 2/0
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Development of Distributet Business Information Systems [IW4INAIFB10] (S. 98)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Lab Class Web Services
Course key: [25820]

Lecturers: Stefan Tai, Rudi Studer, Gerhard Satzger, Christian Zirpins
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 of the examination regulation in form of an examination of the written seminar thesis, a presentation and a project. The final mark is based on the examination of the written seminar thesis and the project but can be upgraded or downgraded according to the quality of the presentation.

Prerequisites
The lecture Service Oriented Computing 1 [25772] is recommended.

Conditions
None.

Learning Outcomes
Students will acquire the technical expertise to apply service-oriented platforms and tools. Thereby, they will be enabled to develop practical solutions for concrete problems of constructing service-oriented IT infrastructure for provision of electronic services over the Internet.

Content
The “Praktikum (lab class) Web Services” provides a practical introduction to fundamental Web service technologies and their application to support service value networks on the Internet. Based on concrete application scenarios for Web-based business service networks, the class focuses on the development of software solutions for specific aspects of service-oriented IT-infrastructure. This includes the complete development lifecycle of a large-scale software project and its implementation in small project teams.

Basic literature
For introduction, the following books are recommended:
Specific literature will be announced in the course.
Course: Special Topics of Knowledge Management

Lecturers: Rudi Studer
Credit points (CP): 5 Hours per week: 2/1
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Intelligent Systems and Services [IW4INAIFB5] (S. 93)

Learning Control / Examinations
Assessment is provided by a written exam of 60 minutes or an oral exam during the first few weeks after the lecturing period (acc. to §4(2), 1 or 2 SPO). The exam is offered each semester and may be repeated at the regular examination day.

Prerequisites
The lecture Angewandte Informatik I - Modellierung [25070] is a prerequisite.

Conditions
None.

Learning Outcomes
The students acquire the skills, methods and tools in one area of “knowledge management” to demonstrate their mastery and innovativeness.
This event aims at providing basic principles and methods in the context of the practical application of KM. On the basis of a fundamental understanding of these concepts and methods taught to students they will be able to work on advanced problems.
The students will be able to find and argue for solutions of KM problems.

Content
The lecture deals with special topics in the area of knowledge management (incl. Knowledge Discovery and Semantic Web). The lecture deepens one of the following topics:
• Dynamic and interoperable systems in knowledge management
• Personal Knowledge Management
• Formal Concept Analysis

Complementary literature
Depends on the actual content.
Course: Management and Strategy

Lecturers: Hagen Lindstädt
Credit points (CP): 4 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Strategic Corporate Management and Organization [IW4BWL0U1] (S. 43)

Learning Control / Examinations
The assessment consists of a written exam (60 min) taking place at the beginn of the recess period (according to §4 (2), 1 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The participants learn about central concepts of strategic management along the ideal-typical strategy process: internal and external strategic analysis, concept and sources of competitive advantages, their importance when establishing competitive and corporate strategies as well as strategy assessment and implementation. This aims in particular to provide a summary of the basic concepts and models of strategic management, i.e. to provide in particular an action-oriented integration.

Content
- Corporate management principles
- Strategic management principles
- Strategic analysis
- Competitive strategy: modelling and selection on a divisional level
- Strategies for oligopolies and networks: anticipation of dependencies
- Corporate strategy: modelling and evaluation on a corporate level
- Strategy implementation

Media
Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Managing Organizations

Lecturers: Hagen Lindstädt
Credit points (CP): 4 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Strategic Corporate Management and Organization [IW4BWL1U01] (S. 43)

Learning Control / Examinations
The assessment will consist of a written exam (60 min) taking place at the beginning of the recess period (according to Section 4 (2), 2 of the examination regulation). The exam takes place in every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The course should enable the participants to assess the strengths and weaknesses of existing organisational structures and rules using systematic criteria. Here concepts and models for designing organisation structures, regulating organisational processes and managing organisational changes are presented and discussed using case studies. The course is structured to relate to actions and aims to give students a realistic view of the opportunities and limits of rational design approaches.

Content

- Principles of organisational management
- Managing organisational structures and processes: the selection of design parameters
- Ideal-typical organisational structures: choice and effect of parameter combinations
- Managing organisational changes

Media
Slides.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Organization Theory

Lecturers: Hagen Lindstädt
Credit points (CP): 6 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Strategic Corporate Management and Organization [IW4BWL01] (S. 43), Strategic Decision Making and Organization Theory [IW4BWL03] (S. 44)

Learning Control / Examinations
The assessment consists of a written exam following §4, Abs. 2, 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The participants are made familiar with mostly classical principles of economic organisational theory and institutional economics. This includes transaction cost theory and agency-theory approaches, models for the function and design of organisational information and decision-making systems, transfer price models to coordinate the exchange of goals and services within companies, models on incentive systems and relative performance tournaments as well as selected OR optimisation approaches to designing organisational structures. The course therefore lays the basis for a deeper understanding of the advanced literature on this key economic area.

Content
- Basic considerations and institution-economic principles of organisational theory
- Transfer prices and internal market-price relationships
- Design and coordination without conflicting objectives
- Economic evaluation of information
- Organisation under asymmetric information and conflicting objectives: agency theory principles

Media
Folien.

Basic literature

The relevant excerpts and additional sources are made known during the course.
Course: Modeling Strategic Decision Making

Lecturers: Hagen Lindstädt
Credit points (CP): 6 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Strategic Corporate Management and Organization [IW4BWLUO1] (S. 43), Strategic Decision Making and Organization Theory [IW4BWLUO3] (S. 44)

Learning Control / Examinations
Written exam 100% following §4, Abs. 2.

Prerequisites
None.

Conditions
Following § 17, 3 of „Prüfungsordnung Informationswirtschaft“ a seminar of this module has to be chosen and completed.

Learning Outcomes
Starting from the basic model of economic decision theory, fundamental decision principles and calculi for multi-attribute decisions in certain and uncertain conditions up to subjective expected utility theory and the economic assessment of information are described. To confront numerous infringements by decision-makers against principles and axioms of this calculus, in addition non-expected utility calculi and advanced models for decisions by economic agents are discussed; these are especially important for management decisions.

Within the chapter concerning leadership frameworks the students are given the possibility to individually analyze their management style on the basis of classical concepts of leadership. These concepts will be presented and discussed in detail.

Content
• Principles of strategic management decisions
• Leadership: Classical leadership concepts
• Basic economic decision models
• Limits of the basic models and advanced concepts
• Advanced models: individual decisions with uncertainty and vague information

Media
Slides.

Basic literature
Course: Value-Based Instruments of Corporate Strategy

Lecturers: Ulrich Pidun, Michael Wolff
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Strategic Corporate Management and Organization [IW4BWL01] (S. 43), Strategic Decision Making and Organization Theory [IW4BWL03] (S. 44)

Learning Control / Examinations
Written exam 100% following §4, Abs. 2.

Prerequisites
None.

Conditions
none.

Learning Outcomes
The course follows two learning objectives. Firstly, the course participants are presented with the key concepts and models on which the current approaches of value-based management are based in theory and practice. Secondly the course participants should be enabled to transfer the concepts presented to real situations. In order to achieve these learning objectives the connection to classical strategy development instruments is discussed first. Then the various value levers and the concepts of value-based corporate management are presented. This includes both external aspects (such as valuing acquisitions) as well as internal ones ("integrated value management") by value-based corporate management.

Content
- Strategy development in corporate groups
- Growth as a strategic value lever
- Strategic valuation of acquisitions
- Introduction to value management
- Integrated value-based corporate management
- Downsides of multi-business corporations

Media
Slides.

Basic literature
The relevant excerpts and additional sources are made known during the course.
Course: Seminar: Management and Organization
Course key: [25915/25916]

Lecturers: Hagen Lindstädt
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
Term paper (50%) and presentation (50%).

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
The aim of the seminar is to describe corporate and organisational management approaches, to assess them critically and clarify them using practical examples. The focus is on assessing the models with a view to their applicability and theoretical limits.

Content
The subjects are redefined each semester on the basis of current issues.

Media
Slides.

Basic literature
The relevant sources are made known during the course.
Course: Planning and Management of Industrial Plants

Lecturers: Frank Schultmann
Credit points (CP): 5.5
Hours per week: 2/2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Industrial Production II [IW4BWL1IP2] (S. 45)

Learning Control / Examinations
The examination will be in form of a written exam acc. to §4(2), 1 ER. Exams are offered in every semester and can be re-examined at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
- Students shall be able to describe the tasks of plant management.
- Students shall be proficient in using selected methods of investment and cost estimates.
- Students shall be able to consider necessary processing and logistical requirements of designing industrial plants.
- Students shall be able to discuss interdependencies between capacity planning, process design and plant optimization.
- Students shall be proficient in discussing and applying selected methods of quality management, plant maintenance and plant dismantling.

Content
Industrial plant management incorporates a complex set of tasks along the entire life cycle of an industrial plant, starting with the initiation and erection up to operating and dismantling. During this course students will get to know special characteristics of industrial plant management. Students will learn important methods to plan, realize and supervise the supply, start-up, maintenance, optimisation and shut-down of industrial plants. Alongside, students will have to handle the inherent question of choosing between technologies and evaluating each of them. This course pays special attention to the specific characteristics of plant engineering, commissioning and investment.

Media
Media will be provided on the e-learning platform.

Basic literature
will be announced in the course
Course: Production and Logistics Management

Course key: [25954]

Lecturers: Magnus Fröhling, Frank Schultmann
Credit points (CP): 5.5 Hours per week: 2/2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Industrial Production III [IW4BWLIIP6] (S. 46)

Learning Control / Examinations
The examination will be in form of a written exam acc. to §4(2), 1 ER. Exams are offered in every semester and can be re-examined at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
- Students shall be able to discuss the basic tasks of an operative production and logistics management.
- Students shall be able to discuss approaches to solve these tasks and shall be able to apply certain ones.
- Students shall consider the interdependencies between the tasks and methods to solve.
- Students shall discuss possible IT supporting tools.
- Students shall be able to describe emerging trends in production and logistics management.

Content
This course covers central tasks and challenges of an operative production and logistics management. Students get to know the set-up and mode of operation of planning systems such as PPS-, ERP- and Advanced Planning Systems to cope with the accompanying planning tasks. Methods to solve these tasks will be explored with respect to manufacturing program planning, material and time. Alongside to MRP II, students will be introduced to integrated supply chain management approaches in PPS. Finally, commercially available PPS-, ERP- and Advanced Planning Systems will be presented and discussed.

Media
Media will be provided on the e-learning platfform.

Basic literature
will be announced in the course

Remarks
The tutorial to „Production and Logistics Management“ [25954] will be offered in summer 2010. For interim regulations, please contact the institute
Course: Strategical Aspects of Energy Economy

Lecturers: Armin Ardone
Credit points (CP): 3.5
Term: Wintersemester
Teaching language: Deutsch
Part of the modules: Energy Industry and Technology [IW4BWLIIP5] (S. 48)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4 (2),1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Content
Course: Energy Policy

Lecturers: Martin Wietschel
Credit points (CP): 3.5 Hours per week: 2/0
Term: Sommersemester Level: 3
Teaching language: Deutsch

Learning Control / Examinations
Prerequisites
Keine.

Conditions
Keine.

Learning Outcomes

Content
The course deals with material and energy policy of policy makers and includes the effects of such policies on the economy as well as the involvement of industrial and other stakeholders in the policy design. At the beginning the neoclassical environment policy is discussed. Afterwards the Sustainable Development concept is presented and strategies how to translate the concept in policy decision follows. In the next part of the course an overview about the different environmental instruments classes, evaluation criteria for these instruments and examples of environmental instruments like taxes or certificates will be discussed. The final part deals with implementation strategies of material and energy policy.

Basic literature
Will be announced in the lecture.
Course: Supply Chain Management with Advanced Planning Systems Course key: [25961]

Lecturers: Mathias Göbelt, Christopher Sürie
Credit points (CP): 2
Term: Sommersemester
Level: 3
Teaching language: Englisch
Part of the modules: Industrial Production III [IW4BWLIIIP6] (S. 46)

Learning Control / Examinations
see module description

Prerequisites
see module description

Conditions
None.

Learning Outcomes
This lecture deals with supply chain management from a practitioner’s perspective with a special emphasis on the software solution SAP SCM and the planning domain. First, the term supply chain management is defined and its scope is determined. Methods to analyze supply chains as well as indicators to measure supply chains are derived. Second, the structure of an APS (advanced planning system) is discussed in a generic way. Later in the lecture, the software solution SAP SCM is mapped to this generic structure. The individual planning tasks and software modules (demand planning, supply network planning, production planning / detailed scheduling, transportation planning / vehicle scheduling, global available-to-promise) are presented by discussing the relevant business processes, providing academic background, describing planning processes for a fictive company and showing the user interface and user-related processes in the software solution. The lecture is supported by a self-explanatory tutorial, in which students can explore the software solution for the fictive company offline on their own.

Content

1. **Introduction to Supply Chain Management**
 1.1. Supply Chain Management Fundamentals
 1.2. Supply Chain Management Analytics
2. **Structure of Advanced Planning Systems**
3. **SAP SCM**
 3.1. Introduction / SCM Solution Map
 3.2. Demand Planning
 3.3. Supply Network Planning
 3.4. Production Planning and Detailed Scheduling
 3.5. Deployment
 3.6. Transportation Planning and Vehicle Scheduling
 3.7. [Optional] Global Available to Promise
4. **SAP SCM in Practice**
 4.1. Success Stories
 4.2. SAP Implementation Methodology
Course: Emissions into the Environment

Lecturers: Ute Karl
Credit points (CP): 3.5
Hours per week: 2/0
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Industrial Production II [IW4BWLIIP2] (S. 45)

Learning Control / Examinations
The examination will be in form of an oral exam acc. to §4(2), 2 ER with a duration of 30 min. The examination dates will be offered during recess period.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student shall identify problems of industrial pollution control.
The student knows solutions to these problems and their ways of application.

Content
The course will provide an overview of sources of air pollution, waste and municipal waste; methods to monitor and to reduce/manage pollutant flows; regulatory framework on national and international level.
A Air pollution control
 • Introduction and definitions
 • Sources and pollutants
 • Regulatory framework
 • Emission monitoring
 • Air pollution control measures
B Waste management and Recycling
 • Introduction and regulatory framework
 • Statistics and logistics
 • Recycling and disposal
 • Waste treatment
C Waste water treatment
 • Municipal waste water treatment systems
 • Sewage sludge disposal

Media
Media will be provided on learning platform.

Complementary literature
A compilation of documents is made available on the web.
Course: The Management of R&D Projects with Case Studies

Lecturers: Helwig Schmied
Credit points (CP): 3.5
Hours per week: 2/2
Term: Winter-/Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Industrial Production III [IW4BWLIIIP6] (S. 46)

Learning Control / Examinations
The examination will be in form of a written exam acc. to §4(2), 1 ER with a duration of 1h.

Prerequisites
None.

Conditions
None

Learning Outcomes
• Students shall be able to discuss different tasks of R&D-management.
• Students shall be able to apply common approaches to solve these general problems.

Content
• The communication between R&D, production and marketing
• Problems concerning measuring the productivity of the R&D system
• Methods for improving the productivity of R&D systems
• Planning of R&D projects with the help of the Communication-Matrix-Methods for controlling R&D projects’ progress
• The marketing of scientific skills
• The communication matrix as a tool for the implementation of simultaneous engineering

Case studies.

Basic literature
will be announced in the course
Course: Computer-based Production Planning and Control, Process Simulation and Supply Chain Management [25975]

Lecturers: Magnus Fröhling, Frank Schultmann
Credit points (CP): 2 Hours per week: 2/0
Term: Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Industrial Production III [IW4BWLIIP6] (S. 46)

Learning Control / Examinations
The examination will be in form of a written exam acc. to §4(2), 1 ER with a duration of 1h.

Prerequisites
None.

Conditions
None.

Learning Outcomes
- Students shall be able to discuss problems arising out of IT-based PPS, process simulations and Supply Chain Management.
- Students shall be able to apply general approaches to solve the addressed problems.

Content
Following an introduction into the structure, the history and still existing shortcomings of systems for planning and control of production, this lecture introduces different approaches for computer-assisted planning. The approaches are subdivided into methodologies for the simulation of processes on the one hand and optimising and descriptive planning models on the other hand. Finally, commercially available, industry-specific software tools are presented and discussed, which focus on production planning (PP) and materials management (MM) in the mySAP ERP system. Furthermore, process engineering software tools are presented and discussed in the light of integration into production planning as well as tools to simulate material flows and supply chains (with respect to Advanced Planning Systems).

Media
Media will be provided on the e-learning platform.

Basic literature
will be announced in the course
Course: Material Flow Analysis and Life Cycle Assessment

Lecturers: Liselotte Schebek
Credit points (CP): 3.5 Hours per week: 2/0
Term: Wintersemester Level: 3
Teaching language: Deutsch
Part of the modules: Industrial Production II [IW4BWLIP2] (S. 45)

Learning Control / Examinations
The examination will be in form of a written exam acc. to §4(2), 3 ER at the end of the semester.

Prerequisites
None.

Conditions
None.

Learning Outcomes
• Students shall be aware of the important role of material flow systems for the economy and ecology.
• Students shall be proficient in understanding the basics and methodology of analytical tools for material flow analysis and Life Cycle Assessment.
• Students shall be able to apply Life Cycle Assessment in case studies.

Content
Materials – in the sense of raw materials taken from nature – represent the physical basis of the economy and the human society in general. At the same time, global environmental problems, e.g., the greenhouse effect, as well as economic problems, e.g., the availability and the price development of raw materials, are directly linked to the increasing use of specific materials like fossil carbon resources or metals. Hence, for the development of solution strategies, the understanding of material flow systems of the techno-sphere, i.e. the environment made by humans, is essential. The lecture is an introduction into basic system theory and modelling techniques of material flow analysis. On this basis, the methodology of the Life Cycle Assessment (LCA) is then presented, which comprises material flows and their environmental effects throughout the entire life cycle of production, use and disposal of products. For decision-makers in economy and policy, LCA serves as an instrument of analysis in order to compare the different possibilities of the design of products, technologies and services. In this lecture, the structure and particular modules of the Life Cycle Assessment are presented in detail. Furthermore, the applications of the Life Cycle Assessment in the context of decision support are explained, in particular within the context of development of innovative technologies. Recent developments of the Life Cycle Costing and the Social LCA will also be considered.

Media
Media will be provided on learning platform.

Basic literature
will be announced in the course
Course: Basics of Liberalised Energy Markets

Lecturers: Wolf Fichtner
Credit points (CP): 3.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Content
1. The European liberalisation process
1.1 The concept of a competitive market
1.2 The regulated market
1.3 Deregulation in Europe
2. Pricing and investments in a liberalised power market
2.1 Merit order
2.2 Prices and investments
2.3 Market flaws and market failure
2.4 Regulation in liberalised markets
2.5 Additional regulation mechanisms
3. The power market and the corresponding submarkets
3.1 List of submarkets
3.2 Types of submarkets
3.3 Market rules
4. Risk management
4.1 Uncertainties in a liberalised market
4.2 Investment decisions under uncertainty
4.3 Estimating future electricity prices
4.4 Portfolio management
5. Market power
5.1 Defining market power
5.2 Indicators of market power
5.3 Reducing market power
6. Market structures in the value chain of the power sector

Media
Media will likely be provided on the e-learning platform ILIAS.

Complementary literature

Module Handbook: Version 04.03.2010 Information Engineering and Management (M.Sc.)
Course: Technological Change in Energy Industry

Lecturers: Martin Wietschel
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Energy Industry and Technology [IW4BWLIIP5] (S. 48)

Learning Control / Examinations
The assessment consists of a written exam.

Prerequisites
Keine.

Conditions
Keine.

Learning Outcomes
Content
Course: Heat Economy

Lecturers: Wolf Fichtner
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Energy Industry and Technology [IW4BWLIIP5] (S. 48)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Media
Media will be provided on the e-learning platform ILIAS.
Course: Energy Systems Analysis

Lecturers: Dominik Möst
Credit points (CP): 3 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Energy Industry and Technology [IW4BWLIIP5] (S. 48)

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Media
Media will likely be provided on the e-learning platform ILIAS.
Course: Energy and Environment

Lecturers: Ute Karl, n.n.
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Energy Industry and Technology [IW4BWLIIP5] (S. 48)

Learning Control / Examinations
The examination will be in form of an written exam acc. to §4(2), 2 ER.

Prerequisites
Keine.

