

Modulhandbuch Informatik (Bachelor of Science (B.Sc.))

SPO 2015 Sommersemester 2022 Stand 17.02.2022

KIT-FAKULTÄT FÜR INFORMATIK

Inhaltsverzeichnis

1.	Studienplan - Einführung	
	1.1. Studiengangs- und Qualifikationsprofil	
	1.2. Modularisierung der Informatik-Studiengänge	
	1.2.1. Versionierung von Modulen und Teilleistungen	
	1.2.2. Leistungsstufen	
	1.3. An-/Abmeldung und Wiederholung von Prüfungen	
	1.4. Studienberatung	
2.	Studienplan - Struktur des Bachelor-Studiengangs Informatik	12
	2.1. Pflichtmodule – SPO 2015	
	2.2. Orientierungsprüfung	
	2.3. Wahlmodule	
	2.3.1. Stammmodule	13
	2.3.2. Proseminar	
	2.3.3. Sonstige Informatik-Wahlmodule	
	2.4. Ergänzungsfachmodule	
	2.5. Überfachliche Qualifikationen	
	2.6. Zusatzleistungen	
	2.7. Vorzugsleistungen für das Masterstudium	
3.	Aufbau des Studiengangs	15
	3.1. Bachelorarbeit	15
	3.2. Theoretische Informatik	15
	3.3. Praktische Informatik	15
	3.4. Technische Informatik	
	3.5. Mathematik	16
	3.6. Wahlbereich Informatik	
	3.7. Ergänzungsfach	
	3.7.1. Recht	
	3.7.2. Mathematik	
	3.7.3. Physik	
	3.7.4. Informationsmanagement im Ingenieurwesen	
	3.7.5. Elektro- und Informationstechnik	
	3.7.6. Betriebswirtschaftslehre (ab 01.10.2021)	
	3.7.7. Volkswirtschaftslehre	
	3.7.8. Operations Research	
	3.7.9. Philosophie	
	3.8. Überfachliche Qualifikationen	22
4.	Module	
	4.1. Algebra - M-MATH-101315	
	4.2. Algorithmen für planare Graphen - M-INFO-101220	
	4.3. Algorithmen I - M-INFO-100030	
	4.4. Algorithmen II - M-INFO-101173	
	4.5. Algorithmische Methoden für schwere Optimierungsprobleme - M-INFO-101237	
	4.6. Analysis 1 und 2 - M-MATH-101306	
	4.7. Analysis 3 - M-MATH-101318	
	4.8. Analysis 4 - M-MATH-103164	
	4.9. Antennen und Mehrantennensysteme - M-ETIT-100565	
	4.10. Anwendungen des Operations Research - M-WIWI-101413	
	4.11. Ars Rationalis - M-GEISTSOZ-100614	
	4.12. Basispraktikum Arbeiten mit Datenbanksystemen - M-INFO-101865	
	4.13. Basispraktikum Mobile Roboter - M-INFO-101184	
	4.14. Basispraktikum Protocol Engineering - M-INFO-101247	
	4.15. Basispraktikum TI: Hardwarenaher Systementwurf - M-INFO-101219	
	4.16. Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) - M-INFO-101633	
	4.17. Basispraktikum zum ICPC-Programmierwettbewerb - M-INFO-101230	
	4.18. Batteriemodellierung mit MATLAB - M-ETIT-103271	
	4.19. Bauökologie - M-WIWI-101467	
	4.20. Betriebssysteme - M-INFO-101177	47

4.21. Bildgebende Verfahren in der Medizin I - M-ETIT-100384	
4.22. Bildverarbeitung - M-ETIT-102651	
4.23. Computergrafik - M-INFO-100856	
4.24. CRM und Servicemanagement - M-WIWI-101460	
4.25. Dosimetrie ionisierender Strahlung - M-ETIT-101847	
4.26. eBusiness und Service Management - M-WIWI-101434	
4.27. Echtzeitsysteme - M-INFO-100803	
4.28. eFinance - M-WIWI-101402	
4.29. Einführung in das Operations Research - M-WIWI-101418	
4.30. Einführung in das Privatrecht - M-INFO-101190	59
4.31. Einführung in die Algebra und Zahlentheorie - M-MATH-101314	
4.32. Einführung in die Philosophie - M-GEISTSOZ-103430	
4.33. Einführung in die Philosophie (Euklid) - M-GEISTSOZ-104500	
4.34. Einführung in die Stochastik - M-MATH-101321	
4.35. Einführung in die Volkswirtschaftslehre - M-WIWI-101398	
4.36. Elektrische Maschinen und Stromrichter - M-ETIT-102124	
4.37. Elektroenergiesysteme - M-ETIT-102156	
4.38. Elektromagnetische Felder - M-ETIT-104428	