Conditions
None.

Learning Outcomes
Content
Course: Energy Trade and Risk Management

Lecturers: Kai Hufendiek
Credit points (CP): 3.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Media
Media will likely be provided on the e-learning platform ILIAS.
Course: Gas-Markets

Lecturers: Andrej Pustisek
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Media
Media will likely be provided on the e-learning platform ILIAS.
Course: Simulation Game in Energy Economics

Lecturers: Wolf Fichtner
Credit points (CP): 3 Hours per week: 2/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam according to Section 4(2), 1 of the examination regulation.

Prerequisites
Visiting the course “Introduction to Energy Economics”

Conditions
None.

Learning Outcomes
Understanding for market mechanisms, pricing and investment decisions in a liberalised electricity market.

Content
Media
Media will likely be provided on the e-learning platform ILIAS.

Complementary literature
Course: Telecommunication and Internet Economics

Lecturers: Kay Mitusch
Credit points (CP): 4,5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC).
Examination is offered every semester and can be retried at any regular examination date.

Prerequisites
Basic knowledge of microeconomics and skills of undergraduate studies or a bachelor’s degree are required.
Particularly helpful but not necessary: Industrial Economics and Principal-Agent- or Contract theories. Prior attendance of the lecture „Competition in Networks“ [26240] is helpful in any case but not considered a formal precondition.

Conditions
None.

Learning Outcomes
The students should get an idea of the complex competition processes in the telecommunication and internet sector. Besides, they should get to know the analytic instruments with which these competitive processes can be (partially) analyzed. The basic patterns of the current debates on economic and regulation policies should become clear to them. The lecture is suited for all students who will deal in their professional life with these sectors. As the software industry shows similar problems, the lecture is also suited for students interested in this sector.

Content
Among the network sectors the telecommunication and internet sector is the most dynamic one and the one with and most variety of phenomena. Problems of natural monopoly still exist in some parts. But there is also competition, not only at the service level but also at the infrastructural level. Both levels are characterized by (vertical) quality differentiations and by high technology dynamics. What should the regulation of this sector look like? How should the mutual network access prices of two telecommunication providers be regulated? The internet is a free market par excellence, because everybody can open internet businesses without high entry costs. Why then can a company like ebay dominate the market for internet-auction platforms so strongly? The causes of market concentration on the internet will be analyzed. So will be the economic implications of the Next Generations Networks.

Basic literature
Literature and lecture notes will be announced in the lecture.
Course: Regulation Theory and Practice

Lecturers: Kay Mitusch
Credit points (CP): 4 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Result of success is made by a 60 minutes written examination during the semester break (according to §4(2), 1 ERSC).
Examination is offered every semester and can be retried at any regular examination date.

Prerequisites
Basic knowledge of microeconomics and skills of undergraduate studies or a bachelor’s degree are required.
Particularly helpful but not necessary: Industrial Economics and Principal-Agent- or Contract theories. Prior attendance of the lecture Competition in Networks [26240] is helpful in any case but not considered a formal precondition.

Conditions
May not be examined, when the examination of Regulation [26026] was already taken.

Learning Outcomes
The lecture provides insights into the regulation of network or infrastructure industries. Students should learn the basic aims and possibilities as well as the problems and limits of regulation. A central goal is to achieve an understanding of regulation as an incentive system under problems of severe asymmetric information. The lecture is suited for all students who want to work in companies of the network sectors – or who would like to become active on the side of regulators or in the respective political areas. Students should be able to apply general formal methods to the practice of regulation.

Content
In network industries – like transport, utilities or communication – the forces of competition often fail in certain critical areas, so that monopolies will arise. In these cases the usual competition laws often turn out to be insufficient. Then they are complemented by special regulation laws. Accordingly, the regulation authority (in Germany the federal network agency, Bundesnetzagentur) is in charge for network industries side by side with the Federal Cartel Office as another supervisory authority. The lecture begins with a short description of the general competition laws and competition policies. Then it turns to the aims, the possibilities and the practice of regulation which are presented and analyzed critically. This happens from both a theoretical (microeconomic modelling) perspective as well as from a practical perspective with the help of various examples.

Basic literature
Literature and lecture notes are handed out during the course.

Remarks
Dr. Kopp’s lecture Regulation [26206] (held for the last time in the WT 09/10) is substituted by the lecture Regulation Theory and Practice [26234] by Prof. Mitusch (held for the first time in the ST 10); only one of these lectures can be taken into account.
Course: Life and Pensions

Lecturers: Michael Vogt, Besserer
Credit points (CP): 4.5
Hours per week: 3
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Applications of Actuarial Sciences I (BWL) [IW4BWLFBV4] (S. 32)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
E. Neuburger, Mathematik und Technik betrieblicher Pensionszusagen, Karlsruhe, 1997
F. Isenbart, H. Münzer, Lebensversicherungsmathematik für Praxis und Studium. Wiesbaden
Ahrendt/Förster/Rößler: Steuerrecht der betrieblichen Altersversorgung Band I und II, Köln
Andresen/Förster/Rößler/Rühmann: Arbeitsrecht der betrieblichen Altersversorgung, Band I und II, Köln
R. Höfer, Reinhold, Gesetz zur Verbesserung der betrieblichen Altersversorgung. Kommentar, München
Schriftenreihe Angewandte Versicherungsmathematik - Heft 25 -
Course: Reinsurance

Lecturers: Christian Hipp, Stöckbauer, Schwehr
Credit points (CP): 4.5 Hours per week: 4
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Applications of Actuarial Sciences I (BWL) [IW4BWLFBV4] (S. 32)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Insurance Optimisation

Lecturers: Christian Hipp
Credit points (CP): 4.5 Hours per week: 3
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Applications of Actuarial Sciences I (BWL) [IW4BWLFBV4] (S. 32)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature
Course: Insurance Accounting

Lecturers: Felix Ludwig
Credit points (CP): 4.5 Hours per week: 3/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an oral or a written exam (according to Section 4 (2), 2 or 1 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science.
Course: Insurance Marketing

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an oral exam (according to Section 4 (2), 2 of the examination regulation) and oral presentations within the lecture (according to Section 4 (2), 3 of the examination regulation). The overall grade consists of the valuation of the oral presentations (incl. elaboration) and the valuation of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Complementary literature
- Farny, D.. Versicherungsbetriebslehre (Kapitel III.3 sowie V.4). Karlsruhe 2006
- Wiedemann, K.-P./Klee, A. Ertragsorientiertes Zielkundenmanagement für Finanzdienstleister, Wiesbaden 2003

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Insurance Production

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an oral presentation within the lecture (according to Section 4 (2), 3 of the examination regulation) and an oral exam at the end of the semester (according to Section 4 (2), 2 of the examination regulation). The overall grade consists of the valuation of the oral presentation and the valuation of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Complementary literature

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Enterprise Risk Management

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3/0
Term: Wintersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an oral presentations within the lecture (according to Section 4 (2), 3 of the examination regulation) and an oral exam (according to Section 4 (2), 2 of the examination regulation).
The overall grade consists of the valuation of the oral presentation and the valuation of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Learning to identify, to analyse and to assess business risks; this serves as a basis for strategy and policy design regarding risks and opportunities of an enterprise. Introduction to optimization approaches that allow to consider area-specific objectives, risk-bearing capacity and risk acceptance.

Content
1. Concepts and practice of risk management, based on decision theory
2. Goals, strategies and measures for the identification, analysis, assessment and management of risks
3. Insurance as an instrument for loss-financing
4. Selected aspects of risk management: e.g. environmental protection, organizational failure and D&O-coverage, development of a risk management culture
5. Organisation of risk management
6. Approaches for determining optimal combinations of risk management measures considering their investment costs and outcomes.

Basic literature

Complementary literature
Continuative literature is indicated during the course.

Remarks
To attend the course please register at the secretariat of the chair of insurance science.
Course: Service Management

Lecturers: Ute Werner

Credit points (CP): 4.5 Hours per week: 3/0

Term: Winter-/Sommersemester Level: 4

Teaching language: Deutsch

Learning Control / Examinations

The assessment consists of an oral presentation (incl. elaboration) within the lecture (according to Section 4 (2), 3 of the examination regulation) and an oral exam at the end of the semester (according to Section 4 (2), 2 of the examination regulation). The overall grade consists of the valuation of the oral presentation (incl. elaboration) and the valuation of the oral exam.

Prerequisites

None.

Conditions

None.

Learning Outcomes

See German version.

Content

See German version.

Complementary literature

Remarks

This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de

To attend the course please register at the secretariat of the chair of insurance science.
Course: Multidisciplinary Risk Research

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of oral presentations within the lecture (according to Section 4 (2), 3 of the examination regulation) and an oral exam at the end of the semester (according to Section 4 (2), 2 of the examination regulation).
The overall grade consists of the valuation of the oral presentation and the valuation of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Getting an overview of the various theoretical, empirical and methodological approaches used in risk research. Learning to assess disciplinary perspectives and approaches. Detailed examination of at least one theoretical and one methodological approach by the analysis of case studies.

Content
The course consists of two chapters:
In the theoretical part risk concepts of various disciplines will be discussed as well as categorisations of risk (e.g. technical or natural origin) and of risk carriers. Based on empirical research, processes of risk perception, risk assessment, and risk taking – at the individual, institutional, and global level - are described and explained.
The methodological part of the course deals with the hazard research, approaches for identification and mapping of risks and their accumulations, as well as with safety culture research. Using empirical studies, survey methods regarding risk perception and risk assessment will be discussed. Specific problems in the context of intercultural research will be considered too.

Basic literature
• U. Werner, C. Lechtenbörger. Risikoanalyse & Risikomanagement: Ein aktueller Sachstand der Risikoforschung. Arbeitspa-
pier 2004
• http://www.bevoelkerungsschutz.ch

Complementary literature
Continuative literature is indicated during the course.

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Insurance Risk Management
Course key: [26335]

Lecturers: Harald Maser
Credit points (CP): 2.5
Hours per week: 2/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written or an oral exam (according to Section 4 (2), 1 or 2 of the examination regulation).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Getting to know basic principles of risk management in insurance companies and credit institutions.

Content
Complementary literature
- “Mindestanforderungen an ein (Bank-)Risikomanagement”, www.bafin.de

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science.
Course: Saving Societies

Lecturers: N.N.
Credit points (CP): 4.5 Hours per week: 3/0
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Applications of Actuarial Sciences I (BWL) [IW4BWLBV4] (S. 32)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Complementary literature

Remarks
The course will irregularly not be offered in the summer term 2010.
Course: Current Issues in the Insurance Industry

Lecturers: Wolf-Rüdiger Heilmann
Credit points (CP): 2.5 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation).
The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
For the understanding of this course knowledge of Private and Social Insurance [25050] is required.

Conditions
None.

Learning Outcomes
Knowledge and understanding of important current peculiarities of insurance, e.g. insurance markets, lines, products, investment, company pension schemes, corporate structures and controlling.

Content
Changing urgent topics in insurance.

Complementary literature
Schwebler, Knauth, Simmert. Kapitalanlagepolitik im Versicherungsbinnenmarkt. 1994
Seng. Betriebliche Altersversorgung. 1995
von Treuberg, Angermayer. Jahresabschluss von Versicherungsunternehmen. 1995

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science.
Course: International Risk Transfer

Lecturers: Wolfgang Schwehr
Credit points (CP): 2.5 Hours per week: 2/0
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of a written exam (according to Section 4 (2), 1 of the examination regulation). The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Becoming acquainted with the various possibilities of international risk transfer.

Content
How are the costs of potential major damages financed and covered on a global scale? Traditionally, direct insurers and, especially, reinsurers are conducting a global business, Lloyd’s of London is a turntable for international risks, and global industrial enterprises are establishing captives for self insurance. In addition to this, capital markets and insurance markets are developing innovative approaches to cover risks, which were hard to insure in the past (e.g. weather risk). The lecture will elucidate the functioning and the background of these different possibilities of international risk transfer.

Basic literature

Remarks
Block course. To attend the course please register at the secretariat of the chair of insurance science.
Course: Risk Management of Microfinance and Private Households
Course key: [26354]

Lecturers: Ute Werner
Credit points (CP): 4.5
Hours per week: 3/0
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of oral presentations within the lecture (according to Section 4 (2), 3 of the examination regulation) and an oral exam at the end of the semester (according to Section 4 (2), 2 of the examination regulation). The overall grade consists of the valuation of the oral presentation and the valuation of the oral exam.

Prerequisites
None.
Conditions
None.
Learning Outcomes
Becoming acquainted with starting points for analysing the special risk situation of private households and micro enterprises; learning to synchronize various risk coping instruments, identifying risks of microfinance products and learning to design innovative microfinance products.

Content
The course consists of two interlocking parts:
In the first part the socio-economic framework as well as the goals and strategies of private-sector risk management are discussed, with an emphasis on insurance decisions. In the second part the issue of small enterpreneurial entities and their specific risk related problems in covering their financial requirements is addressed. Typically their size and other specific characteristics lead to high risks for financial services institutions. After an introduction to the economic principles of microfinance, the institutions working in this sector are presented as well as innovative credit-, savings-, and insurance products (which are often combined), and we’ll discuss approaches for performance measurement from the perspectives of customers, suppliers, and investors.

Media
Scriptum.

Basic literature
- P. Zweifel, R. Eisen. Versicherungsoekonomie. 2003

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Public Sector Risk Management
Course key: [26355]

Lecturers: Reinhard Mechler
Credit points (CP): 2.5
Hours per week: 2/0
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Operational Risk Management I [IW4BWLFBV9] (S. 35), Operational Risk Management II [IW4BWLFBV10] (S. 36)

Learning Control / Examinations
The assessment consists of an oral exam (according to Section 4 (2), 2 of the examination regulation) and oral presentations within the lecture (according to Section 4 (2), 3 of the examination regulation).

The overall grade consists of the valuation of the oral presentations (incl. elaboration) and the valuation of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
In addition to theoretical and methodological principles of risk research, operative risk management by various institutions and the corresponding characteristics of risk transfer are discussed in this course. As public households often act as “risk carriers of last resort”, i.e. carry risks that other institutions don’t prepare for, their risk management becomes increasingly important on an economic, social and political level.

Content
1. Risk concepts, risk management and the role of the public sector
2. Quantitative and qualitative methods of risk management
3. Problem areas of public sector risk management
 · Natural catastrophes
 · Climate change
 · Aging and social insurance
 · Large-scale projects
 · Terrorism

Basic literature
M. Fone / P. Young. Public Sector Risk Management, Butterworth Heinemann, Oxford

Complementary literature
Continuative literature is indicated during the course.

Remarks
Block course. Please register at the secretariat of the chair of insurance science.
The course Public Sector Risk Management [26355] is offered in summer term 2010 for the last time. No more exams will be held after the exams for this term.
Course: Insurance Contract Law

Lecturers: Hanns-Jörg Schwebler
Credit points (CP): 4.5
Hours per week: 3/0
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Insurance Management I [IW4BWLFBV6] (S. 33), Insurance Management II [IW4BWLFBV7] (S. 34)

Learning Control / Examinations

The assessment consists of an oral or a written exam (according to Section 4 (2), 1 of the examination regulation). The exam takes place at every semester. Re-examinations are offered at every ordinary examination date.

Prerequisites

None.

Conditions

None.

Learning Outcomes

Content

Complementary literature

Remarks

Block course. To attend the course please register at the secretariat of the chair of insurance science. The course will not be held any more after winter term 2009/10, the exam will not be offered after the exam period of summer term 2010.
Course: Project Work in Risk Research

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an oral presentation (incl. elaboration) and of the participation in working groups (according to Section 4 (2), 3 of the examination regulation).

Prerequisites
Willingness to work through literature beforehand in order to understand the topic better.

Conditions
None.

Learning Outcomes
Critically and creatively integrating knowledge from (individual and collective) group work for developing and assessing ideas for the solution of current problems in risk research.

Content
Project work with topic from current risk research.
Topics covered so far:
 • Risk perception of extreme natural events
 • Terrorism: Prevention, Provention, Perception
 • Hazard potential of man-made hazards
 • Risk communikation
 • risk perception within different cultures
 • Scenario-based hazard assessment
 • enhancement of self protection of citizens

Basic literature
Indicated during the course for the selected topic.

Complementary literature
Indicated during the course for the selected topic.

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
The course is held in the summer term 2010 together with the Research Colloquium for Doctoral Students.
Course: Risk Communication

Lecturers: Ute Werner
Credit points (CP): 4.5 Hours per week: 3/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an oral presentation (incl. elaboration) within the lecture (according to Section 4 (2), 3 of the examination regulation) and an oral exam at the end of the semester (according to Section 4 (2), 2 of the examination regulation). The overall grade consists of the valuation of the oral presentation (incl. elaboration) and the valuation of the oral exam.

Prerequisites
None.

Conditions
None.

Learning Outcomes
See German version.

Content
See German version.

Complementary literature
Munich Re. Risikokommunikation. Was passiert, wenn was passiert? www.munichre.com
Fallstudien unter www.krisennavigator.de

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Management of Business Networks

Lecturers: Christof Weinhardt, Jan Kraemer
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Service Management [IW4BWLISM6] (S. 29)

Learning Control / Examinations
The total grade for this lecture will consist of 50% of the grade achieved in the written mid term examination, to 10% of the assignments during the exercises, and to 40% of a project work, which includes a term paper and a presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student will become acquainted with the theoretical fundamentals of economic networks and how to manage them. Support of economic networks by information systems will be accomplished by several case studies, which will be worked on by groups autonomously. Basic knowledge of organisation theory, network analysis, strategic & operative management and logic systems will be communicated to the student. Furthermore, he will have a focused view on the mechanisms and supporting tools for interaction between companies, especially in negotiations and negotiation-supporting systems. In small groups, the student is trained in team-oriented and autonomous working techniques. Within this domain, the student will be trained to seek and read relevant technical literature in English, the language of science, and to adopt it to a specific problem.

Content
The significant and lasting impact of web-based business-to-business (B2B) networks has just recently become apparent. The exploratory phase during the first Internet hype bred a variety of approaches which were often bold in business nature, yet simple and unfounded in system architecture. Only very few survived and proved sustainable. Nowadays web-based B2B networks are increasingly reappearing and even promoted by major traditional companies and governments. However, this new wave of networks is more mature and more powerful in functionality than their predecessors. As such they provide not only auction systems but also facilities for electronic negotiation. This implies a shift from price-focused to relationship-oriented trading. But what motivates this shift? Why do firms enter business networks? How can these networks be best supported by IT? The course intends to resolve these questions. Firstly, an introduction in organization theory will be given. Secondly, the problems of networks will be addressed. Thirdly, an analysis of how IT can alleviate those problems will be undertaken.

Media
Powerpoint presentations, recorded lecture available on the internet, (if circumstances allow videoconferencing).

Basic literature
Course: eFinance: Information Engineering and Management for Securities Trading

Lecturers: Christof Weinhardt, Ryan Riordan
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Market Engineering [IW4BWLISM3] (S. 26)

Learning Control / Examinations
70% of the mark is based on the written examination and 30% is based on assignments during the exercises.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The goal of the lecture is to make the students familiar with the theoretical as well as the practical aspects of electronic trading and exchanges and the IT systems used in the financial industry. While markets for products and services are discussed, the focus is on the trading of financial securities. Existing centralized equity exchanges face competition from new alternative trading systems make possible by today’s information technology. This course will also examine the impact and implications of this dynamic. The focus is on the economic and technical design of markets as information processing systems.

Content
The theoretical part of the course examines the New Institutions Economics which provides a theoretically found explanation for the existence of markets and intermediaries. Building upon the foundations of the market micro structure, several key parameters and factors of electronic trading are examined. These insights gained along a structured securities trading process are complemented and verified by the analysis of prototypical trading systems developed at the institute as well as selected trading systems used by leading exchanges in the world. In the more practical-oriented second part of the lecture, speakers from practice will give talks about financial trading systems and link the theoretical findings to real-world systems and applications.

Media
Powerpoint presentations, recorded lecture available on the internet

Basic literature

Complementary literature
Course: Business Models in the Internet: Planning and Implementation [26456]

Lecturers: Christof Weinhardt, Carsten Holtmann, Clemens van Dinther
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Business & Service Engineering [IW4BWLISM4] (S. 27)

Learning Control / Examinations
50% of the mark is based on the written mid term examination, 10% is based on assignments during the exercises, and 40% of the mark is based on a project work, which includes a term paper and a presentation.

Prerequisites
None.

Conditions
None

Learning Outcomes
This lecture aims at providing the students with knowledge about the lifecycles of web applications starting from economic concepts to the commercialization within the WWW. Students will learn, on the one hand, to analyze, design and to implement web applications and, on the other hand, to develop sustaining business models. This involves the analysis of the online users’ requirements and expectations, the assessment of the potential innovative web applications have, the study of web technologies allowing students to gauge their applicability.

Content
The emergence of internet economy has resulted in an accelerated evolution of commerce models in eBusiness. Early adopters have experimented with a variety of new business models, technologies and application designs. At the same time, there has been a growing demand for new standards to facilitate the exchange of information, catalogue content and transactions between buyers and sellers. But the true understanding of how to bring buyers and sellers together is still widely missing, leading to multiple cases of costly missed investments. This course focuses on the design and implementation of successful business models for eBusiness applications for the World Wide Web (WWW), imparting the basic knowledge for building successful eBusiness applications. We consider not only technical foundations of eBusiness applications but also economical aspects. In small groups, students develop and implement an eBusiness model that is eventually discussed with a representative from the venture capitalist industry.

Media
Powerpoint presentations, recorded lecture available on the internet, (if circumstances allow videoconferencing)

Basic literature
Will be announced within the course.
Course: Computational Economics

Lecturers: Clemens van Dinther
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Market Engineering [IW4BWLISM3] (S. 26)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The Student should become acquainted with the methods of Computational Economics and be able to put them into practice. The focus is on two important modelling concepts “System Dynamics” and “Agent Models”, including the most important mathematical fundamentals. The goal is to understand the challenge and the possibilities of the modelling of limited rational behaviour and of ability to learn. The students should know the advantages and disadvantages of the different models and be able to use them according to the situation and to evaluate them with the help of adequate statistical methods for analyzing simulation results. Furthermore, the student should be able to apply the acquired knowledge adequately in practice. Therefore practical scenarios will be modelled and analyzed. The students should be capable of finding arguments for the chosen solutions and express them to others.

Content
Examining complex economic problems with classic analytical methods usually requires making numerous simplifying assumptions, for example that agents behave rationally or homogeneously. Recently, widespread availability of computing power gave rise to a new field in economic research that allows to model heterogeneity and forms of bounded rationality: Computational Economics. Within this new discipline, computer based simulation models are used for analyzing complex economic systems. In short, an artificial world is created which captures all relevant aspects of the problem under consideration. Given all exogenous and endogenous factors, the modeled economy evolves over time and different scenarios can be analyzed. Thus, the model can serve as a virtual testbed for hypothesis verification and falsification.

Media
Lecture slides and exercises as pdf-files.

Basic literature
- C. W. Kirkwood: SSSystem dynamics methods - a quick introduction.

Complementary literature
Course: Market Engineering: Information in Institutions

Course key: [26460]

Lecturers: Christof Weinhardt, Jan Kraemer, Clemens van Dinther

Credit points (CP): 4,5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Englisch

Learning Control / Examinations

The assessment of this course is a written examination (following §4(2), 1 SPO) and by submitting written papers as part of the exercise (following §4(2), 3 SPO). The total grade for this lecture will consist of 70% of the grade achieved in the written examination and to 30% of the assignments during the exercises.

Prerequisites

None.

Conditions

None.

Learning Outcomes

The students

- understand the role of an economist as an engineer to design markets
- compare different markets and market mechanisms to evaluate their efficiency
- apply game theoretic modelling and mechanism design as well as auction theory for interdisciplinary evaluation.

Content

The ongoing advancements in information technology have revolutionized traditional business processes and given rise to electronic marketplaces. In contrast to physical marketplaces, electronic markets do not just evolve, but must be carefully designed, implemented and monitored and evaluated. Moreover electronic markets demand open and flexible platforms as well as adequate standards and information services. Future Market Engineers must therefore be able to consider the economic, legal and technological dimension of markets simultaneously. The lecture focuses on the discussion of (1) Microstructure, (2) IT infrastructure, and (3) Business Structure of electronic markets. Hence, students will be taught the economic incentives that a market can impose on market participants, development models for implementing markets, and business models for the application of markets.

Media

- Powerpoint,
- eLearning Platform Ilias

Basic literature

Course: Communications Economics

Lecturers: Stefan Seifert, Jan Kraemer
Credit points (CP): 4,5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch
Part of the modules: Communications & Markets [IW4BWLISM5] (S. 28)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The lecture builds upon basic knowledge in game theory and particularly Industrial Organization. Students will be taught basic economic principles of the communications industry, in particular the economics of networks and digital goods. Moreover, provided with the toolsets of game-theory and industrial economics, students are taught how to formalize and then assess complex aspects of current regulatory and economic issues. Furthermore, students will be introduced to scientific work by reading and discussing supplementary research articles.

Content
The communications industry has become one of the key drivers for economic development and, following the liberalization of the sector in the late twentieth century, it has undergone a tremendous transformation. The lecture “Communications Economics” will not only provide students with a basic economic understanding of the communications sector by laying out the economic principles of network industries and digital goods, but also seeks to investigate business strategies, such as handset subsidies, flat rate tariffs or bundle pricing and regulatory challenges, such as Digital Convergence, call termination fees, separation of network infrastructure and services and efficient distribution of spectrum licenses.

Media
- Powerpoint,
- eLearning Platform Ilias

Basic literature
Course: eServices

Lecturers: Christof Weinhardt, Gerhard Satzger
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 3
Teaching language: Englisch
Part of the modules: Service Management [IW4BWLISM6] (S. 29)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
This course conveys the fundamental knowledge to understand the importance of services in our economy and the impact of information and communication technology (ICT) on existing and emerging service industries. Combining theoretical models with multiple case studies and application scenarios, this course will enable students:

• to understand different service perspectives and apply the general concept of “value co-creation”
• to know and to be able to apply concepts, methods and tools used for the design, engineering and management of eServices
• to be familiar with current research topics
• to gain experience in group work and to improve their presentation skills
• to be exposed to English language in preparation for working in international environments

Content
The world is moving more and more towards “service-led” economies: in developed countries services already account for around 70% of gross value added. In order to design, engineer, and manage services, traditional “goods-oriented” models are often inappropriate. In addition, the rapid development of information and communication technology (ICT) pushes the economic importance of services that are rendered electronically (eServices) and, thus, drives competitive changes: increased interaction and individualization open up new dimensions of “value co-creation” between providers and customers; dynamic and scalable service value networks replace static value chains; digital services can be globally delivered and exchanged across today’s geographic boundaries;

Building on a systematic categorization of (e)Services and on the general notion of “value co-creation”, we cover concepts and foundations for engineering and managing IT-based services, allowing for further specialization in subsequent KSRI courses. Topics include service innovation, service economics, service modeling as well as the transformation and coordination of service value networks.

In addition, case studies, hands-on exercises and guest lectures will illustrate the applicability of the concepts. English language is used throughout the course to acquaint students with international environments.

Media
PowerPoint slides;

Complementary literature
Meffert, H./Bruhn, M. (2006), Dienstleistungsmarketing, 5. Auflage,
Stauss, B. et al. (Hrsg.) (2007), Service Science – Fundamentals Challenges and Future Developments.
Teboul, (2007), Services is Front Stage.
Course: Service Innovation

Lecturers: Gerhard Satzger, Andreas Neus
Credit points (CP): 5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Englisch

Learning Control / Examinations
The assessment consists of an 1h written exam following §4(2), 3 SPO and of assignments during the course as an “Erfolgskon-trolle anderer Art” following §4(2), 3 SPO.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Understand the difference between innovation and invention, and that disruptive effects can be fast and wide-reaching.
Know examples for innovation via processes, organization, business models; see how service and product innovation differ.
Understand the link between risk and innovation; be aware of obstacles to innovation and know how to address them.

Content
While innovation in manufacturing or agriculture can leverage a considerable body of research, experience and best practice, innovation in services has not reached the same level of maturity. In practice, while many organizations have a well-understood process for innovating in the product business, innovating in services is often still a fuzzy and complex undertaking. In this lecture we will discuss the state of research, compare product and service innovation, understand how innovation diffusion works, examine case studies of service innovation, open vs. closed innovation, how to leverage user communities to drive innovation and understand obstacles, and enablersand how to manage, incentivize and foster service innovation.

Basic literature
• von Hippel, Erich (2007) Horizontal innovation networks - by and for users. Industrial and Corporate Change, 16:2

Complementary literature
Course: Seminar Service Science, Management & Engineering

Course key: [26470]

Lecturers: Stefan Tai, Christof Weinhardt, Gerhard Satzger, Rudi Studer
Credit points (CP): 4
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
Lecture eServices [26466] is recommended.

Learning Outcomes
Autonomously deal with a special topic in the Service Science, Management and Engineering field adhering to scientific standards.

Content
Each Semester, the seminar will cover topics from a different selected subfield of Service Science, Management & Engineering. Topics include service innovation, service economics, service computing, transformation and coordination of service value networks as well as collaboration for knowledge intensive services.

See the KSRI website for more information about this seminar: http://www.ksri.kit.edu

Basic literature
The student will receive the necessary literature for his research topic.
Course: Special Topics in Information Engineering & Management
Course key: [26478]

Lecturers: Christof Weinhardt
Credit points (CP): 4.5
Hours per week: 3
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules:

Learning Control / Examinations
The student is evaluated based on the written and practical work, a presentation of the results in front of an audience and his contribution to the discussion.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of information engineering and management. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The practical work components should enable the student to learn and independently use scientific methods employed e.g. in case studies or experiments. The student learns to present his results in a paper and in front of an audience on an academic level. This process is helpful for further scientific work like the master or doctoral thesis.

Content
In this course the student should learn to apply the search methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires an interdisciplinary examination. Experiments, case studies or software development can be part of the practical work that offers the students an opportunity to get a deeper insight into the field of Information Engineering and Management. The course also encompasses a documentation of the implemented work.

Media
• Power Point
• eLearning Plattform Ilias
• Software tools for development, if needed

Basic literature
The basic literature will be made available to the student according to the respective topic.

Remarks
All the practical seminars offered at the chair of Prof. Dr. Weinhardt can be chosen in the Special Topics in Information Engineering & Management course. The current topics of the practical seminars are available at the following homepage: www.iism.kit.edu/im/lehre
Course: Business and IT Service Management

Lecturers: Gerhard Satzger
Credit points (CP): 5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Service Management [IW4BWISM6] (S. 29)

Learning Control / Examinations
The assessment of this course is a written examination (60 min.) (following §4(2), 1 SPO) and by submitting written papers as part of the exercise (following §4(2), 3 SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students understand the importance of “servitization” for organizations, the challenges for the management of service-oriented enterprises and the interdependence of business and IT services.
Students learn standard concepts and methods of service-oriented management and are able to apply them in practical case studies.
Student get familiar with current research and tools and are able to critically evaluate them.
Students practice to communicate in English and to work on solutions in teams.

Content
The rapid development of information and communication technology transforms many enterprises towards service-oriented structures: with new digital services, new business models and SOA-based process structures within larger service networks. Thus, strategic and operative management of service-oriented enterprises increasingly gains importance. In this course, we want to systematically acquire relevant know-how and apply this to real word examples. Particular focus will be on the interdependence of business, IT and legal aspects.
The course will be taught in English. It should provide ample opportunity for active participation of students. The course will integrate presentations of experts from business practice as well as a comprehensive case study ("en bloc" for 1 day) in which students will actively work on the strategic service-oriented shift of an enterprise.

Media
Presentation (pdf)

Basic literature
Maister, David H., Managing The Professional Service Firm, 1997
Teboul, J., Service is Front Stage: Positioning services for value advantage, 2006
Grönroos, Service Management and Marketing, 2007
Course: Electronic Markets (Principles)
Course key: [26502]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 4,5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from excersise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• has an overview about the different organizational form and their efficiency,
• names coordination methods and motivation methods and evaluates them regarding their efficiency,
• knows, in the context of markets as a coordination form, the conditions under which markets are not efficient (market failure),
• knows phenomena like adverse selections and moral hazard,
• names reasons for these phenomena and develops methods to encounter them.

Content
What are the conditions that make electronic markets develop? The first part of the lecture treats the selection of the type of organization as an optimization of transaction costs. The second part includes the efficiency of electronic markets (price, information and allocation efficiency) as well as reasons for market failure.

Besides a centralistic approach, markets can be used for decentral coordination of plans and activities. Hereby, optimality can be guaranteed, if the coordination problem has no design or innovation characteristics. Viewed from a bottom-up perspective, given the coordination problem, it is possible to answer questions regarding the centralization or decentralization, the design of coordination mechanisms, and the coherence of business strategies. The last part of the lecture consists of motivation problems, like bounded rationality and information asymmetries (private information and moral hazard) and the development of incentive systems.

Basic literature

Complementary literature

Module Handbook: Version 04.03.2010
Information Engineering and Management (M.Sc.)
Course: Electronic Markets: Institutions and Market Mechanisms

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from exercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
None.

Learning Outcomes

The student
- specifies different organizational forms of electronic markets, classifies these markets according to their characteristics, and determines the optimal organizational form for a given task
- defines markets in a structured way and knows the roles of the different players
- is aware of the possibilities and usage of nonlinear pricing and is able to set adequate tariffs

Content

The lecture treats the design of electronic markets. Therefore, interdependencies of market organization, market mechanisms, institutions and products are described and theoretical foundations are lectured.

The topics include:
- classification of markets
- auction methods and auction theory
- automated negotiations
- nonlinear pricing
- continuous double auctions
- market-maker, regulation, control
- ...

Within this course, we analyze in small groups different existing markets, the design of new markets, and the implementation of simple forms of auctions. An emphasis is set on the independent and careful study of relevant scientific articles and thereby the buildup of a collection on this topic.

Basic literature

Complementary literature

Alex Ockenfels and Alvin E. Roth. Late and Multiple Bidding in Second Price Internet Auctions: Theory and Evidence Concerning Different Rules for Ending an Auction. Technical report, Faculty of Economics and Management, University of Magdeburg, P.O. Box 4120, D-39016 Magdeburg and Harvard University, Department of Economics and Graduate School of Business Administration, Soldiers Field Road, Baker Library 183, Boston, MA 02163, USA, 2001.

Axel Ockenfels and Alvin E. Roth. Late and Multiple Bidding in Second Price Internet Auctions: Theory and Evidence Concerning Different Rules for Ending an Auction. Technical report, Faculty of Economics and Management, University of Magdeburg, P.O. Box 4120, D-39016 Magdeburg and Harvard University, Department of Economics and Graduate School of Business Administration, Soldiers Field Road, Baker Library 183, Boston, MA 02163, USA, 2001.

Remarks
The course will not be offered any more. An exam will be offered in september 2010.
Course: Personalization and Recommender Systems

Course key: [26506]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 4.5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from excersise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
Keine

Learning Outcomes
The student
- knows the options and opportunities of personalization especially in the area of Internet based services
- is proficient in different statistical, data-mining, and game theory methods of computing implicit and explicit recommendati-ons
- evaluates recommender systems and compares these with related services

Content
At first, an overview of general aspects and concepts of personalization and its relevance for service providers and customers is given. Next, different categories of recommender systems are discussed. This includes explicit recommendations like customer reviews as well as implicit services based on behavioral data. Furthermore, the course gives a detailed view of the current research on recommender systems at the Chair of Information Services and Electronic Markets.

Media
Folien, Aufzeichnung der Vorlesung im Internet.

Basic literature

Complementary literature

Course: Customer Relationship Management

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 4,5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Advanced CRM [IW4BWLISM1] (S. 24)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from excersise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students
• understand service management as an economic basis for Customer Relationship Management and learn the resulting consequences for the management, the organisation itself and their departments,
• design and develop service concepts and service systems at a conceptual level,
• work on case studies in the CRM-area in small groups with limit time,
• learn English as the technical language in the area of CRM and consult internationale literature from this field for the case studies.

Content
The course begins with an introduction into Service Management as the strategic concepts which also covers all CRM applications. The course is divided in the basics of Service Management as well as different topics within this concept like external and internal marketing, quality management and organizational requirements.

Media
Slides

Basic literature

Complementary literature
Course: Master Seminar in Information Engineering and Management Course key: [26510]

Lecturers: Andreas Geyer-Schulz
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 of the examination regulation in form of an examination of the written seminar thesis and a presentation.
The grade is given, if the presentation is held and the seminar thesis is handed in.
The grade of this course is based on the grade of the seminar thesis. The presentation can improve or worsen the grade of the seminar thesis by up to two grade levels (up to 0.7 grades).

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student is able to
- to perform a literature search for a given topic, to identify, find, value and evaluate the relevant literature.
- to write his seminar thesis of 15-20 pages in a structured scientific manner.
- to communicate his results in a presentation with discussion afterwards.

Content
The seminar servers on one hand to improve the scientific working skills. On the other hand, the student should work intensively on a given topic and develop a scientific work, that is based on a profound literature research.
Course: Social Network Analysis in CRM

Lecturers: Bettina Hoser
Credit points (CP): 4.5 Hours per week: 2/1
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced CRM [IW4BWLISM1] (S. 24)

Learning Control / Examinations
Assessment consists of a written exam of 1 hour length following §4 (2), 1 of the examination regulation and by submitting written papers as part of the exercise following §4 (2), 3 of the examination regulation.

The course is considered successfully taken, if at least 50 out of 100 points are acquired in the written exam. In this case, all additional points (up to 12) from excercise work will be added. The grades of this lecture are assigned following the table below:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Minimum points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>104</td>
</tr>
<tr>
<td>1.3</td>
<td>98</td>
</tr>
<tr>
<td>1.7</td>
<td>92</td>
</tr>
<tr>
<td>2.0</td>
<td>86</td>
</tr>
<tr>
<td>2.3</td>
<td>80</td>
</tr>
<tr>
<td>2.7</td>
<td>74</td>
</tr>
<tr>
<td>3.0</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>62</td>
</tr>
<tr>
<td>3.7</td>
<td>56</td>
</tr>
<tr>
<td>4.0</td>
<td>50</td>
</tr>
<tr>
<td>4.7</td>
<td>40</td>
</tr>
<tr>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Prerequisites
None

Conditions
keine

Learning Outcomes
The objectives of this course are to give students an introduction to and overview of social network analysis as a methodological approach for analysis in different areas of business administration, especially customer relationship management. Theory as well as application of social network analysis will be discussed. Students will learn how to perform and interpret analysis results.

Content
The trend to view economic and social structures as networks allows to anlyse these networks by well established and new methods from mathematics, business administration, sociology and physics. The goal of these analyses are to understand different aspects of these networks: In organizations (internal Marketing): Here networks analysis kann help to detect whether hierarchies and official structures are ‘alive’ or if so called ‘hidden organizations’ have evolved. In addition such results can reveal inefficient procedures or structures within an organization. In CRM: Within analytical CRM the concept of customer value can be enriched by enclosing the network value that customer offers to the company (Customer Network Value). In Marketing: To successfully implement a virale marketing strategy the knowledge of the structure of customer networks is essential. The dynamics on these networks are relevant if one wants to use these networks for marketing purposes. Internetstructure: For information services, such as e.g. search engines, the identification of relevant nodes and clusters is a the major service profided and thus relevant for business success.

The analysis should identify the relevant (central) nodes in a network, find cliques, describe their connections and, if relevant, describe also the direction of information flow within the network. To achieve this different methods will be discussed during the course.

Media
Folien

Basic literature
Course: Interdisciplinary Seminar in Information Engineering and Management

Course key: [26530]

Lecturers: Andreas Geyer-Schulz, Thomas Dreier

Credit points (CP): 6 **Hours per week:** 2

Term: Winter-/Sommersemester **Level:** 4

Teaching language: Deutsch

Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

The assessment for this module is conducted using a “Erfolgskontrolle anderer Art” following §4 (2), 3 of the “Prüfungsordnung des Master-Studiengangs Informationswirtschaft”. The exact form and composition of this assessment is defined for each Interdisciplinary Seminar separately.

Prerequisites

Students should participate in the Interdisciplinary Seminar as last course of the compulsory program of the “Master-Studiengang Informationswirtschaft”.

Conditions

None.

Learning Outcomes

Participants of the Interdisciplinary Seminar in Information Engineering and Management should

- analyze a current issue of information engineering and management using the scientific methods of the participating disciplines and
- derive interdisciplinary approaches based on the state of the arts of the corresponding disciplines,
- justify the chosen solutions and methods during discussions using scientific arguments,
- and write down the results in a form appropriate to be published in a scientific journal.