4.39. Elektromagnetische Wellen - M-ETIT-104515	
4.40. Elektronische Schaltungen - M-ETIT-104465	
4.41. Elektrotechnisches Grundlagenpraktikum - M-ETIT-102113	
4.42. Elementare Geometrie - M-MATH-103152	
4.43. Energiewirtschaft - M-WIWI-101464	
4.44. Erzeugung elektrischer Energie - M-ETIT-100407	
4.45. Essentials of Finance - M-WIWI-101435	
4.46. Fertigungsmesstechnik - M-ETIT-103043	
4.47. Financial Data Science - M-WIWI-105610	
4.48. Finanzierung und Rechnungswesen - M-WIWI-105769	
4.49. Finanzwissenschaft - M-WIWI-101403	
4.50. Flächen im CAD - M-INFO-101254	
4.51. Formale Systeme - M-INFO-100799	
4.52. Fortgeschrittenes Algorithmisches Programmieren - M-INFO-105723	
4.53. Funktionalanalysis - M-MATH-101320	
4.54. Geistiges Eigentum und Datenschutz - M-INFO-101253	90
4.56. Geometrische Grundlagen der Geometrieverarbeitung - M-INFO-100756	
4.57. Graphentheorie - M-MATH-101336	
4.58. Grundbegriffe der Informatik - M-INFO-101170	
4.59. Grundlagen der Hochfrequenztechnik - M-ETIT-102129	
4.60. Grundlagen der Physik - M-PHYS-101339	
4.61. Grundlagen des Marketing - M-WIWI-101424	
4.62. Höhere Mathematik - M-MATH-101305	
4.63. Hybride und elektrische Fahrzeuge - M-ETIT-100514	
4.64. Industrielle Produktion I - M-WIWI-101437	
4.65. Informationsmanagement im Ingenieurwesen - M-MACH-102399	
4.66. Informationstechnik I - M-ETIT-104539	
4.67. Informationstechnik II und Automatisierungstechnik - M-ETIT-104547	
4.68. Kognitive Systeme - M-INFO-100819	
4.69. Kombinatorik - M-MATH-102950	
4.70. Kommunikation und Datenhaltung - M-INFO-101178	
4.71. Kurven im CAD - M-INFO-101248	
4.72. Labor für angewandte Machine Learning Algorithmen - M-ETIT-104823	
4.73. Labor Schaltungsdesign - M-ETIT-100518	
4.74. Lego Mindstorms - Basispraktikum - M-INFO-102557	
4.75. Lineare Algebra 1 und 2 - M-MATH-101309	
4.76. Lineare Algebra für die Fachrichtung Informatik - M-MATH-101307	
4.77. Lineare Elektrische Netze - M-ETIT-101845	
4.78. Management und Marketing - M-WIWI-105768	
4.79. Markovsche Ketten - M-MATH-101323	
4.80. MARS-Basispraktikum - M-INFO-101245	
Basispianemani 1: 111 0 1012 10	127

	4.81. Mechano-Informatik in der Robotik - M-INFO-100757	
	4.82. Mensch-Maschine-Interaktion - M-INFO-100729	
	4.83. Methodische Grundlagen des OR - M-WIWI-101414	
	4.84. Mikroprozessoren I - M-INFO-101183	
	4.85. Mobile Computing und Internet der Dinge - M-INFO-101249	
	4.86. Moderne Physik für Informatiker - M-PHYS-101340	
	4.87. Modul Bachelorarbeit - M-INFO-101721	
	4.88. Nachrichtentechnik I - M-ETIT-102103	
	4.89. Nachrichtentechnik II - M-ETIT-100440	
	4.90. Nachrichtentechnik II / Communications Engineering II - M-ETIT-105274	
	4.91. Optik und Festkörperelektronik - M-ETIT-105005	
	4.92. Optimierung unter Unsicherheit - M-WIWI-103278	
	4.93. Optoelectronic Components - M-ETIT-100509	
	4.94. Photovoltaische Systemtechnik - M-ETIT-100411	
	4.95. Physiologie und Anatomie I - M-ETIT-100390	
	4.96. Praktikum Hard- und Software in leistungselektronischen Systemen - M-ETIT-103263	
	4.97. Praktische Mathematik - M-MATH-101308	
	4.98. Praktische Philosophie I - M-GEISTSOZ-104507	
	4.99. Praxis der Software-Entwicklung - M-INFO-101176	
	4.100. Produktion, Logistik und Wirtschaftsinformatik - M-WIWI-105770	
	4.101. Programmieren - M-INFO-101174	
	4.102. Programmierparadigmen - M-INFO-101179	
	4.103. Proseminar - M-INFO-101181	