Content

The Interdisciplinary Seminar is regulated in §14 of the “Prüfungsordnung des Master-Studiengangs Informationswirtschaft”. During the work on the interdisciplinary topic, students are supervised by a group of tutors. This group consists of one participant from computer science, one from business economics and one from law.
Course: Business Dynamics

Lecturers: Andreas W. Neumann
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment consists of an 1h written examination following SPO §4, Abs. 2, 1 and of assignments during the course as an “Erfolgskontrolle anderer Art” following SPO § 4, Abs. 2, 3.
The written examination is offered every semester.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students
• acquire the system thinking worldview for economics
• utilize different methods and tools to map the structure of complex economic systems
• are able to relate dynamic effects to these structures
• learn how to simulate systems within the computer for testing purposes
• use simulation results to improve models
• can independently as well as in teams model, analyze, and optimize business processes and applications
• know how to offer business dynamics as a consulting service and work together with client teams

Content
Corporate growth, the diffusion of new technologies, business processes, project management, product development, service quality management — all these are examples for application areas of business dynamics. They all are dynamic systems that are characterized by feedback loops between many different variables. By means of the tools of business dynamics such systems can be modelled. Simulations of complex systems allow the analysis, the goal centered design, as well as the optimization of markets, business processes, policies, and organizations.

Media
• Slides
• System Dynamics Software Vensim PLE: http://www.vensim.com/venple.html

Basic literature

Complementary literature
To be announced in class.
Course: Derivatives

Lecturers: Marliese Uhrig-Homburg
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: F1 (Finance) [IW4BWLFBV1] (S. 30), F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of the Derivatives lecture is to become familiar with financial markets, especially derivatives markets. Traded securities and frequently used trading strategies will be introduced. Furthermore the pricing of derivatives will be derived and their use in risk management will be discussed.

Content
The lecture deals with the application areas and valuation of financial derivatives. After an overview of the most important derivatives and their relevance, forwards and futures are analysed. Then, an introduction to the Option Pricing Theory follows. The main emphasis is on option valuation in discrete and continuous time models. Finally, construction and usage of derivatives are discussed, e.g. in the context of risk management.

Media
Slides, Exercises/Exercise sheets

Basic literature
• Hull (2005): Options, Futures, & Other Derivatives, Prentice Hall, 6th Edition

Complementary literature
Course: Asset Pricing

Lecturers: Marliese Uhrig-Homburg, Martin E. Ruckes
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: F1 (Finance) [IW4BWLFBV1] (S. 30), F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of this course is to become familiar with investment decisions on stock and bond markets. The students will learn to assess risk and return of security portfolios and their influence on security prices.

Content
The lecture deals with investment decisions under uncertainty, where the main emphasis is on investment decisions on stock markets. At first, fundamental concepts of decision making under uncertainty are introduced. Then, after a discussion of the basic questions of corporate valuation, the lecture focuses on portfolio theory. After that, risk and return in equilibrium are derived using the Capital Asset Pricing Model and the Arbitrage Pricing Theory. The lecture concludes with investments on bond markets.

Complementary literature
Bodie/Kane/Marcus (2008): Investments, 7. Auflage
Course: Fixed Income Securities
Course key: [26560]

Lecturers: Marliese Uhrig-Homburg
Credit points (CP): 4.5
Hours per week: 2/1
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations

Prerequisites

None.

Conditions

None.

Learning Outcomes

The objective of this course is to become familiar with national and international bond markets. Therefore, we first have a look at financial instruments that are of particular importance. Thereafter, specific models and methods that allow the evaluation of interest rate derivatives are introduced and applied.

Content

The lecture deals with both German and international bond markets, which are an important source of funding for both the corporate and the public sector. After an overview of the most important bond markets, various definitions of return are discussed. Based on that, the concept of the yield curve is presented. The modelling of the dynamics of the term structure of interest rates provides the theoretical foundation for the valuation of interest rate derivatives, which is discussed in the last part of the lecture.

Basic literature

Complementary literature

Course: Credit Risk

Lecturers: Marliese Uhrig-Homburg

Credit points (CP): 4.5 **Hours per week:** 2/1

Term: Wintersemester **Level:** 4

Teaching language: Deutsch

Part of the modules: F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
The objective of this course is to become familiar with the credit markets and the credit risk indicators like ratings, default probabilities and credit spreads. The students learn about the components of credit risk (e.g. default time and default rate) and quantify these in different theoretical models to price credit derivatives.

Content
The lecture deals with the diverse issues arising in the context of measuring and controlling credit risk. At first, the theoretical and empirical relations between ratings, probabilities of default, and credit spreads are analysed. After that, the focus is on the valuation of credit risk. Finally, the management of credit risk, e.g. using credit derivatives and credit portfolio analysis, is examined, and the legal framework and its implications are discussed.

Basic literature

Complementary literature
Course: International Finance

Course key: [26570]

Lecturers: Marliese Uhrig-Homburg, Walter

Credit points (CP): 3 **Hours per week:** 2

Term: Sommersemester **Level:** 3

Teaching language: Deutsch

Part of the modules: F2 (Finance) [IW4BWLFBV2] (S. 31)

Learning Control / Examinations

Prerequisites

None.

Conditions

None.

Learning Outcomes

The objective of this course is to become familiar with the basics of investment decisions on international markets and to manage foreign exchange risks.

Content

The main aspects of this course are the chances and the risks which are associated with international transactions. We carry out our analysis from two distinct perspectives: First the point of view of an international investor second that, of an international corporation. Several alternatives to the management of foreign exchange risks are shown. Due to the importance of foreign exchange risks, the first part of the course deals with currency markets. Furthermore current exchange rate theories are discussed.

Complementary literature

- D. Eiteman et al. (2004): Multinational Business Finance, 10. Auflage
Course: Applied Differential Geometry

Lecturers: Hartmut Prautzsch
Credit points (CP): 3
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Curves and Surfaces [IW4INKUF] (S. 85)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Students are introduced into an active research area and will be acquainted with the important specifics

Content
Elements of differential geometry as curvature, isophothes, geodesics, curvature lines, offset curves and surfaces, minimal surfaces, optimal parametrizations, developable surfaces, unfoldings. These concepts are introduced for smooth surfaces and similar discrete concepts are discussed for triangular meshes.
Course: Algorithms for Ad-Hoc and Sensor Networks

Lecturers: Bastian Katz
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
Basic knowledge of graph theory and algorithmics are presumed to be known.

Conditions
None.

Learning Outcomes
Students acquire a deep and systematic understanding of algorithmic questions in geometric distributed systems and relevant technologies. They learn how to model tasks in communication and self-organization as geometric and graph-theoretic problems. They understand the development and analysis of centralized and distributed algorithms in the field of sensor networks and are able to apply this knowledge to other fields of research in computer science.

Content
Sensor networks consist of a large number of tiny computing devices that communicate with small range radio transmissions and observe their immediate environment with simple sensors.

Sensor network technology is the result of the development in the integration of microcontrollers, memory and radio chips, sensors for pressure, light, temperature, chemicals etc.

Wireless sensor networks have attracted an enormous attention among research from diverse scientific communities.

They inspired a novel class of algorithmic problems arising from the unique combination of geometry and computation, e.g. new routing paradigms and topology control.

This lecture covers a variety of fundamental algorithmic issues arising in sensor networks, especially with the different models as graph theoretic or geometric problems and with the design of distributed algorithms.

Complementary literature

Remarks
The course is not lectured in the summer term 2010.
Course: Algorithms for Visualization of Graphs

Lecturers: Dorothea Wagner, Martin Nöllenburg
Credit points (CP): 3/5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations

Prerequisites
Lecture Algorithmentechnik [24079] is recommended.

Conditions
None.

Learning Outcomes
The students acquire a systematic understanding of algorithmic problems and solutions in the area of graph visualization, which builds upon existing knowledge in graph theory and algorithmics. The problems at hand are reduced to their algorithmic core and are subsequently solved efficiently – if possible from the complexity point-of-view. The students learn to apply the presented methods and techniques autonomously to related questions. They are enabled to work on current research questions in graph drawing.

Content
Networks are relational data that increasingly occur in various applications. Examples range from physical networks, for example, transport or supply networks, to abstract networks, for example, social networks. Network visualization is a basic tool to explore and understand such networks.

Mathematically, networks are modeled as graphs and the visualization problem reduces to the algorithmic core problem of finding a suitable graph layout, that is, determining the positions of vertices and edges in the plane. Depending on the application and the properties of the graph at hand different constraints and optimization criteria apply. The corresponding research area of graph drawing uses approaches from algorithms, graph theory, and computational geometry.

In the course of the lecture, a representative selection of visualization algorithms is presented.

Media
Slides.

Complementary literature
- Di Battista, Eades, Tamassia, Tollis: Graph Drawing, Prentice Hall 1999
- Kaufmann, Wagner: Drawing Graphs, Springer-Verlag, 2001

Remarks
The course is not lectured in the summer term 2010.
Course: Einführung in die Computergraphik

Lecturers: Jan Bender
Credit points (CP): 3
Term: Wintersemester
Teaching language: Deutsch
Part of the modules: Algorithmen der Computergraphik [IW4INACG] (S. 86)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
Content
Complementary literature
Lehrbücher über Computergraphik
Course: Seminar Geometric computing

Course key: [GVsem]

Lecturers: Hartmut Prautzsch
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Algorithmen der Computergraphik [IW4INACG] (S. 86)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
- Insight into an active research area within the field of applied geometry and computer graphics.
- Learning to work with scientific literature and to critically incorporate and present a scientific topic

Content
Recently published research papers.
Course: Curves and Surfaces in CAD II

Lecturers: Hartmut Prautzsch
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Curves and Surfaces [IW4INKUF] (S. 85), Algorithmen der Computergraphik [IW4INACG] (S. 86)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content

Basic literature
- Prautzsch, Boehm, Paluszny: Bézier and B-Spline Techniques, Springer 2002

Complementary literature
- de Boor: A practical guide to splines, 2001
Course: Curves and Surfaces in CAD III

Lecturers: Hartmut Prautzsch
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Curves and Surfaces [IW4INKUF] (S. 85)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
Knowledge of basic techniques enabling the student to attend advanced courses as „Curves and Surfaces III“, „Rational Splines“ or „Subdivision algorithm“

Content
Bèzier-and B-spline techniques, constructive algorithms, underlying geometric structures, as described in the book “Bèzier-and B-spline techniques“. The first course covers curves and tensor product surfaces, the second course is on constructions of smooth free form surfaces and the third course is devoted to box splines, multivariate splines, fair surfaces, scattered data interpolation and selected topics.
Course: Component Based Software Architecture

Lecturers: Ralf Reussner, Michael Kuperberg, Klaus Krogmann
Credit points (CP): 3 Hours per week: 2
Term: Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software Systems [IW4INSWS] (S. 69), Software-Methodik [IW4INSWM] (S. 70)

Learning Control / Examinations
The assessment is described in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The students learn the advantages of component-based software development and understand its connection to software engineering and software architectures. Basic concepts such as design of component-based architectures, interoperability checks and parametric contracts for interfaces form the foundations for understanding current component models and meta-models from industry and research. The students analyse the advantages and disadvantages of these component models, thus learning to evaluate them in a critical way. Important techniques and approaches from practice and academia are presented, such as Enterprise Java Beans, SOA, middleware, product line, design-time performance prediction and code generation from models. The students become acquainted with languages for architecture description and modeling (e.g. UML), as well as with structured methods for evaluation of architectures (e.g. SAAM). An introduction to model-driven software development (MDSD) and model-driven architectures (MDA) showcases the ongoing developments and is illustrated using architectural patterns.

Content
Enterprise Java Beans (EJBs), CORBA or COM - component-based software development is successful in industry, and shows widespread and growing support within the software engineering discipline. The advantages of component-based software development include the reusability of components and thereby an increased efficiency in the development, shortened development cycles and hence a reduction of time-to-market.

From a scientific point of view, statements about the compatibility and functionality of connected components need particular attention. In addition, component-based approaches are particularly suited for the engineering of software with predictable quality attributes. This allows, for example, determining performance and reliability characteristics before the actual implementation of a software system. On this basis, one can make informed decisions about alternatives during the design phase of software.

In the lecture, paradigms and techniques for a systematic approach to design, implementation and testing of software components will be taught. These include, among other things, UML for the description of static and dynamic aspects of components, interface design, parameterized contracts, component adaptation and interoperability. Using the Palladio component model, trends and advanced technologies are presented, such as performance prediction at design time, role models for design and development of component-based software, and model-driven code generation.

The course deals with UML as a language for describing components and architectures. The evaluation of architectures is illustrated by the SAAM and ATAM process. Attention is also paid to the development process, where the emphasis is placed on developing using model-driven architecture (MDA). In this context, the lecture deals with technologies such as MOF, OCL and architecture-and-model-driven software development (AC-MDSD). Modern middleware such as Java EE / EJB is presented together with taxonomy of different types of middleware. Furthermore, software product lines, SOA (service-oriented architecture) and architectural pattern are covered in the course. The treatment of functional architectural features will be complemented by presentation of the methods for analysis of extra-functional properties of architectures, including model-based method for predicting the performance.

Media
Slides

Basic literature
- Paul Clements et al.: "Documenting Software Architectures: Views and Beyond" (Addison-Wesley, Boston, 2005)
Complementary literature

- J. Cheesman, J. Daniels, *UML Components*, Addison-Wesley, 2000
- C. Atkinson et al., *Component-based Product Line Engineering with UML*, Addison-Wesley, 2002
- Martin Fowler, *Analysis Patterns - Reusable Object Models* Addison-Wesley, 1997
- John Cheesman and John Daniels: “UML Components” (Addison-Wesley, Boston, 2001)
- Desmond Francis D’Souza, Alan Cameron Wills: “Object, Components and Frameworks with UML - The Catalysis Approach” (Addison-Wesley, Boston, 1999)
Course: Moving Objects Databases

Lecturers: Klemens Böhm
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Englisch
Part of the modules: Innovative Concepts of Data and Information Management [IW4INIKDI] (S. 78)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
At the end of the course, the participants are aware of the different kinds of information one is interested in and can be relevant in the presence of moving objects, and they are able to categorise them. They are aware of the management of spatial and temporal data, as well as data characterising moving objects. Further, the participants are able to formulate the various interests in information in the respective query languages and can comment on the efficient evaluation of such queries.

Content
Advancements in the field of information technology have made it easy to collect huge amounts of data describing the movement of objects, e.g., vehicles, air planes, robots, cell-phone users, natural phenomena such as cyclones or snowstorms, historic developments (e.g., exact locations of certain countries), or - last but not least - body movements and processes within the human body. In consequence, the problem how to organise such data and how to analyse it comes to the fore. This course targets at exactly this subject matter.

Keywords:
- query languages for temporal data (i.e., data where data objects are furnished with temporal information such as time-stamps),
- query languages for moving objects in the past and query languages for future movements,
- constraint databases,
- spatial data structures,
- data structures for past and for future movements.

The topic is important for many areas of business/industry such as (obviously) logistics, but also vehicle manufacturing, avionics and the aerospace industry, telecommunication and - last but not least - web search and is in line with other focal points ("Vertiefungsgebieten") of the Fakultät für Informatik such as robotics, anthropomatics and telematics. I.e., on the one hand, this lecture targets for students who are interested in such applications. On the other hand, another objective of this lecture is to generate a broader and deeper understanding of database technology and its mode of operation. I.e., strictly speaking, it is also of interest for students who are not particularly interested in this specific application domain from a database perspective ("moving objects"), but just want to delve more into database technology and learn more. We are well aware of the fact that the issue of data privacy ("Datenschutz") is closely related to the content of this lecture. However, we plan to - largely - ignore this aspect in the context of this lecture. The reason is that we offer the separate lecture "Datenschutz und Privatheit in vernetzten Informationssystemen" the summer semester.

Media
Slides.

Basic literature
Ralf Hartmut Güting, Markus Schneider: Moving Objects Databases, Academic Press, 2005

Complementary literature
Will be announced in the lecture.
Course: Public Key Cryptography

Lecturers: Jörn Müller-Quade
Credit points (CP): 6 Hours per week: 3
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Public Key Cryptography [IW4INPKK] (S. 63)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
Recommendation:
Knowledge of the foundations of Algebra is helpful.

Conditions
None.

Learning Outcomes
• The student will learn the methods and mechanisms of cryptography in practice as well as the theoretical foundations of cryptography.
• The student should be able to critically assess algorithms and protocols and to identify vulnerabilities / threats.

Content
• This course will show the students the theoretical and practical aspects of Public Key Cryptography.
• The most important primitives of cryptography will be covered: one-way function, hash function, digital signature, public key encryption and digital signatures (RSA, ElGamal), and various methods of key exchange (e.g. Diffie-Hellman) with their strengths and weaknesses.
• In addition to public-key systems, the module provides knowledge about number-theoretic algorithms for solving problems such as primality testing, factoring large numbers and computing discrete logarithms in finite groups. Thus the choice of parameters and the related level of security of a cryptographic system can be estimated.
• Furthermore, an introduction to provable security is provided, which presents some of the key security concepts (e.g. IND-CCA).
• The combination of cryptographic modules will be treated using the example of currently used protocols such as Secure Shell (SSH), Transport Layer Security (TLS) and anonymous digital money.

Media
lecture notes

Basic literature
lecture notes , http://iaks-www.ira.uka.de/ (Zugangsdaten werden in der Vorlesung bekanntgegeben)

Complementary literature
• M. Bishop, Introduction to Computer Security, Addison-Wesley, Boston, 2005.
• J.D. Lipson, Elements of Algebra and Algebraic Computing, Addison-Wesley, 1981.
Course: Selling IT-Solutions Professionally

Lecturers: Klemens Böhm, Hellriegel
Credit points (CP): 1
Hours per week: 2
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Innovative Concepts of Data and Information Management [IW4NIKDI] (S. 78)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
At the end of the course, the participants:
1. Have gained knowledge and understanding for the sales process.
2. Have obtained knowledge and understanding for typical roles and tasks.
3. Have gained an insight into practical and application-oriented aspects through an extensive case study and role plays.

Content
One of the key qualifications in IT sales (activities related to the customer) is the understanding of sales mechanisms as well as having the corresponding basic skills. This applies not only to the marketing staff, but also to consultants of customers, project managers and developers. After a short overview of the different types of businesses and the resulting requirements regarding marketing and sales in general, the course focuses in particular on the process of selling IT-solutions professionally.

The topics are structured as follows:

1. Understanding the market: which information regarding the markets of clients and suppliers needs to be obtained and where can such information be found.
2. Knowing the customer: what should a provider know about the customer and its staff? This goes up to the question with which characters one has to deal with.
3. Planning the sales process: sales builds on phases, milestones and formally describable intermediate results.
4. Building a sales team: solutions are developed and sold with a team consisting of “players” having different expertise. How does one play this game?
5. Positioning the solution: obviously, it is necessary to develop a solution which is competitive, both technically and commercially.
6. To contract: what is important at the very last steps: how to convince the customers.

Based on a real-world case study, the students have the opportunity to reflect and practice the learned theory by means of teamwork and role plays. This aims at establishing a first connection to reality. The topics of the course are enriched with many examples from practice.

Complementary literature
Reiner Czichos: Creaktives Account-Management.
Course: Project Management in Practice
Course key: [PMP]

Lecturers: Klemens Böhm, Wolfgang Schnober
Credit points (CP): 1
Hours per week: 2
Term: Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Innovative Concepts of Data and Information Management [IW4NIKDI] (S. 78)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes
At the end of the course, the participants:
• Know the principles of project management and are able to make use of them in real-world case studies.
• Have profound knowledge about project phases, principles of project planning, fundamental elements such as project charter & scope definitions, descriptions of project goals, activity planning, milestones, project-structure plans, agenda and cost planning and risk management. Further, they know principle elements of project implementation, crisis management, escalation and, last but not least, project-termination activities.
• Understand and are able to adopt the fundamentals of planning as well as the subjective factors which are relevant in a project. This includes topics such as communication, group processes, teambuilding, leadership, creative solution methods and risk-assessment methods.

The following key skills are taught:
• Project planning
• Project control
• Communication
• Leadership behavior
• Crisis management
• Identification of and solutions of difficult situations
• Team building
• Motivation (of oneself and of others)

Content
• General project conditions
• Project goals / creative methods for identifying project goals and priorities
• Project planning
• Activity planning
• Cost/time/resource planning
• Phase models
• Risk management
• Project control / success control / monitoring
• Crisis management
• Project termination / lessons learned
Course: Lab Advanced Telematics

Lecturers: Martina Zitterbart

Credit points (CP): 5
Hours per week: 2

Term: Winter-/Sommersemester
Level: 4

Teaching language: Deutsch

Part of the modules: Networking Labs [IW4INNL] (S. 73)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Students can

- understand and master a concrete protocol or application in the domain of Telematics in detail
- implement protocols or applications in the domain computer networks in a common programming language
- work goal driven based on a given exercise of a given subject independently, but also in a team.

Content

This lab course examines concrete subjects that were introduced in the corresponding lectures. It is advised but not compulsory to attend the respective lectures before the lab course.

The following subjects are covered:

- Project lab “Sensor Networks”
- Project lab “Future Internet Technologies”
- Lab “Mobile Communications”
Course: Laboratory in Cryptography

Lecturers: Jörn Müller-Quade
Credit points (CP): 3 Hours per week: 4
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Topics in Cryptography [IW4INFKRYP] (S. 62)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• understands a given protocol or a given attack on a cryptographic system,
• implements a cryptographic protocol in a standard programming language,
• realizes attacks on cryptographic systems,
• learns to work aim-oriented on a given task in a small group.

Content
The Praktikum covers different areas of computer security and cryptography. The topics are presented theoretically and are implemented afterwards. Covered topics are:
• Historical encryption
• Kerberos protocol
• Hash functions
• Block ciphers
• Efficient long number arithmetic
• ElGamal encryption / signature
Course: Software Security

Lecturers: Gregor Snelting
Credit points (CP): 3 Hours per week: 2/1
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software-Methodik [IW4INSWM] (S. 70)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Knowledge of the fundamental techniques of software security; gaining insight in ongoing research

Content
Whereas the classical notion of computer security bases on access control, certificates, cryptography, etc., software security checks analyze the program code to find security leaks. Attackers try, in return, to make use of deficiencies of programming languages or techniques. This lecture presents such attacks and security checks, that target the program or binary code directly, and outlines the state-of-the-art in science.

Topics:

• confidentiality and integrity
• buffer-overflow attacks
• library functions and linker
• scripting languages
• noninterference
• information flow control
• taint analysis
• security type systems
• program analyses
• tools

Remarks
The course is not lectured in the summer term 2010.
Course: Software Engineering II

Lecturers: Ralf Reussner, Walter F. Tichy
Credit points (CP): 6 Hours per week: 3/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Software-Methodik [IW4INSWM] (S. 70)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Seminar in Enterprise Information Systems

Lecturers: Rudi Studer, Andreas Oberweis, Wolffried Stucky, Thomas Wolf, Ralf Kneuper
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWS] (S. 21)

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis and a presentation.
The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.
The seminar is for bachelor as well as master students. The differentiation will be made by selection of different topics and different standards of evaluation.

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
Students are able to
- do literature search based on a given topic: identify relevant literature, find, assess and evaluate this literature.
- write the seminar thesis (and later the Bachelor-/Masterthesis) with a minimal learning curve by using format requirements such as those recommended by well-known publishers.
- give presentations in a scientific context in front of an auditorium. These techniques are presented and learned during the seminar.
- present results of the research in written form generally found in scientific publications.

Content
The seminar intensifies and extends specific topics which are discussed within corresponding lectures. Knowledge of these lecture topics is an advantage but not a precondition.
Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre

Basic literature
Literature will be given individually in the specific seminar.
Course: Seminar Efficient Algorithms

Lecturers: Hartmut Schmeck
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced at the beginning of the semester.
Course: Seminar Complexity Management

Lecturers: Detlef Seese
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
see German part

Prerequisites
See corresponding module information.

Conditions
None.

Learning Outcomes
see German part

Content
see German part

Basic literature
Will be announced in the lecture.

Remarks
The number of participants is limited. Please take notice about the inscription procedure at the institutes website. Specific titles and the topics of offered seminars will be announced before the start of a semester in the internet at http://www.aifb.uni-karlsruhe.de/Lehre.
Course: Seminar Knowledge Management

Course key: [SemAIFB4]

Lecturers: Rudi Studer
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
The success monitoring is done through a presentation about a research topic from the current topic of the seminar (45-60 minutes) followed by a discussion, a written summary of the main points (approx. 15 pages) and of active participation in discussions (in accordance with §4(2),3 SPO).
The total mark is composed of the graded and weighted success controls (50% lecture, 30% written paper, and 20% participation and discussion.
The seminar can be attended by both bachelor and master students. A differentiation is made by different topic assignment and evaluation standards for seminar paper and presentation.

Prerequisites
See module description.

Conditions
None.

Learning Outcomes
The students will learn to perform literature searches on current topics in computer science as well as preparing and presenting the contents of scientific publications.

During the work on the seminar topics the master students will deepen their skills to autonomously comprehend current scientific knowledge and to convey it to others through oral presentations and written summaries.

Through active participation in the seminar, students acquire skills in critical appraisal of research topics and in oral and written presentation of independently developed research content.

Content
Each year, the seminar will cover topics from a different selected subfield of knowledge management, e.g.:
- Ontology-based knowledge management,
- Information Retrieval and Text Mining,
- Data Mining,
- Personal Knowledge Management,
- Case Based Reasoning (CBR),
- Collaboration and Social Computing.

Media
Slides.

Basic literature

Complementary literature
None.

Remarks
The number of students is limited. Students have to observe the designated registration process.
Course: Seminar eOrganization

Lecturers: Stefan Tai
Credit points (CP): 3 Hours per week: 2/0
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Cloud Computing [IW4INAIFB2] (S. 90), Web Service Engineering [IW4INAIFB3] (S. 91)

Learning Control / Examinations
The assessment of this course is according to §4(2), 3 SPO in form of an examination of the written seminar thesis (15-20 pages), a presentation and active participation in class.

The final mark is based on the examination of the written seminar thesis but can be upgraded or downgraded according to the quality of the presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
Research in the field of eOrganization adhering to scientific standards.

Content
The seminar explores current research topics of service computing, service engineering, Cloud Computing und Service Value Networks. Each semester, a particular focus theme will be chosen.
Course: Seminar Aktuelle Themen der Sprachverarbeitung
Course key: [SemAKTSV]

Lecturers: Tanja Schultz
Credit points (CP): 3
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Sprachverarbeitung [IW4INSV] (S. 83)

Learning Control / Examinations

Prerequisites
None.

Conditions
None.

Learning Outcomes

Content
Course: Seminar in Insurance Management

Course key: [SemFBV1]

Lecturers: Ute Werner
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWiSEM] (S. 21)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
The seminar is held within the courses of Insurance Management [WW3BWLFBV4] and [WW4BWLFBV6/7], respectively, but with special forms of working.
A course taken as a seminar cannot be chosen as a part of a course module (and vice versa).
The seminar is well-suitable in combination with the bachelor modules Risk and Insurance Management [WW3BWLFBV3] and Insurance Management [WW3BWLFBV4] as well as to the master modules Insurance Management I [IW4BWLFBV6] and Insurance Management II [IW4BWLFBV7]. These modules, though, are not required to be taken.

Learning Outcomes
See German version.

Content
The seminar is offered within the following courses:
- Insurance Marketing
- Insurance Production
- Service Management
For their contents refer to the information given at the referring pages.

Basic literature
Will be announced at the beginning of the lecture period.

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Seminar in Operational Risk Management

Course key: [SemFBV2]

Lecturers: Ute Werner
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
The seminar is held within the courses of Operational Risk Management I/II [WW4BWLFBV8/9] but with special forms of working. A course taken as a seminar cannot be chosen as a part of a course module (and vice versa).

The seminar is well-suitable in combination with the bachelor module Risk and Insurance Management [WW3BWLFBV3] as well as to the master modules Operational Risk Management I [WW4BWLFBV8] and Operational Risk Management II [IW4BWLFBV9]. These modules, though, are not required to be taken.

Learning Outcomes
See German version.

Content
The seminar is offered within the following courses:

- Enterprise Risk Management
- Multidisciplinary Risk Research
- Risk Communication
- Risk Management of Microfinance and Private Households
- Project Work in Risk Research

For their contents refer to the information given at the referring pages.

Basic literature
Will be announced at the end of the recess period.

Remarks
This course is offered irregularly. For further information, see: http://insurance.fbv.uni-karlsruhe.de
To attend the course please register at the secretariat of the chair of insurance science.
Course: Seminar in Risk Theory and Actuarial Science
Course key: [SemFBV3]

Lecturers: Christian Hipp, N.N.
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
Prerequisites
See corresponding module information.

Conditions
Knowledge of statistics and actuary science is an advantage.
The seminar is a good addition to the Bachelor module *Calculation and Control* [WW3BWLFBV2] and to the Master modules *Applications of Actuarial Sciences I/II* [WW4BWLFBV4/5] and *Insurance Statistics* [WW4BWLFBV8]. However these modules are not a prerequisite for the participation in the seminar.

Learning Outcomes
Content
Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Industrial Production

Lecturers: Frank Schultmann, Magnus Fröhling, Michael Hiete
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
Assessment acc. to §4 (2), No.3 ER by assessing the written seminar thesis (approx. 20 pages), the oral presentation and active participation in public discussions. The final grade will be formed by weighing the individual assessment grades.

Prerequisites
Students should have completed the modules „Industrial Production I“ [WW3BWLIIP], „Industrial Production II“ [IW4BWLIIP2] and/or “Industrial Production III” [WW3BWLIIP6].

Conditions
None.

Learning Outcomes
Students shall gain insights into selected research projects of the Institute of Industrial Production (IIP).
• Students shall search for, identify, review and evaluate relevant literature.
• Students shall prepare their seminar thesis (and later on bachelor/master thesis) with a minimum expense in becoming acquainted with their topic and general layout.
• Students shall produce an oral presentation in a scientific context by using the outlined techniques of scientific presentation.
• Students shall learn to present their written results in an adequate form for scientific publishing.

Students in M.Sc. studies will have to put special emphasis on a critical discussion and evaluation of their topic, since they will have to look into actual scientific results in the field of industrial production.

Content
This seminar covers actual topics of industrial production, logistics, environmental science, project management and similar fields. We recommend a successful attendance of previous IIP modules (not compulsory!).
Actual topics covered in this seminar will be published before the start of semester.
Course: Seminar Information Engineering and Management

Course key: [SemIW]

Lecturers: Christof Weinhardt
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 3
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

Prerequisites
See corresponding module information.

Conditions
Business Engineering/Economics Engineering: Preferably at least one module offered by the institute should have been chosen before attending this seminar.

Learning Outcomes
The student should be able to do a literature review based on a predefined topic in the context of information engineering and management. The approach comprises the identification of relevant literature according to the topic and an analysis as well as an evaluation of the methods presented in the literature. The student learns to present his results in a paper and in front of an audience on a academic level. This process gives him the knowledge and practice for further research work like a master thesis or a doctoral thesis

Content
In the seminar the student should learn to apply the research methods to a predefined topic area. The topics are based on research questions in Information Engineering and Management across different industry sectors. This problem analysis requires an interdisciplinary examination.

Media
• Powerpoint,
• eLearning Platform Ilias
• Software Tools, if necessary

Basic literature
The student will receive the necessary literature for his research topic.

Remarks
• Students from Bachelor and Master Course can visit the seminar. The research topic as well as the evaluation of the work and the presentation will have a different focus between Bachelor and Master Course.
• All the seminars offered at the chair of Prof. Dr. Weinhardt can be chosen. The current topics of the seminars are available at the following homepage: http://www.im.uni-karlsruhe.de/lehre.
Course: Seminar in Security

Lecturers: Jörn Müller-Quade, Martina Zitterbart
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Computer security [IW4INSICH] (S. 61)

Learning Control / Examinations
Prerequisites
None.
Conditions
None.

Learning Outcomes
The student
• deals with a restricted problem in the field of computer security,
• analyzes and discusses the problems associated to a distinct discipline in the final seminar paper,
• discusses, presents and defends subject-specific arguments within a given task,
• organizes the preparation of the final papers largely independent.

Content
The seminar deals with current topics in the research field of computer security. These are e.g.
• Side channel attacks;
• Network security;
• Communication protocols;
Course: Seminar Stochastic Models

Course key: [SemWIOR1]

Lecturers: Karl-Heinz Waldmann
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
The assessment of this course is in form of an examination of the written seminar thesis and a presentation. The final mark is the result of both the paper and its presentation.

Prerequisites
None.

Conditions
None.

Learning Outcomes
In case studies students comprehend stochastic relationships and gain deep knowledge of modelling, evaluation, and optimization of stochastic systems. In group presentations, students learn basic academic presentation and argument skills.

Content
The actual topic as well as the contemporary issues are available online.

Media
Power Point and related presentation techniques.

Basic literature
Will be presented with the actual topic.
Course: Seminar Economic Theory

Lecturers: Clemens Puppe
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations

Prerequisites
See corresponding module information.
At least one of the courses Game Theory I [25525] and Welfare Economics [25517] should have been attended beforehand.

Conditions
None.

Learning Outcomes

Content

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Experimental Economics

Lecturers: Siegfried Berninghaus
Credit points (CP): 3 Hours per week: 2 Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
Term paper and presentation

Prerequisites
See corresponding module information.
A course in the field of Game Theory should be attended beforehand.

Conditions
None.

Learning Outcomes
The seminar wants to deepen the methods of scientific work. Students shall learn to discuss critical the latest research results in Experimental Economics.
Students learn the technical basics of presentation and to argument scientifically. Also rhetoric skills shall be amplified.

Content
The seminar's topic will be announced before the beginning of each semester on the internet (http://www.wior.uni-karlsruhe.de/LS_Berninghaus/Studium/).

Media
Slides.

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Game and Decision Theory
Course key: [SemWIOR4]

Lecturers: Siegfried Berninghaus
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
Term paper and presentation

Prerequisites
Completion of all 1st an 2nd year modules of the Bachelor Program.
See corresponding module information.

Conditions
None.

Learning Outcomes
The seminar wants to deepen the methods of scientific work. Students shall learn to discuss critical the latest research results in game theory.
Procurement of SQs: Students learn the technical basics of presentation and to argument scientifically. Also rethoric skills shall be amplified.

Content
The seminar’s topic will be announced before the beginning of each semester on the internet (http://www.wior.uni-karlsruhe.de/LS_Berninghaus/Studium/).

Media
Slides.

Basic literature
Will be announced at the end of the recess period.
Course: Seminar in Cryptography

Lecturers: Jörn Müller-Quade
Credit points (CP): 2 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
- deals with a restricted problem in the field of cryptography,
- analyzes and discusses the problems associated to a distinct discipline in the final seminar paper,
- discusses, presents and defends subject-specific arguments within a given task,
- organizes the preparation of the final papers largely independent.

Content
The seminar deals with current topics in the research field of cryptography. These are e.g.
- provable security
- side channel attacks;
- new Public-Key systems;
- quantum cryptography
Course: Seminar in Cryptography

Course key: [SemiKryp3]

Lecturers: Jörn Müller-Quade
Credit points (CP): 3 Hours per week: 2
Term: Winter-/Sommersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Topics in Cryptography [IW4INFKRYP] (S. 62)

Learning Control / Examinations
The assessment is explained in the module description.

Prerequisites
None.

Conditions
None.

Learning Outcomes
The student
• deals with a restricted problem in the field of cryptography,
• analyzes and discusses the problems associated to a distinct discipline in the final seminar paper,
• discusses, presents and defends subject-specific arguments within a given task,
• organizes the preparation of the final papers largely independent.

Content
The seminar deals with current topics in the research field of cryptography. These are e.g.
• provable security
• side channel attacks;
• new Public-Key systems;
• quantum cryptography
Course: How statistics begins to understand the difference between cause and effect
Course key: [WSUW]

Lecturers: Dominik Janzing
Credit points (CP): 3 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Advanced Topics in Cryptography [IW4INFKRYP] (S. 62)

Learning Control / Examinations
Prerequisites
- Basic knowledge in stochastic is helpful.
- The participants should be open for learning new mathematical terminology.

Conditions
None.

Learning Outcomes
- The students should understand why inferring causal structure from statistical data is a hard problem.
- They should understand current approaches and be able to judge them.

Content
- Formalization of causal structure via directed acyclic graphs (DAGs)
- Inferring causal relations using conditional statistical dependences
- Selection of potential causal hypotheses via the causal Markov condition
- Further restriction of potential hypotheses via the causal faithfulness condition
- Novel approaches to distinguishing between causal DAGs that induce the same conditional dependences
- Probability-free versions of statistical methods: learning causality from single observations.

Media
lecture notes

Complementary literature
Spirtes, Glymour and Scheines: Prediction, Causation and Search, 1993
Course: Database Implementation and Tuning
Course key: [db_impl]

Lecturers: Klemens Böhm
Credit points (CP): 5
Hours per week: 2/1
Term: Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”.

Conditions
None.

Learning Outcomes
The lecture follows several goals. From the point of view of methodical engineering of large scale systems, the role of architecture and non functional properties should be understood. From the algorithmically point of view, it should be comprehensible at which point in the architecture which functional and non functional properties define the building blocks of the implementation. Furthermore, it will be important to understand how the architectural properties influence the algorithms and which range of possibilities is feasible. As well, the participants of the lecture should become familiar with the classical algorithms of database technology and get a feeling for its fields of application. From the point of view of a database administrator, the participants should understand which performance related parameters are vital if a certain query profile is given and how such parameters are connected with the underlying algorithms.

Content
Database systems form the backbone of all kinds of information processing. Without such systems, business management, commerce, research and development – as well as everything in the areas of mobile communication, genetics and the web – is not possible. Therefore, nowadays it belongs to the general knowledge of computer science, to understand how such systems are composed. In addition to that, many techniques which are today common sense in in computer science, have there roots in database technology. Finally, many specialists are needed, so called database administrators, who are able to configure the functionality and performance of database systems. Without the knowledge of what happens inside such systems, it is hardly possible to configure and tune them. Such knowledge will be thought in this lecture. As an orientation framework serves a reference architecture which primarily comes from performance optimisation. Its essential components are the memory and query engine as well as transaction management. These components are discussed following a layered architecture from file management at the bottom to the user interface at the top level. This layered architecture allows for determining methodically the necessary and possible means of performance improvement as well as identifying their place within the architecture. Therefore, the lecture also contributes in the area of software engineering of large scale systems.

Media
Slides.

Complementary literature
- G.Saake, A.Heuer, K.-U.Sattler: Datenbanken: Implementierungstechniken. 2. Aufl. mitp-Verlag, 2005
Course: Deployment of Database Systems

Lecturers: Klemens Böhm

Credit points (CP): 5 Hours per week: 2/1

Term: Wintersemester Level: 4

Teaching language: Deutsch

Learning Control / Examinations
It will be announced in advance if the assessment consists of an 1h written exam following §4, Abs. 2, 1 of the Prüfungsordnung or of a 20 minute oral examination following §4, Abs. 2, 2 of the Prüfungsordnung.

Prerequisites
Knowledge about database systems, e.g., from the lecture "Communications and Database Systems".

Conditions
None.

Learning Outcomes
At the end of the course, the participants should be able to explain and compare database concepts (especially data models and query languages) – in more breadth, compared to database courses at the undergraduate level. They should know and be able to assess the different possibilities to store complex user data using database technology.

Content
This course introduces students to the deployment of modern database technology, in both breadth and depth. 'Breadth' is reached by the detailed study and comparison of different data models (especially the relational and the semi-structured/XML data models) and appropriate query languages (SQL, XQuery). 'Depth' is reached by the study of several non-trivial applications, such as management of XML or e-commerce data, implementation of retrieval-models using relational database technology, or the usage of SQL for accessing sensor networks. Since all these applications are generic problems themselves, the study of such applications is interesting in itself already.

Media
Slides.

Basic literature

Complementary literature
Course: Practical Course Database Systems

Lecturers: Klemens Böhm
Credit points (CP): 4 Hours per week: 2
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Theory and Practice of Database Techno [IW4INDBTP] (S. 80)

Learning Control / Examinations
The assessment will be an “Erfolgskontrolle anderer Art” and consists of several parts (projects, experiments, presentations and reports, according to § 4 Abs 2 Nr. 3 SPO). The course will be assessed with “passed” or “failed” (according to § 9 Abs. 3 SPO). In order to get the passed assessment for the practical course, every part of the assessment must be passed successfully. If the practical course is quit after the first lesson, the lecture will be assessed with “failed”.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”.

Conditions
None.

Learning Outcomes
In the practical course, the knowledge from the lecture “Deployment of Database Systems” is reinforced on a practical level. The focus is on database-application programming, the usage of interactive query languages and database design. Furthermore, the students should learn to work in teams in order to work on various projects successfully.