	4.104. Proseminar Mathematik - M-MATH-101313	
	4.105. Radiation Protection - M-ETIT-100562	
	4.106. Real Estate Management - M-WIWI-101466	
	4.107. Rechnerstrukturen - M-INFO-100818	
	4.108. Risk and Insurance Management - M-WIWI-101436	
	4.109. Robotik I - Einführung in die Robotik - M-INFO-100893	
	4.110. Schlüsselqualifikationen - M-INFO-101723	
	4.111. Seminar Batterien I - M-ETIT-105319	
	4.112. Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung - M-ETIT-100397	
	4.113. Seminar über ausgewählte Kapitel der Biomedizinischen Technik - M-ETIT-100383	
	4.114. Seminar: Advanced Topics in High Performance Computing, Data Management and Analytics - M-INFO-105888	
	4.115. Seminarmodul Recht - M-INFO-101218	
	4.116. Seminarmodul Wirtschaftswissenschaften - M-WIWI-101826	
	4.117. Sicherheit - M-INFO-100834	
	4.118. Signale und Systeme - M-ETIT-102123	
	4.119. Softwaretechnik I - M-INFO-101175	
	4.120. Softwaretechnik II - M-INFO-100833	
	4.121. Strategie und Organisation - M-WIWI-101425	
	4.122. Supply Chain Management - M-WIWI-101421	
	4.123. Systemdynamik und Regelungstechnik - M-ETIT-102181	
	4.124. Teamarbeit in der Softwareentwicklung - M-INFO-101225	
	4.125. Technische Informatik - M-INFO-101180	
	4.126. Telematik - M-INFO-100801	
	4.127. Theoretische Grundlagen der Informatik - M-INFO-101172	
	4.128. Theoretische Philosophie I - M-GEISTSOZ-104509	
	4.129. Topics in Finance I - M-WIWI-101465	
	4.130. Verfassungs- und Verwaltungsrecht - M-INFO-101192	
	4.131. Wahrscheinlichkeitstheorie - M-MATH-101322	
	4.132. Web-Anwendungen und Serviceorientierte Architekturen (I) - M-INFO-101636	
	4.133. Wirtschaftsprivatrecht - M-INFO-101191	
	4.134. Wirtschaftstheorie - M-WIWI-101501	200
5. 1	Teilleistungen	
	5.1. Advanced Topics in Economic Theory - T-WIWI-102609	
	5.2. Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte - T-MACH-106744	
	5.3. Algebra - T-MATH-102253	
	5.4. Algorithmen für planare Graphen - T-INFO-101986	
	5.5. Algorithmen I - T-INFO-100001	206

5.6. Algorithmen II - T-INFO-102020	
5.7. Algorithmische Methoden für schwere Optimierungsprobleme - T-INFO-103334	208
5.8. Analysis 1 - Klausur - T-MATH-106335	
5.9. Analysis 1 Übungsschein - T-MATH-102235	210
5.10. Analysis 2 - Klausur - T-MATH-106336	
5.11. Analysis 2 Übungsschein - T-MATH-102236	212
5.12. Analysis 3 - Klausur - T-MATH-102245	213
5.13. Analysis 4 - Prüfung - T-MATH-106286	214
5.14. Analytisches CRM - T-WIWI-102596	215
5.15. Antennen und Mehrantennensysteme - T-ETIT-106491	216
5.16. Ars Rationalis I - T-GEISTSOZ-101174	217
5.17. Ars Rationalis II - T-GEISTSOZ-101175	
5.18. Auction & Mechanism Design - T-WIWI-102876	
5.19. B2B Vertriebsmanagement - T-WIWI-111367	
5.20. Bachelorarbeit - T-INFO-103336	
5.21. Basispraktikum Mobile Roboter - T-INFO-101992	
5.22. Basispraktikum Protocol Engineering - T-INFO-102066	
5.23. Basispraktikum Technische Informatik: Hardwarenaher Systementwurf Übung - T-INFO-105983	
5.24. Basispraktikum TI: Hardwarenaher Systementwurf - T-INFO-102011	
5.25. Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) - T-INFO-103119	
5.26. Basispraktikum zum ICPC Programmierwettbewerb - T-INFO-101991	
5.27. Basispraktikum: Arbeiten mit Datenbanksystemen - T-INFO-103552	
5.28. Batteriemodellierung mit MATLAB - T-ETIT-106507	
5.29. Bauökologie I - T-WIWI-102742	
5.30. Bauökologie II - T-WIWI-102743	
5.31. Betriebssysteme - T-INFO-101969	
5.32. BGB für Anfänger - T-INFO-103339	
5.33. Bildgebende Verfahren in der Medizin I - T-ETIT-101930	
5.35. CAD-Praktikum NX - T-MACH-102187	
5.36. Computergrafik - T-INFO-101393	
5.37. Consumer Behavior - T-WIWI-106569	
5.38. Customer Relationship Management - T-WIWI-102595	
5.39. Datenbanksysteme - T-INFO-101497	
5.40. Derivate - T-WIWI-102643	
5.41. Digital Services: Foundations - T-WIWI-111307	
5.42. Dosimetrie ionisierender Strahlung - T-ETIT-104505	
5.43. Echtzeitsysteme - T-INFO-101340	
5.44. Economics and Behavior - T-WIWI-102892	
5.45. eFinance: Informationssysteme für den Wertpapierhandel - T-WIWI-110797	
5.46. Eine Einführung zum Informatikstudium am KIT (eezi) - T-INFO-109862	
5.47. Einführung in Algebra und Zahlentheorie - T-MATH-102251	
5.48. Einführung in das Operations Research I und II - T-WIWI-102758	
5.49. Einführung in die Energiewirtschaft - T-WIWI-102746	
5.50. Einführung in die Finanzwissenschaft - T-WIWI-102877	251
5.51. Einführung in die Philosophie 1 - T-GEISTSOZ-111610	252
5.52. Einführung in die Philosophie 2 - T-GEISTSOZ-111612	253
5.53. Einführung in die Philosophie 3 - T-GEISTSOZ-111608	254
5.54. Einführung in die Philosophie 4 - T-GEISTSOZ-111607	
5.55. Einführung in die Philosophie 5 - T-GEISTSOZ-111606	
5.56. Einführung in die Spieltheorie - T-WIWI-102850	
5.57. Einführung in die Stochastik - T-MATH-102256	
5.58. Einführung in die Stochastische Optimierung - T-WIWI-106546	
5.59. Einführung in Rechnernetze - T-INFO-102015	
5.60. Elektrische Maschinen und Stromrichter - T-ETIT-101954	
5.61. Elektroenergiesysteme - T-ETIT-101923	
5.62. Elektromagnetische Felder - T-ETIT-109078	
5.63. Elektromagnetische Wellen - T-ETIT-109245	
5.64. Elektronische Schaltungen - T-ETIT-109318	265

5.66. Elektrotechnisches Grundlagenpraktikum - T-ETIT-101943	267
. ,	
5.67. Elementare Geometrie - Prüfung - T-MATH-103464	
5.68. Energiepolitik - T-WIWI-102607	
5.69. Enterprise Risk Management - T-WIWI-102608	270
5.70. Entwicklungsmethoden technischer Systeme - T-MACH-111283	271
5.71. Erzeugung elektrischer Energie - T-ETIT-101924	272
5.72. Fertigungsmesstechnik - T-ETIT-106057	
5.73. Financial Accounting for Global Firms - T-WIWI-107505	
5.74. Financial Data Science - T-WIWI-111238	
5.75. Financial Management - T-WIWI-102605	
5.76. Finanzierung und Rechnungswesen - T-WIWI-111595	
5.77. Finanzintermediation - T-WIWI-102623	
5.78. Flächen im CAD - T-INFO-102073	
5.79. Formale Systeme - T-INFO-101336	
5.80. Fortgeschrittenes Algorithmisches Programmieren - T-INFO-111399	281
5.81. Foundations of Interactive Systems - T-WIWI-109816	282
5.82. Funktionalanalysis - T-MATH-102255	283
5.83. Geistiges Eigentum und Datenschutz - T-INFO-109840	
5.84. Geometrische Grundlagen der Geometrieverarbeitung - T-INFO-111453	285
5.85. Geometrische Grundlagen der Geometrieverarbeitung - T-INFO-101293	
5.86. Geschäftspolitik der Kreditinstitute - T-WIWI-102626	
5.87. Globale Optimierung I - T-WIWI-102726	
5.88. Globale Optimierung I und II - T-WIWI-103638	
5.89. Globale Optimierung II - T-WIWI-102727	
5.90. Graphentheorie - T-MATH-102273	291
5.91. Grundbegriffe der Informatik - T-INFO-101964	292
5.92. Grundbegriffe der Informatik Übungsschein - T-INFO-101965	293
5.93. Grundlagen der Hochfrequenztechnik - T-ETIT-101955	
5.94. Grundlagen der Produktionswirtschaft - T-WIWI-102606	295