Content
The practical course database systems lets students learn how to deploy database systems in practice, as a supplement to the different lectures on database technology. The participants will work in selected projects with commercial (object-)relational and XML database technology. Furthermore, database design will be practised with real-world examples. The following projects are planned for the course:

- Accessing databases, in particular from user programs,
- data management with non-conventional database technology,
- database design.

Working in teams is another important aspect of all projects.

Media
- Slides.
- Practical course notes.

Basic literature
Please refer to the literature from the lecture “Deployment of Database Systems”.

Complementary literature
Please refer to the literature from the lecture “Deployment of Database Systems”.

Module Handbook: Version 04.03.2010 Information Engineering and Management (M.Sc.)
Course: Software Laboratory: Simulation

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the lecture and the following term.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
None.

Learning Outcomes
The course covers basic concepts of discrete event simulation models and qualifies students for the computer-based usage of simulation systems. Additionally, students deepen their knowledges for logical issues in modeling and discover the importance of statistical methods in simulation.

Content
Discrete event simulation is one of the fundamental modelling techniques and can be used in the analysis of systems where it is not possible to derive analytical results for the system due to complexity issues.
After an introduction to the basics of event-discrete simulation, the basic modeling approach for simulation systems is presented.
The implementation of this paradigm is made with the simulation software ProModel. Therewith, students get an insight to system logics of the algorithms. In the practical part of the course, case-studies from industries and health care are discussed. Again, the implementation of identified OR problems is done with ProModel.

Remarks
The course is planned to be held in the summer term 2011.
The planned lectures and courses for the next three years are announced online.
Course: Location Theory

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical Programming [IW4OR6] (S. 56)

Learning Control / Examinations
The assessment is a 120 minutes written examination (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the lecture and the following lecture.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
None.

Learning Outcomes

Content

Remarks
The lecture is planned to be held in the winter term 2010/2011.
The planned lectures and courses for the next three years are announced online.
Course: Software Laboratory: SAP APO

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is a 120 minutes examination, including a written and a practical part (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the lecture and the following term.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
None.

Learning Outcomes
Students acquire the ability to safely and efficiently use the software systems SAP and SAP APO.
As these software systems are used in many companies, the students get acquainted with an important and frequently used software tool from practice. Besides basic functional elements of the software, the course provides advanced knowledge for specific planning modules. Furthermore, students are enabled to model realistic logistical systems within the software framework.

Content
SAP Advanced Planning & Optimization (SAP APO) is a software solution for dynamic Supply Chain Management consisting of modules for detailed planning and optimization of all processes along a supply chain. These modules allow a concise and global control and planning of the supply chain on the intercompany level. As a part of mySAP Supply Chain Management (mySAP SCM), SAP APO is a logistics solution with integrated surplus. It covers all processes from the planning on a detailed level to the design of the actual network structure.
After an introductory overview of the organization of SAP and the concepts of SAP solutions, the system SAP Supply Chain Management (SCM) will be presented. In detail, the features of the module SAP SCM Advanced Planning and Optimization (APO) will be addressed.
Afterwards, students obtain a small example to get in touch with the standard user environment of the system. A case study taken from practice serves as the basis for a SAP APO-based implementation of a complete Supply Chain, beginning from suppliers, to production plants, warehouses, distribution centers, to the customers. In Demand Planning (DP) anonymous primary demand will be forecasted. In Supply-Network-Planning (SNP) feasible plans for the satisfaction of demands along the entire supply chain will be generated, while in Production Planning & Detailed Scheduling (PP/DS) clock-time-precise orders under consideration of constraints (capacities, setup costs, ...) will be generated. The choice of appropriate means of transportation allows the planning of transportation and distribution tasks.

Remarks
The course is planned to be held in the summer term 2012.
The planned lectures and courses for the next three years are announced online.
Course: Graph Theory

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 2/1
Term: Wintersemester Level: 4
Teaching language: Deutsch
Part of the modules: Mathematical Programming [IW4OR6] (S. 56)

Learning Control / Examinations
The assessment is a 120 minutes written examination (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the lecture and the following lecture.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
None.

Learning Outcomes

Content

Remarks
The lecture is planned to be held in the winter term 2011/2012.
The planned lectures and courses for the next three years are announced online.
Course: Operations Research in Supply Chain Management

Lecturers: Stefan Nickel
Credit points (CP): 4.5 Hours per week: 2/1
Term: Sommersemester Level: 4
Teaching language: Deutsch

Learning Control / Examinations
The assessment is a 120 minutes written examination (according to §4(2), 1 of the examination regulation).
The examination is held in the term of the lecture and the following lecture.

Prerequisites
Basic knowledge as conveyed in the module Introduction to Operations Research [WI1OR] is assumed.

Conditions
None.

Learning Outcomes

Content

Remarks
The lecture is planned to be held in the summer term 2011.
The planned lectures and courses for the next three years are announced online.
Course: Practical Course Distributed Data Management
Course key: [praktvd]

Lecturers: Klemens Böhm
Credit points (CP): 4
Hours per week: 2
Term: Wintersemester
Level: 4
Teaching language: Deutsch
Part of the modules: Theory and Practice of Database Techno [IW4INDBTP] (S. 80)

Learning Control / Examinations
The assessment will be an “Erfolgskontrolle anderer Art” and consists of several parts (projects, experiments, presentations and reports, according to § 4 Abs 2 Nr. 3 SPO). The course will be assessed with “passed” or “failed” (according to § 9 Abs. 3 SPO). In order to get the passed assessment for the practical course, every part of the assessment must be passed successfully. If the practical course is quit after the first lesson, the lecture will be assessed with “failed”.

Prerequisites
Knowledge about database systems, e.g. from the lecture “Communications and Database Systems”, as well as basic knowledge of JAVA programming.

Conditions
None.

Learning Outcomes
During this practical course, the students should
1. deepen selected topics from the lecture “Distributed Data Management” in the context of sensor networks,
2. gain experiences in programming sensor nodes,
3. develop self-containedly a solution for a given problem from the research-area of query processing in sensor networks and
4. get experience in developing and programming in teams as well as getting familiar with the according tools.

Content
Characteristics of modern information systems like massively distributed data creation, query processing over the internet and an increased demand regarding the robustness of such systems require distributed storage and query processing. Traditional database systems initially did not meet these new requirements, but met them by offering additional software extensions. These extensions suffer from the fact that the original system was not designed with a distributed system in mind and therefore the extension either only offer limited functionality or their applicability is tailored to a specific scenario. This course offers a broad introduction into distributed database technology, that does not have the drawbacks of afore mentioned extensions. Furthermore the participants get an in-depth look on selected research topics through theoretical course work and hands-on experience with different distributed database systems: The first block of the course will introduce database schemas for distributed storage and based on this, the participants will use SQL to execute queries over distributedly stored data. The second block of the course will focus on query processing in sensor networks, which is an application of distributed databases, where extensions of standard database technology are not sufficient for several reasons. After an introductional phase into sensor databases, the students will develop a solution to a complex research problem over several weeks. For the development and testing of this solution, we will provide Sun SPOT sensor nodes (www.sunspotworld.com).

Media
- Slides.
- Practical course notes.

Basic literature
Please refer to the literature from the lecture “Distributed Data Management”.

Complementary literature
Please refer to the literature from the lecture “Distributed Data Management”.

Course: Seminar in Law

Lecturers: Thomas Dreier, Peter Sester, Indra Spiecker genannt Döhmann
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 3
Teaching language: Deutsch
Part of the modules: Interdisciplinary Seminar Module [IW4IWSEM] (S. 21)

Learning Control / Examinations
Written paper and oral presentation (§4, Abs. 2, 3 of the SPO).

Prerequisites
None.

Conditions
None.

Learning Outcomes
It is the goal of the seminar to enable students to independent scientific research regarding legal issues in the area of information management and engineering. The seminar covers legal issues of information law and commercial law, from internet law, the law of intellectual property, competition law and data protection law to contract law. The subjects to be discussed comprise issues of national, European and international law. Written papers shall also discuss the information technology issues and economic questions related to the legal problem at issue.

Content
The seminar covers legal issues of information law, from internet law, the law of intellectual property, competition law and data protection law to contract law. The subjects to be discussed comprise issues of national, European and international law. Each seminar focuses on a different set of issues. Written papers shall also discuss the information technology issues and economic questions related to the legal problem at issue. The current topics will be announced before start of term.
Students can participate in all seminars offered by the ZAR/IIR (however, students can participate in seminars of the master study cours, seminars in cooperation with the University of Freiburg and other specially marked seminars if special permission has been granted).

Basic literature
Tba in the lecture.
Course: Algorithm Engineering

Lecturers: Peter Sanders, Dorothea Wagner
Credit points (CP): 3
Hours per week: 2
Term: Winter-/Sommersemester
Level: 4
Teaching language: Deutsch

Learning Control / Examinations
Prerequisites
Lecture Algorithmentechnik
Conditions
None.
Learning Outcomes
The students come to know the methodology of algorithm engineering. Moreover, examples of well done algorithm engineering are presented.
Content
- What is algorithm engineering, why is it interesting, ...?
- Realistic models of machines and applications
- Practice-oriented design of algorithms
- Implementation techniques
- Experimental methods
- Analysis of measured data
The above skills are taught using concrete examples. In the past the following topics from the area of fundamental algorithms and data structures have been used for example:
- linked lists without special cases
- Sorting: parallel, external, superscalar,...
- Priority queues (cache efficiency,...)
- Search trees for integer keys
- Full-text indexing
- Graph algorithms: minimum spanning trees (external,...), route planning
The best practical and theoretical techniques known are considered. In most cases, these techniques are very different from the methods taught in a beginner's course.
Media
Slides, Scriptum, papers, source codes
Complementary literature
- K. Mehlhorn, P. Sanders, Algorithms and Data Structures - The Basic Toolbox, Springer 2008
Studien- und Prüfungsordnung der Universität Karlsruhe (TH) für den Masterstudiengang Informationswirtschaft

vom 15. April 2009

Der Rektor hat seine Zustimmung am 15. April 2009 erteilt.

Inhaltsverzeichnis

I. Allgemeine Bestimmungen
§ 1 Geltungsbereich, Zweck der Prüfung
§ 2 Akademischer Grad
§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte
§ 4 Aufbau der Prüfungen
§ 5 Anmeldung und Zulassung zu den Prüfungen
§ 6 Durchführung von Prüfungen und Erfolgskontrollen
§ 7 Bewertung von Prüfungen und Erfolgskontrollen
§ 8 Wiederholung von Prüfungen und Erfolgskontrollen, Erlöschen des Prüfungsanspruchs
§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß
§ 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten
§ 11 Masterarbeit
§ 12 Zusatzleistungen und Zusatzmodule
§ 13 Prüfungsausschuss
§ 14 Prüfer und Beisitzer
§ 15 Anrechnung von Studienzeiten, Anerkennung von Studien- und Prüfungsleistungen

II. Masterprüfung
§ 16 Umfang und Art der Masterprüfung
§ 17 Bestehen der Masterprüfung, Bildung der Gesamtnote
§ 18 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement

III. Schlussbestimmungen
§ 19 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen
§ 20 Ungültigkeit der Masterprüfung, Aberkennung des Mastergrades
§ 21 Einsicht in die Prüfungsakten
§ 22 In-Kraft-Treten
Die Universität Karlsruhe (TH) hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss der Studiendauer der Mastergrad stehen soll. Die Universität Karlsruhe (TH) sieht daher die an der Universität Karlsruhe (TH) angebotenen konsekutiven Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

Aus Gründen der Lesbarkeit ist in dieser Satzung nur die männliche Sprachform gewählt worden. Alle personenbezogenen Aussagen gelten jedoch stets für Frauen und Männer gleichermaßen.

I. Allgemeine Bestimmungen

§ 1 Geltungsbereich, Zweck der Prüfung

(1) Diese Masterprüfungsordnung regelt Studienablauf, Prüfungen und den Abschluss des Studiums im Masterstudiengang Informationswirtschaft an der Universität Karlsruhe (TH).

(2) Die Masterprüfung (§ 16 – 18) bildet den Abschluss dieses Studiengangs, der gemeinsam von der Fakultät für Informatik und der Fakultät für Wirtschaftswissenschaften an der Universität Karlsruhe (TH) angeboten wird. Durch die Masterprüfung soll festgestellt werden, ob der Studierende die für den Übergang in die Berufspraxis grundlegenden wissenschaftlichen Fachkenntnisse besitzt, die Zusammenhänge des Faches Informationswirtschaft überblickt und die Fähigkeit besitzt, nach wissenschaftlichen Methoden und Grundsätzen selbstständig zu arbeiten.

§ 2 Akademischer Grad

§ 3 Regelstudienzeit, Studienaufbau, Leistungspunkte

(1) Die Regelstudienzeit beträgt vier Semester. Sie umfasst neben den Lehrveranstaltungen Prüfungen und die Masterarbeit.

(2) Die im Studium zu absolvierenden Lehrinhalte sind in Module gegliedert, die jeweils aus einer Lehrveranstaltung oder mehreren, thematisch und zeitlich aufeinander bezogenen Lehrveranstaltungen bestehen. Der Studienplan beschreibt Art, Umfang und Zuordnung der Module zu einem Fach sowie die Möglichkeiten, Module untereinander zu kombinieren. Die Fächer und ihr Umfang werden in § 16 definiert.

(4) Der Umfang der für den erfolgreichen Abschluss des Studiums erforderlichen Studienleistungen wird in Leistungspunkten gemessen und beträgt insgesamt 120 Leistungspunkte.

(5) Die Verteilung der Leistungspunkte im Studienplan auf die Semester hat in der Regel gleichmäßig zu erfolgen.

(6) Lehrveranstaltungen können in englischer Sprache angeboten werden.

§ 4 Aufbau der Prüfungen

(2) Erfolgskontrollen sind:
 1. schriftliche Prüfungen,
 2. mündliche Prüfungen oder
 3. Erfolgskontrollen anderer Art.

Erfolgskontrollen anderer Art sind z.B. Vorträge, Marktstudien, Projekte, Fallstudien, Experimente, schriftliche Arbeiten, Berichte, Seminararbeiten und Klausuren, sofern sie nicht als schriftliche oder mündliche Prüfung in der Modul- oder Lehrveranstaltungsbeschreibung im Studienplan ausgewiesen sind.

(3) Mindestens 50 % einer Modulprüfung sind in Form von schriftlichen oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) abzulegen, die restlichen Prüfungen erfolgen durch Erfolgskontrollen anderer Art (§ 4 Abs. 2, Nr. 3). Ausgenommen hiervon ist die Prüfung nach § 16 Abs. 3.

§ 5 Anmeldung und Zulassung zu den Prüfungen

(1) Um an schriftlichen und/oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) teilnehmen zu können, muss sich der Studierende schriftlich oder per Online-Anmeldung beim Studienbüro anmelden. Hierbei sind die gemäß dem Studienplan für die jeweilige Modulprüfung notwendigen Studienleistungen nachzuweisen. Dies gilt auch für die Anmeldung zur Masterarbeit.

(2) Um zu schriftlichen und/oder mündlichen Prüfungen (§ 4 Abs. 2, Nr. 1 und 2) in einem bestimmten Modul zugelassen zu werden, muss der Studierende vor der ersten schriftlichen oder mündlichen Prüfung in diesem Modul beim Studienbüro eine bindende Erklärung über die Wahl des betreffenden Moduls und dessen Zuordnung zu einem Fach, wenn diese Wahlmöglichkeit besteht, abgeben.

(3) Die Zulassung darf nur abgelehnt werden, wenn der Studierende in einem mit der Informationswirtschaft vergleichbaren oder einem verwandten Studiengang bereits eine Diplomvorprüfung, Diplomprüfung, Bachelor- oder Masterprüfung endgültig nicht bestanden hat, sich in einem Prüfungsverfahren befindet oder den Prüfungsanspruch in einem solchen Studiengang verloren hat. In Zweifelsfällen entscheidet der Prüfungsausschuss.

§ 6 Durchführung von Prüfungen und Erfolgskontrollen

(1) Erfolgskontrollen werden studienbegleitend, in der Regel im Verlauf der Vermittlung der Lehrinhalte der einzelnen Module oder zeitnah danach durchgeführt.

(2) Die Art der Erfolgskontrolle (§ 4 Abs. 2, Nr. 1 - 3) der einzelnen Lehrveranstaltungen wird vom Prüfer der betreffenden Lehrveranstaltung in Bezug auf die Lehrinhalte der Lehrveranstaltung und die Lehrziele des Moduls festgelegt. Die Art der Erfolgskontrollen, ihre Häufigkeit, Reihenfolge und Gewichtung, die Bildung der Lehrveranstaltungsnote und der Modulnote sowie Prüfer müssen mindestens sechs Wochen vor Semesterbeginn bekannt gegeben werden. Im Einvernehmen von Prüfer und Studierendem kann in begründeten Ausnahmefällen die Art der
Erfolgskontrolle auch nachträglich geändert werden. Dabei ist jedoch § 4 Abs. 3 zu berücksichtigen. Hierüber entscheidet der Prüfungsausschuss auf Antrag.

(3) Bei unvertretbar hohem Prüfungsauwand kann eine schriftlich durchzuführende Prüfung auch mündlich oder eine mündlich durchzuführende Prüfung auch schriftlich abgenommen werden. Diese Änderung muss mindestens sechs Wochen vor der Prüfung bekannt gegeben werden.

(4) Weist ein Studierender nach, dass er wegen länger andauernder oder ständiger körperlicher Behinderung nicht in der Lage ist, die Erfolgskontrollen ganz oder teilweise in der vorgeschriebenen Form abzulegen, kann der zuständige Prüfungsausschuss – in dringenden Angelegenheiten, deren Erledigung nicht bis zu einer Sitzung des Ausschusses aufgeschoben werden kann, dessen Vorsitzender – gestatten, Erfolgskontrollen in einer anderen Form zu erbringen.

(5) Bei Lehrveranstaltungen in englischer Sprache können mit Zustimmung des Studierenden die entsprechenden Erfolgskontrollen in englischer Sprache abgenommen werden.

(7) Mündliche Prüfungen (§ 4 Abs. 2, Nr. 2) sind von mehreren Prüfern (Kollegialprüfung) oder von einem Prüfer in Gegenwart eines Beisitzenden als Gruppen- oder Einzelpunktion abzunehmen und zu bewerten. Vor der Festsetzung der Note hört der Prüfer die anderen an der Kollegialprüfung mitwirkenden Prüfer an. Mündliche Prüfungen dauern in der Regel mindestens 15 Minuten und maximal 45 Minuten pro Studierenden. Dies gilt auch für die mündliche Nachprüfung gemäß § 8 Abs. 3.

(11) Schriftliche Arbeiten im Rahmen einer Erfolgskontrolle anderer Art haben dabei die folgende Erklärung zu tragen: „Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.“ Trägt die Arbeit diese Erklärung nicht, wird diese Arbeit nicht angenommen. Die wesentlichen Gegenstände und Ergebnisse einer solchen Erfolgskontrolle sind in einem Protokoll festzuhalten.

(12) Bei mündlich durchgeführten Erfolgskontrollen anderer Art muss neben dem Prüfer ein Beisitzer anwesend sein, der zusätzlich zum Prüfer die Protokolle zeichnet.

§ 7 Bewertung von Prüfungen und Erfolgskontrollen

(1) Das Ergebnis einer Erfolgskontrolle wird von den jeweiligen Prüfern in Form einer Note festgesetzt.
Im Masterzeugnis dürfen nur folgende Noten verwendet werden:

1 : sehr gut (very good) : hervorragende Leistung,
2 : gut (good) : eine Leistung, die erheblich über den durchschnittlichen Anforderungen liegt,
3 : befriedigend (satisfactory) : eine Leistung, die durchschnittlichen Anforderungen entspricht,
4 : ausreichend (sufficient) : eine Leistung, die trotz ihrer Mängel noch den Anforderungen genügt,
5 : nicht ausreichend (failed) : eine Leistung, die wegen erheblicher Mängel nicht den Anforderungen genügt.

Für die Masterarbeit, Modulprüfungen, Modulteilprüfungen und Profilmodule sind zur differenzierten Bewertung nur folgende Noten zugelassen:

1.0, 1.3 : sehr gut
1.7, 2.0, 2.3 : gut
2.7, 3.0, 3.3 : befriedigend
3.7, 4.0 : ausreichend
4.7, 5.0 : nicht ausreichend

Diese Noten müssen in den Protokollen und in den Anlagen (Transcript of Records und Diploma Supplement) verwendet werden.