5.95. Grundlagen der Unternehmensbesteuerung - T-WIWI-108711	
	Z 2 U
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244	297
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232	297 298
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232	297 298 299
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232	297 298 299 300
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik I und II - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784	297 298 299 300 301
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232	297 298 299 300 301
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik I und II - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784	297 298 299 300 301 302
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik I und II - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844	297 298 309 301 302 303
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik I und II - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300	297 298 299 300 301 302 303
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik II Übungsschein - T-MATH-102233 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301	297 298 299 300 301 302 303 304
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik II und II - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319	297 298 299 300 301 302 303 304 305 306
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik II übungsschein - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646	297 298 299 300 301 302 303 304 305 306 307
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik II Übungsschein - T-MATH-102233 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604	297 298 299 300 301 302 303 304 305 306 307
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik II Übungsschein - T-MATH-102233 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457	297 298 309 301 302 303 304 305 306 307 308
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik II Übungsschein - T-MATH-102233 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356	297298300301302303304305306307308
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102234 5.98. Höhere Mathematik II Übungsschein - T-MATH-102233 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356 5.110. Kombinatorik - T-MATH-105916	297 298 299 300 301 303 304 305 306 307 308 309 311
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik II Übungsschein - T-MATH-102233 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356	297 298 299 300 301 303 304 305 306 307 308 309 311
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102234 5.98. Höhere Mathematik II Übungsschein - T-MATH-102233 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356 5.110. Kombinatorik - T-MATH-105916	297298299301302303304305306307308309311
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik II Übungsschein - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356 5.110. Kombinatorik - T-MATH-105916 5.111. Kurven im CAD - T-INFO-102067 5.112. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839	297 298 299 301 302 303 304 305 306 307 308 311 312 313
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102234 5.98. Höhere Mathematik II Übungsschein - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356 5.110. Kombinatorik - T-MATH-105916 5.111. Kurven im CAD - T-INFO-102067 5.112. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839 5.113. Labor Schaltungsdesign - T-ETIT-100788	297 298 299 300 301 303 304 305 306 307 310 311 312 313