Für Erfolgskontrollen anderer Art kann im Studienplan die Benotung mit „bestanden“ (passed) oder „nicht bestanden“ (failed) vorgesehen werden.

Bei der Bildung der gewichteten Durchschnitte der Fachnoten, Modulnoten und der Gesamtnote wird nur die erste Dezimalstelle hinter dem Komma berücksichtigt; alle weiteren Stellen werden ohne Rundung gestrichen.

Jedes Modul, jede Lehrveranstaltung und jede Erfolgskontrolle darf jeweils nur einmal angerechnet werden. Die Anrechnung eines Moduls, einer Lehrveranstaltung oder einer Erfolgskontrolle ist darüber hinaus ausgeschlossen, wenn das betreffende Modul, die Lehrveranstaltung oder die Erfolgskontrolle bereits in einem grundständigen Bachelorstudiengang angerechnet wurde, auf dem dieser Masterstudiengang konsekutiv aufbaut.

Erfolgskontrollen anderer Art dürfen in Modulprüfungen oder Modulteilprüfungen nur einge rechnet werden, wenn die Benotung nicht nach Absatz 3 erfolgt ist. Die zu dokumentierenden Erfolgskontrollen und die daran geknüpfte Bedingungen werden im Studienplan festgelegt.

Eine Modulteilprüfung ist bestanden, wenn die Note mindestens „ausreichend“ (4.0) ist.

Die Ergebnisse der Masterarbeit, der Modulprüfungen bzw. der Modulteilprüfungen, der Erfolgskontrollen anderer Art sowie die erworbenen Leistungspunkte werden durch das Studienbüro der Universität erfasst.

Die Noten der Module eines Faches gehen in die Fachnote mit einem Gewicht proportional zu den ausgewiesenen Leistungspunkten der Module ein. Eine Fachprüfung ist bestanden, wenn
die für das Fach erforderliche Anzahl von Leistungspunkten über die im Studienplan definierten Modulprüfungen nachgewiesen wird.

(11) Die Gesamtnote der Masterprüfung, die Fachnoten und die Modulnoten lauten:

- bis 1.5 : sehr gut (very good)
- von 1.6 bis 2.5 : gut (good)
- von 2.6 bis 3.5 : befriedigend (satisfactory)
- von 3.6 bis 4.0 : ausreichend (sufficient)

(12) Zusätzlich zu den Noten nach Absatz 2 werden ECTS-Noten für Fachprüfungen, Modulprüfungen und für die Masterprüfung nach folgender Skala vergeben:

<table>
<thead>
<tr>
<th>ECTS-Note</th>
<th>Quote</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>gehört zu den besten 10% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>gehört zu den nächsten 25% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>gehört zu den nächsten 30% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>gehört zu den nächsten 25% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
<td>gehört zu den letzten 10% der Studierenden, die die Erfolgskontrolle bestanden haben,</td>
</tr>
<tr>
<td>FX</td>
<td>nicht bestanden (failed) - es sind Verbesserungen erforderlich, bevor die Leistungen anerkannt werden,</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>nicht bestanden (failed) - es sind erhebliche Verbesserungen erforderlich.</td>
<td></td>
</tr>
</tbody>
</table>

Die Quote ist als der Prozentsatz der erfolgreichen Studierenden definiert, die diese Note in der Regel erhalten. Dabei ist von einer mindestens fünfjährigen Datenbasis über mindestens 30 Studierende auszugehen. Für die Ermittlung der Notenverteilungen, die für die ECTS-Noten erforderlich sind, ist das Studienbüro der Universität zuständig.

§ 8 Wiederholung von Prüfungen und Erfolgskontrollen, Erlöschen des Prüfungsanspruchs

(1) Studierende können eine nicht bestandene schriftliche Prüfung (§ 4 Abs. 2, Nr. 1) einmal wiederholen. Wird eine schriftliche Wiederholungsprüfung mit „nicht ausreichend“ bewertet, so findet eine mündliche Nachprüfung im zeitlichen Zusammenhang mit dem Termin der nicht bestandenen Prüfung statt. In diesem Falle kann die Note dieser Prüfung nicht besser als „ausreichend“ sein.

(2) Studierende können eine nicht bestandene mündliche Prüfung (§ 4 Abs. 2, Nr. 2) einmal wiederholen.
(3) Wiederholungsprüfungen nach Absatz 1 und 2 müssen in Inhalt, Umfang und Form (mündlich oder schriftlich) der ersten entsprechen. Ausnahmen kann der zuständige Prüfungsausschuss auf Antrag zulassen. Fehlversuche an anderen Hochschulen sind anzurechnen.

(4) Die Wiederholung einer Erfolgskontrolle anderer Art (§ 4 Abs. 2, Nr. 3) wird im Studienplan geregelt.

(6) Die Wiederholung einer bestandenen Erfolgskontrolle ist nicht zulässig.

(7) Eine Fachprüfung ist endgültig nicht bestanden, wenn mindestens ein Modul des Faches endgültig nicht bestanden ist.

(9) Ist gemäß § 34 Abs. 2 Satz 3 LHG die Masterprüfung bis zum Ende des siebten Fachsemesters dieses Studiengangs einschließlich etwaiger Wiederholungen nicht vollständig abgelegt, so erlischt der Prüfungsanspruch im Studiengang, es sei denn, dass der Studierende die Fristüberschreitung nicht zu vertreten hat. Die Entscheidung darüber trifft der Prüfungsausschuss. Die Entscheidung über eine Fristverlängerung und über Ausnahmen von der Fristregelung trifft der Prüfungsausschuss.

§ 9 Versäumnis, Rücktritt, Täuschung, Ordnungsverstoß

(2) Eine Prüfung gilt als mit „nicht ausreichend“ (5.0) bewertet, wenn der Studierende einen Prüfungstermin ohne triftigen Grund versäumt oder wenn er nach Beginn der Prüfung ohne triftigen Grund von der Prüfung zurücktritt. Dasselbe gilt, wenn die Masterarbeit nicht innerhalb der vorgesehenen Bearbeitungszeit erbracht wird, es sei denn, der Studierende hat die Fristüberschreitung nicht zu vertreten.

(4) Versucht der Studierende, das Ergebnis einer mündlichen oder schriftlichen Prüfung (§ 4 Abs. 2, Nr. 1 und 2) durch Täuschung oder Benutzung nicht zugelassener Hilfsmittel zu beeinflussen, gilt die betreffende Prüfung als mit „nicht ausreichend“ (5.0) bewertet.

(7) Absatz 1 - 6 gelten für Erfolgskontrollen anderer Art (§ 4 Abs. 2, Nr. 3) entsprechend.

(8) Näheres regelt die Allgemeine Satzung der Universität Karlsruhe (TH) zur Redlichkeit bei Prüfungen und Praktika.

§ 10 Mutterschutz, Elternzeit, Wahrnehmung von Familienpflichten

(2) Gleichfalls sind die Fristen der Elternzeit nach Maßgabe des jeweiligen gültigen Gesetzes (BErzGG) auf Antrag zu berücksichtigen. Der Studierende muss bis spätestens vier Wochen vor dem Zeitpunkt, von dem an er die Elternzeit antreten will, dem Prüfungsausschuss unter Beifügung der erforderlichen Nachweise schriftlich mitteilen, was er in welchem Zeitraum er Elternzeit in Anspruch nehmen will. Der Prüfungsausschuss hat zu prüfen, ob die gesetzlichen Voraussetzungen vorliegen, die einem Arbeitnehmer den Anspruch auf Elternzeit auslösen würden, und teilt dem Studierenden das Ergebnis sowie die neu festgesetzten Prüfungszeiten unverzüglich mit. Die Bearbeitungszeit der Masterarbeit kann nicht durch Elternzeit unterbrochen werden. Die gestellte Arbeit gilt als nicht vergeben. Nach Ablauf der Elternzeit erhält der Studierende ein neues Thema.

§ 11 Masterarbeit

(2) Thema, Aufgabenstellung und Umfang der Masterarbeit sind vom Betreuer so zu begrenzen, dass sie mit dem in Absatz 3 festgelegten Arbeitsaufwand bearbeitet werden kann.

(3) Die Masterarbeit soll zeigen, dass der Studierende in der Lage ist, ein Problem aus seinem Fach selbstständig und in der vorgegebenen Zeit nach wissenschaftlichen Methoden, die dem

(4) Die Masterarbeit kann von jedem Prüfer nach § 14 Abs. 2 vergeben werden. Soll die Masterarbeit außerhalb der beiden nach § 1 Abs. 2 Satz 1 beteiligten Fakultäten angefertigt werden, so bedarf dies der Genehmigung des Prüfungsausschusses. Dem Studierenden ist Gelegenheit zu geben, für das Thema Vorschläge zu machen. Die Masterarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsbauweis zu bewertende Beitrag des einzelnen Studierenden aufgrund objektiver Kriterien, die eine eindeutige Abgrenzung ermöglichen, deutlich unterscheidbar ist und die Anforderung nach Absatz 1 erfüllt.

(5) Bei der Abgabe der Masterarbeit hat der Studierende schriftlich zu versichern, dass er die Arbeit selbstständig verfasst hat und keine anderen als die von ihm angegebenen Quellen und Hilfsmittel benutzt hat, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet hat. Wenn diese Erklärung nicht enthalten ist, wird die Arbeit nicht angenommen. Bei Abgabe einer unwahren Versicherung wird die Masterarbeit mit „nicht ausreichend“ (5.0) bewertet.

(7) The Masterarbeit wird von einem Betreuer sowie in der Regel von einem weiteren Prüfer aus der jeweils anderen Fakultät der beiden nach § 1 Abs. 2 Satz 1 beteiligten Fakultäten begutachtet und bewertet. Einer der beiden muss Juniorprofessor oder Professor sein. Bei nicht übereinstimmender Beurteilung der beiden Prüfer setzt der Prüfungsausschuss im Rahmen der Bewertung der beiden Prüfer die Note der Masterarbeit fest. Der Bewertungszeitraum soll acht Wochen nicht überschreiten.

§ 12 Zusatzleistungen und Zusatzmodule

(2) Der Studierende hat bereits bei der Anmeldung zu einer Prüfung in einem Modul diese als Zusatzleistung zu deklarieren.

Neben den im Studienplan definierten fachwissenschaftlichen Modulen und Leistungen können die Zusatzeleistungen nach Absatz 1 - 3 auch aus dem Lehrangebot anderer Fakultäten und Einrichtungen gewählt werden.

§ 13 Prüfungsausschuss

(1) Für den Masterstudiengang Informationswirtschaft wird ein Prüfungsausschuss gebildet. Er besteht aus sechs stimmberechtigten Mitgliedern, die jeweils zur Hälfte von der Fakultät für Informatik und der Fakultät für Wirtschaftswissenschaften bestellt werden: vier Professoren, Juniorprofessoren, Hochschul- oder Privatdozenten, zwei Vertretern der Gruppe der akademischen Mitarbeiter nach § 10 Abs. 1 Satz 2 Nr. 2 LHG und einem Vertreter der Studierenden mit beratender Stimme. Im Falle der Einrichtung eines gemeinsamen Prüfungsausschusses für den Bachelor- und den Masterstudiengang Informationswirtschaft erhöht sich die Anzahl der Vertreter der Studierenden auf zwei Mitglieder mit beratender Stimme, wobei je ein Vertreter aus dem Bachelor- und aus dem Masterstudiengang stammt. Die Amtszeit der nichtstudentischen Mitglieder beträgt zwei Jahre, die des studentischen Mitglieds ein Jahr.

(2) Der Vorsitzende, sein Stellvertreter, die weiteren Mitglieder des Prüfungsausschusses sowie deren Stellvertreter werden von den jeweiligen Fakultätsräten bestellt, die Mitglieder der Gruppe der akademischen Mitarbeiter nach § 10 Abs. 1 Satz 2 Nr. 2 LHG und der Vertreter der Studierenden auf Vorschlag der Mitglieder der jeweiligen Gruppe; Wiederbestellung ist möglich. Der Vorsitzende und dessen Stellvertreter müssen Professor oder Juniorprofessor aus einer der beteiligten Fakultäten sein. Der Vorsitz wechselt zwischen den Fakultäten alle zwei Jahre. Der Vorsitzende des Prüfungsausschusses nimmt die laufenden Geschäfte wahr und wird durch die Prüfungssekretariate unterstützt.

(4) Der Prüfungsausschuss kann die Erledigung seiner Aufgaben in dringenden Angelegenheiten und für alle Regelfälle auf den Vorsitzenden des Prüfungsausschusses übertragen.

(6) In Angelegenheiten des Prüfungsausschusses, die eine an einer anderen Fakultät zu absolvierende Prüfungsbefugnis betreffen, ist auf Antrag eines Mitgliedes des Prüfungsausschusses ein fachlich zuständiger und von der betroffenen Fakultät zu nennender Professor, Juniorprofessor, Hochschul- oder Privatdozent hinzuziehen. Er hat in diesem Punkt Stimmrecht.

(7) Belastende Entscheidungen des Prüfungsausschusses sind schriftlich mitzuteilen. Sie sind zu begründen und mit einer Rechtsbehelfsbelehrung zu versehen. Widersprüche gegen Entscheidungen des Prüfungsausschusses sind innerhalb eines Monats nach Zugang der Entscheidung schriftlich oder zur Niederschrift beim Rektorat der Universität Karlsruhe (TH) einzulegen.

§ 14 Prüfer und Beisitzer

(1) Der Prüfungsausschuss bestellt die Prüfer und die Beisitzenden. Er kann die Bestellung dem Vorsitzenden übertragen.

(2) Prüfer sind Hochschullehrer und habilitierte Mitglieder sowie akademische Mitarbeiter der jeweiligen Fakultät, denen die Prüfungsbefugnis übertragen wurde. Bestellt werden darf nur, wer mindestens...
die dem jeweiligen Prüfungsgegenstand entsprechende fachwissenschaftliche Qualifikation erworben hat. Bei der Bewertung der Masterarbeit muss ein Prüfer Hochschullehrer sein.

(3) Soweit Lehrveranstaltungen von anderen als den unter Absatz 2 genannten Personen durchgeführt werden, sollen diese zum Prüfer bestellt werden, wenn die jeweilige Fakultät ihnen eine diesbezügliche Prüfungsbefugnis erteilt hat.

(4) Zum Beisitzenden darf nur bestellt werden, wer einen akademischen Abschluss in einem Studiengang der Informationswirtschaft, Informatik, Rechtswissenschaften, Wirtschaftswissenschaften oder einen gleichwertigen akademischen Abschluss erworbend hat.

§ 15 Anrechnung von Studienzeiten, Anerkennung von Studien- und Prüfungsleistungen

(2) Werden Leistungen angerechnet, können die Noten – soweit die Notensysteme vergleichbar sind – übernommen werden und in die Berechnung der Modulnoten und der Gesamtnote einbezogen werden. Liegen keine Noten vor, muss die Leistung nicht anerkannt werden. Der Studierende hat die für die Anrechnung erforderlichen Unterlagen vorzulegen.

(3) Bei der Anrechnung von Studienzeiten und der Anerkennung von Studien- und Prüfungsleistungen, die außerhalb der Bundesrepublik erbracht wurden, sind die von der Kultusministerkonferenz und der Hochschulrektorenkonferenz gebilligten Äquivalenzvereinbarungen sowie Absprachen im Rahmen der Hochschulpartnerschaften zu beachten.

(4) Absatz 1 gilt auch für Studienzeiten, Studien- und Prüfungsleistungen, die in staatlich anerkannten Fernstudien- und an anderen Bildungseinrichtungen, insbesondere an staatlichen oder staatlich anerkannten Berufsakademien sowie an Fach- und Ingenieurschulen erworben wurden.

(6) Zuständig für die Anrechnungen ist der Prüfungsausschuss. Vor Feststellungen über die Gleichwertigkeit sind die zuständigen Fachvertreter zu hören. Der Prüfungsausschuss entscheidet in Abhängigkeit von Art und Umfang der anzurechnenden Studien- und Prüfungsleistungen über die Einstufung in ein höheres Fachsemester.

(7) Erbringt ein Studierender Studienleistungen an einer ausländischen Universität, soll die Gleichwertigkeit vorab durch einen Studienvertrag nach den ECTS-Richtlinien festgestellt und nach diesem verfahren werden.

(8) Zusatzleistungen, die ein Studierender für den Bachelorstudiengang Informationswirtschaft erbracht hat und die im Studienplan des Masterstudiengangs Informationswirtschaft vorgesehen sind, werden auf Antrag des Studierenden an den Prüfungsausschuss anerkannt.
II. Masterprüfung

§ 16 Umfang und Art der Masterprüfung

(1) Die Masterprüfung besteht aus den Fachprüfungen nach Absatz 2, dem interdisziplinären Seminarmodul nach Absatz 3 sowie der Masterarbeit nach § 11.

(2) In den ersten beiden Studienjahren sind Fachprüfungen aus folgenden Fächern durch den Nachweis von Leistungspunkten in einem oder mehreren Modulen abzulegen:
 1. aus dem Fach Betriebswirtschaftslehre im Umfang von 10 Leistungspunkten,

Des Weiteren sind Fachprüfungen
 1. aus wirtschaftswissenschaftlichen Fächern durch Module im Umfang von 18 Leistungspunkten,
 2. aus dem Fach Informatik durch Module im Umfang von 33 Leistungspunkten,
 3. aus dem Fach Recht durch Module im Umfang von 18 Leistungspunkten

(3) Ferner muss ein interdisziplinäres Seminarmodul im Umfang von 6 Leistungspunkten absolviert werden, das von je einem Prüfer nach § 14 Abs. 2 aus der Informatik, dem Recht und den Wirtschaftswissenschaften betreut wird.

(4) Als eine weitere Prüfungsleistung ist eine Masterarbeit gemäß § 11 anzufertigen.

§ 17 Bestehen der Masterprüfung, Bildung der Gesamtnote

(1) Die Masterprüfung ist bestanden, wenn alle in § 16 genannten Prüfungsleistungen mindes tens mit „ausreichend“ bewertet wurden.

(2) Die Gesamtnote der Masterprüfung errechnet sich als ein mit Leistungspunkten gewichteter Notendurchschnitt. Dabei werden alle Prüfungsleistungen nach § 16 mit ihren Leistungspunkten gewichtet.

(3) Hat der Studierende die Masterarbeit mit der Note 1.0 und die Masterprüfung mit einer Gesamtnote von 1.0 abgeschlossen, so wird das Prädikat „mit Auszeichnung“ (with distinction) verliehen. Mit einer Masterarbeit mit der Note 1.0 und bis zu einer Gesamtnote von 1.3 kann auf Antrag an den Prüfungsausschuss das Prädikat „mit Auszeichnung“ (with distinction) verliehen werden.

§ 18 Masterzeugnis, Masterurkunde, Transcript of Records und Diploma Supplement

Das Zeugnis enthält die in den Fachprüfungen, den zugeordneten Modulprüfungen, im interdisziplinären Seminarmodul und der Masterarbeit erzielten Noten, deren zugeordnete Leistungspunkte und ECTS-Noten und die Gesamtnote und die ihr entsprechende ECTS-Note. Das Zeugnis ist von den Dekanen der beteiligten Fakultäten und vom Vorsitzenden des Prüfungsausschusses zu unterzeichnen.

Die Abschrift der Studiendaten (Transcript of Records) enthält in strukturierter Form alle vom Studierenden erbrachten Prüfungsleistungen. Dies beinhaltet alle Fächer, Fachnoten und ihre entsprechenden ECTS-Note samt den zugeordneten Leistungspunkten, die dem jeweiligen Fach zugeordneten Module mit den Modulnoten, entsprechender ECTS-Note und zugeordneten Leistungspunkten sowie die den Modulen zugeordneten Lehrveranstaltungen samt Noten und zugeordneten Leistungspunkten.

Aus der Abschrift der Studiendaten sollen die Zugehörigkeit von Lehrveranstaltungen zu den einzelnen Modulen und die Zugehörigkeit der Module zu den einzelnen Fächern deutlich erkennbar sein. Angerechnete Studienleistungen sind im Transcript of Records aufzunehmen.

Die Masterurkunde, das Masterzeugnis und das Diploma Supplement einschließlich des Transcript of Records werden vom Studienbüro der Universität ausgestellt.