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik II Übungsschein - T-MATH-102233 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356 5.110. Kombinatorik - T-MATH-105916 5.111. Kurven im CAD - T-INFO-102067 5.112. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839 5.113. Labor Schaltungsdesign - T-ETIT-100788 5.114. Lineare Algebra 1 - Klausur - T-MATH-106338	297 298 299 300 301 302 303 305 306 307 310 311 312 313 314 315
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102234 5.98. Höhere Mathematik I Übungsschein - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356 5.110. Kombinatorik - T-MATH-105916 5.111. Kurven im CAD - T-INFO-102067 5.112. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839 5.113. Labor Schaltungsdesign - T-ETIT-100788 5.114. Lineare Algebra 1 - Klausur - T-MATH-106338 5.115. Lineare Algebra 1 - Übungsschein - T-MATH-102249	297 298 299 300 301 302 303 304 305 306 307 310 311 312 313 314 315 316
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102232 5.98. Höhere Mathematik II Übungsschein - T-MATH-102233 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356 5.110. Kombinatorik - T-MATH-105916 5.111. Kurven im CAD - T-INFO-102067 5.112. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839 5.113. Labor Schaltungsdesign - T-ETIT-100788 5.114. Lineare Algebra 1 - Klausur - T-MATH-106338 5.115. Lineare Algebra 2 - Klausur - T-MATH-106339	297 298 299 300 301 302 303 305 306 307 308 311 312 313 314 315 316 317
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102234 5.98. Höhere Mathematik I I Übungsschein - T-MATH-102233 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik II - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356 5.110. Kombinatorik - T-MATH-105916 5.111. Kurven im CAD - T-INFO-102067 5.112. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839 5.113. Labor Schaltungsdesign - T-ETIT-100788 5.114. Lineare Algebra 1 - Klausur - T-MATH-106338 5.115. Lineare Algebra 2 - Klausur - T-MATH-106339	297 298 299 300 301 302 303 304 305 306 307 311 312 313 314 315 316 317 318
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102234 5.98. Höhere Mathematik I I Übungsschein - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356 5.110. Kombinatorik - T-MATH-105916 5.111. Kurven im CAD - T-INFO-102067 5.112. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839 5.113. Labor Schaltungsdesign - T-ETIT-100788 5.114. Lineare Algebra 1 - Klausur - T-MATH-106338 5.115. Lineare Algebra 2 - Klausur - T-MATH-106339 5.116. Lineare Algebra 2 - Übungsschein - T-MATH-102259 5.118. Lineare Algebra 1 für die Fachrichtung Informatik - T-MATH-103215	297 298 299 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317 318
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I übungsschein - T-MATH-102234 5.98. Höhere Mathematik II Übungsschein - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.109. Kognitive Systeme - T-INFO-101356 5.110. Kombinatorik - T-MATH-105916 5.111. Kurven im CAD - T-INFO-102067 5.112. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839 5.113. Labor Schaltungsdesign - T-ETIT-100788 5.114. Lineare Algebra 1 - Übungsschein - T-MATH-106338 5.115. Lineare Algebra 2 - Klausur - T-MATH-106339 5.116. Lineare Algebra 2 - Übungsschein - T-MATH-102259 5.118. Lineare Algebra I für die Fachrichtung Informatik - T-MATH-102215 5.119. Lineare Algebra I für die Fachrichtung Informatik - Übungsschein - T-MATH-102238	297 298 299 300 303 304 305 306 307 310 311 312 315 316 317 318 319 320