III. Schlussbestimmungen

§ 19 Bescheid über Nicht-Bestehen, Bescheinigung von Prüfungsleistungen

Der Bescheid über die endgültig nicht bestandene Masterprüfung wird dem Studierenden durch den Prüfungsausschuss in schriftlicher Form erteilt. Der Bescheid ist mit einer Rechtsbehelfsbelehrung zu versehen.

Hat der Studierende die Masterprüfung endgültig nicht bestanden, wird ihm auf Antrag und gegen Vorlage der Exmatrikulationsbescheinigung eine schriftliche Bescheinigung ausgestellt, die die erbrachten Prüfungsleistungen und deren Noten enthält und erkennen lässt, dass die Prüfung insgesamt nicht bestanden ist. Dasselbe gilt, wenn der Prüfungsanspruch erloschen ist.

§ 20 Ungültigkeit der Masterprüfung, Aberkennung des Mastergrades

Hat der Studierende bei einer Prüfung getäuscht, so kann der Prüfungsausschuss nachträglich die Noten für diejenigen Prüfungsleistungen, bei deren Erbringung der Studierende getäuscht hat, entsprechend berichtigen und die Prüfung ganz oder teilweise für „nicht bestanden“ erklären.

Waren die Voraussetzungen für die Zulassung zu einer Prüfung nicht erfüllt, ohne dass der Studierende darüber täuschen wollte, und wird diese Tatsache erst nach Aushändigung des Zeugnisses bekannt, wird dieser Mangel durch das Bestehen der Prüfung geheilt. Hat der Kandidat die Zulassung vorsätzlich zu Unrecht erwirkt, so kann die Modulprüfung für „nicht ausreichend“ (5.0) und die Masterprüfung für „nicht bestanden“ erklärt werden.

Dem Studierenden ist vor einer Entscheidung nach Absatz 1 und Absatz 2 Satz 2 Gelegenheit zur Äußerung zu geben.

Das unrichtige Zeugnis ist zu entziehen und gegebenenfalls ein neues zu erteilen. Dies bezieht sich auch auf alle davon betroffenen Anlagen (Transcript of Records und Diploma Supplement). Mit dem unrichtigen Zeugnis sind auch die Masterurkunde, das Masterzeugnis und alle...
Anlagen (Transcript of Records und Diploma Supplement) einzuziehen, wenn die Prüfung aufgrund einer Täuschung für „nicht bestanden“ erklärt wurde.

(5) Eine Entscheidung nach Absatz 1 oder Absatz 2 Satz 2 ist nach einer Frist von fünf Jahren ab dem Datum des Prüfungszeugnisses ausgeschlossen.

(6) Die Aberkennung des akademischen Mastergrades richtet sich nach den gesetzlichen Bestimmungen.

§ 21 Einsicht in die Prüfungsakten

(1) Nach Abschluss der Masterprüfung wird dem Studierenden auf Antrag innerhalb eines Jahres Einsicht in seine Masterarbeit, die darauf bezogenen Gutachten und in die Prüfungsprotokolle gewährt.

(2) Für die Einsichtnahme in die schriftlichen Modulprüfungen, schriftlichen Modulteilprüfungen bzw. Prüfungsprotokolle gilt eine Frist von einem Monat nach Bekanntgabe des Prüfungsergebnisses.

(3) Der Prüfer bestimmt Ort und Zeit der Einsichtnahme.

(4) Prüfungsunterlagen sind mindestens fünf Jahre aufzubewahren.

§ 22 In-Kraft-Treten

(1) Diese Satzung tritt am 1. Oktober 2009 in Kraft.

Karlsruhe, den 15. April 2009

Professor Dr. sc. tech. Horst Hippler
 (Rektor)
Index

A

Advanced Algorithms: Design and Analysis (Modul) ... 64
Advanced Algorithms: Engineering and Applications (Modul) 65
Advanced CRM (Modul) .. 24
Advanced Econometrics of Financial Markets .. 248
Advanced Lab Applied Informatics .. 200
Advanced Lab in Ubiquitous Computing ... 137
Advanced Topics in Cryptography (Modul) ... 62
Advanced Topics in Economic Theory ... 260
Advanced Web Applications ... 141
Algorithm Design ... 109
Algorithm Engineering ... 415
Algorithmen der Computergraphik (Modul) .. 86
Algorithms for Ad-Hoc and Sensor Networks ... 370
Algorithms for Internet Applications ... 273
Algorithms for Planar Graphs ... 163
Algorithms for Routing ... 174
Algorithms for Visualization of Graphs .. 371
Algorithms in Cellular Automata ... 165
Allocation and Equilibrium (Modul) ... 50
Analysis and modeling of human motion sequences .. 122
Applications of Actuarial Sciences I (BWL) (Modul) 32
Applied Differential Geometry .. 369
Applied Strategic Decisions (Modul) ... 49
Applied Web Engineering (Modul) .. 71
Asset Pricing .. 365
Auction Theory .. 249

B

Basics of Liberalised Energy Markets ... 312
Basics of Liberalised Energy Markets (Modul) ... 47
Behavioral Approaches in Marketing ... 219
Behavioral Approaches in Marketing and Data Analysis (Modul) 40
Biosignale und Benutzerschnittstellen .. 114
Biosignalverarbeitung (Modul) ... 82
Business & Service Engineering (Modul) .. 27
Business Administration in Information Engineering and Management 103
Business and IT Service Management .. 350
Business Dynamics .. 363
Business Models in the Internet: Planning and Implementation 342
Business Strategies of Banks ... 235

C

Civil Law for Advanced ... 177
Cloud Computing ... 291
Cloud Computing (Modul) .. 90
Communication and Database Systems (Modul) ... 77
Communications & Markets (Modul) ... 28
Communications Economics .. 345
Complexity Management ... 283
Component Based Software Architecture .. 376
Component Based Software Engineering ... 179

Computational complexity theory, with a view towards cryptography 178
Computational Economics .. 343
Computer Contract Law .. 157
Computer security (Modul) ... 61
Computer-based Production Planning and Control, Process Simulation and Supply Chain Management .. 310
Consulting in Practice ... 138
Copyright .. 123
Corporate Financial Policy ... 230
Corporate Planning and Operations Research ... 213
Credit Risk ... 367
Current Issues in the Insurance Industry ... 333
Curves and Surfaces (Modul) ... 85
Curves and Surfaces in CAD II ... 374
Curves and Surfaces in CAD III ... 375
Curves ans surfaces in CAD I ... 186
Customer Relationship Management .. 358

D

Data Analysis and Operations Research ... 221
Data Mining .. 247
Data Privacy Protection in Interconnected Information Systems 160
Data Protection Law ... 107
Data Warehousing and Mining .. 121
Database Implementation and Tuning ... 405
Database Systems ... 155
Database Systems and XML .. 278
Decision Theory and Objectives in Applied Politics 261
Deployment of Database Systems .. 406
Derivatives .. 364
Development of Distributed Business Information Systems (Modul) 98
Distributed Data Management .. 119
Distributed Database Systems: Basic Technology for e-Business 277
Document Management and Groupware Systems ... 279
Dynamische IT-Infrastrukturen (Modul) ... 81

e-Business & electronic Marketing ... 214
eCollaboration (Modul) .. 97
eFinance: Information Engineering and Management for Securities Trading 341
Einführung in die Computergraphik ... 372
Electronic Markets (Modul) ... 25
Electronic Markets (Principles) ... 351
Electronic Markets: Institutions and Market Mechanisms 353
Embedded Security ... 180
Emissions into the Environment ... 308
Empirical Software Engineering .. 142
Employment Law I .. 144
Employment Law II .. 184
Energy and Environment ... 316
Energy Industry and Technology (Modul) ... 48
Energy Policy .. 306
Energy Systems Analysis ... 315
Energy Trade and Risk Management .. 317
<table>
<thead>
<tr>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Hospital</td>
<td>253</td>
</tr>
<tr>
<td>Enterprise Risk Management</td>
<td>328</td>
</tr>
<tr>
<td>Entrepreneurship and Marketing</td>
<td>220</td>
</tr>
<tr>
<td>Entrepreneurship, Innovation and International Marketing (Modul)</td>
<td>42</td>
</tr>
<tr>
<td>Environmental Law</td>
<td>133</td>
</tr>
<tr>
<td>eServices</td>
<td>346</td>
</tr>
<tr>
<td>European and International Law</td>
<td>183</td>
</tr>
<tr>
<td>Exchanges</td>
<td>234</td>
</tr>
<tr>
<td>Experimental Economics</td>
<td>246</td>
</tr>
<tr>
<td>F1 (Finance) (Modul)</td>
<td>30</td>
</tr>
<tr>
<td>F2 (Finance) (Modul)</td>
<td>31</td>
</tr>
<tr>
<td>Facility Location and Strategic Supply Chain Management</td>
<td>250</td>
</tr>
<tr>
<td>Finance and Banking</td>
<td>240</td>
</tr>
<tr>
<td>Financial Intermediation</td>
<td>231</td>
</tr>
<tr>
<td>Financial Time Series and Econometrics</td>
<td>244</td>
</tr>
<tr>
<td>Fixed Income Securities</td>
<td>366</td>
</tr>
<tr>
<td>Foundations and Application of IT-Security (Modul)</td>
<td>87</td>
</tr>
<tr>
<td>Future Networking (Modul)</td>
<td>74</td>
</tr>
<tr>
<td>Game Theory I</td>
<td>259</td>
</tr>
<tr>
<td>Game Theory II</td>
<td>245</td>
</tr>
<tr>
<td>Gas-Markets</td>
<td>318</td>
</tr>
<tr>
<td>Global Optimization I</td>
<td>207</td>
</tr>
<tr>
<td>Global Optimization II</td>
<td>208</td>
</tr>
<tr>
<td>Graph Theory</td>
<td>411</td>
</tr>
<tr>
<td>Graphisch-geometrische Algorithmen</td>
<td>164</td>
</tr>
<tr>
<td>Grundlagen des Patentrechts</td>
<td>192</td>
</tr>
<tr>
<td>Heat Economy</td>
<td>314</td>
</tr>
<tr>
<td>Heterogene parallele Rechensysteme</td>
<td>120</td>
</tr>
<tr>
<td>High Performance Communication</td>
<td>116</td>
</tr>
<tr>
<td>How statistics begins to understand the difference between cause and effect</td>
<td>404</td>
</tr>
<tr>
<td>Industrial Production II (Modul)</td>
<td>45</td>
</tr>
<tr>
<td>Industrial Production III (Modul)</td>
<td>46</td>
</tr>
<tr>
<td>Information Engineering and Management (Modul)</td>
<td>19</td>
</tr>
<tr>
<td>Information Integration and Web Portals</td>
<td>134</td>
</tr>
<tr>
<td>Information Technology and Business Information</td>
<td>215</td>
</tr>
<tr>
<td>Innovative Concepts of Data and Information Management (Modul)</td>
<td>78</td>
</tr>
<tr>
<td>Insurance Accounting</td>
<td>325</td>
</tr>
<tr>
<td>Insurance Contract Law</td>
<td>337</td>
</tr>
<tr>
<td>Insurance Management I (Modul)</td>
<td>33</td>
</tr>
<tr>
<td>Insurance Management II (Modul)</td>
<td>34</td>
</tr>
<tr>
<td>Insurance Optimisation</td>
<td>324</td>
</tr>
<tr>
<td>Insurance Production</td>
<td>327</td>
</tr>
<tr>
<td>Insurance Risk Management</td>
<td>331</td>
</tr>
<tr>
<td>Intellectual Property Law (Modul)</td>
<td>99</td>
</tr>
<tr>
<td>Intelligent Systems and Services (Modul)</td>
<td>93</td>
</tr>
<tr>
<td>Intelligent Systems in Finance</td>
<td>285</td>
</tr>
<tr>
<td>Interdisciplinary Seminar in Information Engineering and Management</td>
<td>362</td>
</tr>
<tr>
<td>Interdisciplinary Seminar Module (Modul)</td>
<td>21</td>
</tr>
<tr>
<td>International Finance</td>
<td>368</td>
</tr>
<tr>
<td>International Marketing</td>
<td>216</td>
</tr>
<tr>
<td>International Risk Transfer</td>
<td>334</td>
</tr>
<tr>
<td>Internet Law</td>
<td>191</td>
</tr>
<tr>
<td>Introduction in Computer Networks</td>
<td>156</td>
</tr>
<tr>
<td>Introduction to Algorithms (Modul)</td>
<td>66</td>
</tr>
<tr>
<td>IT Complexity in Practice</td>
<td>287</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Knowledge Discovery</td>
<td>280</td>
</tr>
<tr>
<td>Kognitive Modellierung</td>
<td>162</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Lab Advanced Telematics</td>
<td>382</td>
</tr>
<tr>
<td>Lab Class Web Services</td>
<td>295</td>
</tr>
<tr>
<td>Laboratory in Cryptography</td>
<td>383</td>
</tr>
<tr>
<td>Language Technology and Compiler (Modul)</td>
<td>68</td>
</tr>
<tr>
<td>Law of Contracts</td>
<td>187</td>
</tr>
<tr>
<td>Life and Pensions</td>
<td>322</td>
</tr>
<tr>
<td>Location Theory</td>
<td>409</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Macroeconomic Theory (Modul)</td>
<td>51</td>
</tr>
<tr>
<td>Management Accounting</td>
<td>228</td>
</tr>
<tr>
<td>Management and Strategy</td>
<td>297</td>
</tr>
<tr>
<td>Management of Business Networks</td>
<td>340</td>
</tr>
<tr>
<td>Management of IT-Projects</td>
<td>292</td>
</tr>
<tr>
<td>Managing Organizations</td>
<td>298</td>
</tr>
<tr>
<td>Market Engineering (Modul)</td>
<td>26</td>
</tr>
<tr>
<td>Market Engineering: Information in Institutions</td>
<td>344</td>
</tr>
<tr>
<td>Market Microstructure</td>
<td>232</td>
</tr>
<tr>
<td>Market Research (Modul)</td>
<td>38</td>
</tr>
<tr>
<td>Marketing and Innovation</td>
<td>217</td>
</tr>
<tr>
<td>Marketing and Operations Research</td>
<td>212</td>
</tr>
<tr>
<td>Marketing Planning (Modul)</td>
<td>37</td>
</tr>
<tr>
<td>Market Decision Models I</td>
<td>106</td>
</tr>
<tr>
<td>Markov Decision Models II</td>
<td>289</td>
</tr>
<tr>
<td>Master Seminar in Entrepreneurship, Innovation and International Marketing</td>
<td>226</td>
</tr>
<tr>
<td>Master Seminar in Information Engineering and Management</td>
<td>359</td>
</tr>
<tr>
<td>Master Seminar in Marketing</td>
<td>222</td>
</tr>
<tr>
<td>Master Seminar in Quantitative Marketing and OR</td>
<td>224</td>
</tr>
<tr>
<td>Master Seminar zu Marktfrorschung</td>
<td>223</td>
</tr>
<tr>
<td>Master Thesis (Modul)</td>
<td>23</td>
</tr>
<tr>
<td>Master-Seminar Marketing Planning</td>
<td>225</td>
</tr>
<tr>
<td>Material Flow Analysis and Life Cycle Assessment</td>
<td>311</td>
</tr>
<tr>
<td>Mathematical and Empirical Finance (Modul)</td>
<td>58</td>
</tr>
<tr>
<td>Mathematical Programming (Modul)</td>
<td>56</td>
</tr>
<tr>
<td>Mathematical Theory of Democracy</td>
<td>262</td>
</tr>
<tr>
<td>Medical Simulation Systems I</td>
<td>147</td>
</tr>
<tr>
<td>Medical Simulation Systems II</td>
<td>189</td>
</tr>
<tr>
<td>Meshes and point clouds</td>
<td>148</td>
</tr>
<tr>
<td>Mikroprozessoren II</td>
<td>143</td>
</tr>
<tr>
<td>Mixed Integer Programming I</td>
<td>209</td>
</tr>
<tr>
<td>Mixed Integer Programming II</td>
<td>210</td>
</tr>
<tr>
<td>Mobile Communications</td>
<td>175</td>
</tr>
<tr>
<td>Model Driven Software Development</td>
<td>168</td>
</tr>
<tr>
<td>Modeling Strategic Decision Making</td>
<td>300</td>
</tr>
<tr>
<td>Models of Parallel Processing</td>
<td>161</td>
</tr>
<tr>
<td>Modern Market Research</td>
<td>211</td>
</tr>
</tbody>
</table>
Moderne Entwicklungsumgebung am Beispiel von .NET . . . 171
Motion based machine interface .. 150
Motion centered Human-Machine Interface (Modul) 84
Moving Objects Databases .. 378
Multicore Computers and Computer Clusters 118
Multicore Programming in Practice: Tools, Models, Languages 151
Multidisciplinary Risk Research .. 330
Multilinguale Mensch-Maschine-Kommunikation 158
Multimedia Communications .. 129
Multivariate Methods ... 236

N
n.n. ... 294
Nature-inspired Optimisation ... 276
Network and IT-Security Management 140
Network Security: Architectures and Protocols 159
Networked IT-Infrastructures ... 108
Networking (Modul) ... 75
Networking Labs (Modul) .. 73
Networking Security – Theory and Praxis (Modul) 76
Next Generation Internet ... 188
Nonlinear Optimization I .. 202
Nonlinear Optimization II ... 203

O
Operational Risk and Extreme Value Theory 239
Operational Risk Management I (Modul) 35
Operational Risk Management II (Modul) 36
Operations Research in Health Care Management 255
Operations Research in Supply Chain Management 412
Operations Research in Supply Chain Management and Health Care Management (Modul) . 54
Optimization in a Random Environment 270
OR-oriented modeling and analysis of real problems (project) 271
Organic Computing ... 274
Organic Computing (Modul) .. 96
Organization Theory ... 299

P
Parallel Algorithms .. 115
Parallelverarbeitung (Modul) ... 88
Patent Law .. 182
Performance Engineering of Enterprise Software Systems . 172
Personalization and Recommender Systems 356
Planning and Management of Industrial Plants 303
Portfolio and Asset Liability Management 243
Practical Course Data Warehousing and Mining 193
Practical Course Database Systems 407
Practical Course Distributed Data Management 413
Practical Course in Algorithm Design 110
Practical Course Web Engineering 195
Practical Course Web Technologies 153
Practical course: Geometric Modeling 196
Practical seminar: Health Care Management (with Case Studies) . 257
Praktikum Automatic Speech Recognition 152
Praktikum Biosignale ... 197
Praktikum Multilingual Speech Processing 149
Praktikum Simulation von Rechnernetzen 194
Principles of Automatic Speech Recognition 135
Principles of Information Engineering and Management .. 105
Private and Social Insurance ... 199
Private Business Law (Modul) .. 100
Production and Logistics Management 304
Production Planning and Scheduling 254
Project Management in Practice 381
Project Work in Risk Research .. 338
Public Business Law (Modul) ... 101
Public Key Cryptography ... 379
Public Key Cryptography (Modul) 63
Public Media Law ... 112
Public Sector Risk Management 336

Q
Quality Control I .. 268
Quality Control II ... 265
Quantitative Marketing and OR (Modul) 53

R
Randomized Algorithms .. 146
Rationale Splines ... 167
Reading Group ... 126
Recht der Informationsordnung 190
Regulation Theory and Practice 321
Reinsurance ... 323
Risk Communication ... 339
Risk Management and Econometrics in Finance (Modul) . 60
Risk Management of Microfinance and Private Households 335

S
Saving Societies ... 332
Security ... 198
Selected topics in Cryptography 166
Selling IT-Solutions Professionally 380
Semantic Technologies (Modul) 94
Semantic Web Technologies I ... 281
Semantic Web Technologies II 282
Seminar Aktuelle Themen der Sprachverarbeitung 391
Seminar Complexity Management 388
Seminar Economic Theory .. 399
Seminar Efficient Algorithms ... 387
Seminar eOrganization .. 390
Seminar Geometric computing 373
Seminar in Algorithm Design ... 111
Seminar in Applied Informatics 201
Seminar in Continuous Optimization 206
Seminar in Cryptography ... 402 f.
Seminar in Discrete Optimization 252
Seminar in Enterprise Information Systems 386
Seminar in Experimental Economics 400
Seminar in Finance .. 233
Seminar in Game and Decision Theory 401
Seminar in Industrial Production 395
Seminar in Insurance Management 392
Seminar in Law ... 414
Seminar in Operational Risk Management 393
Seminar in Risk Theory and Actuarial Science 394
Seminar in Security .. 397
Seminar Information Engineering and Management 396
Seminar Knowledge Management 389