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244	297 298 299 300 301 302 305 306 307 318 311 315 316 317 318 319 319 320 321
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244	297 298 299 300 301 302 303 305 306 307 308 311 312 313 314 315 316 317 318 319 320 321
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102234 5.98. Höhere Mathematik II Übungsschein - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.110. Kombinatorik - T-MATH-105916 5.111. Kurven im CAD - T-INFO-102067 5.112. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839 5.113. Labor Schaltungsdesign - T-ETIT-100788 5.114. Lineare Algebra 1 - Klausur - T-MATH-106338 5.115. Lineare Algebra 2 - Klausur - T-MATH-106339 5.116. Lineare Algebra 1 - Übungsschein - T-MATH-102299 5.117. Lineare Algebra 1 - Ür die Fachrichtung Informatik - T-MATH-103215 5.118. Lineare Algebra I für die Fachrichtung Informatik - T-MATH-102241 5.120. Lineare Algebra II für die Fachrichtung Informatik - Übungsschein - T-MATH-102240 5.121. Lineare Algebra II für die Fachrichtung Informatik - Übungsschein - T-MATH-102240 5.122. Lineare Elektrische Netze - T-ETIT-101917	297 298 299 300 301 302 305 306 307 308 311 312 313 314 315 316 317 318 319 320 321 322 323
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244	297 298 299 300 301 302 305 306 307 308 311 312 313 314 315 316 317 318 319 320 321 322 323
5.96. Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik - T-MATH-102244 5.97. Höhere Mathematik I Übungsschein - T-MATH-102234 5.98. Höhere Mathematik II Übungsschein - T-MATH-102234 5.99. Höhere Mathematik II Übungsschein - T-MATH-102233 5.100. Hybride und elektrische Fahrzeuge - T-ETIT-100784 5.101. Industrieökonomie - T-WIWI-102844 5.102. Information Engineering - T-MACH-102209 5.103. Informationstechnik I - T-ETIT-109300 5.104. Informationstechnik I - Praktikum - T-ETIT-109301 5.105. Informationstechnik II und Automatisierungstechnik - T-ETIT-109319 5.106. Internationale Finanzierung - T-WIWI-102646 5.107. Investments - T-WIWI-102604 5.108. IT-Systemplattform I4.0 - T-MACH-106457 5.110. Kombinatorik - T-MATH-105916 5.111. Kurven im CAD - T-INFO-102067 5.112. Labor für angewandte Machine Learning Algorithmen - T-ETIT-109839 5.113. Labor Schaltungsdesign - T-ETIT-100788 5.114. Lineare Algebra 1 - Klausur - T-MATH-106338 5.115. Lineare Algebra 2 - Klausur - T-MATH-106339 5.116. Lineare Algebra 1 - Übungsschein - T-MATH-102299 5.117. Lineare Algebra 1 - Ür die Fachrichtung Informatik - T-MATH-103215 5.118. Lineare Algebra I für die Fachrichtung Informatik - T-MATH-102241 5.120. Lineare Algebra II für die Fachrichtung Informatik - Übungsschein - T-MATH-102240 5.121. Lineare Algebra II für die Fachrichtung Informatik - Übungsschein - T-MATH-102240 5.122. Lineare Elektrische Netze - T-ETIT-101917	297 298 299 300 301 302 305 306 307 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

5.126. Marketing Mix - T-WIWI-102805	327
5.127. Markovsche Ketten - T-MATH-102258	
5.128. MARS-Basispraktikum - T-INFO-102053	
5.129. Mechano-Informatik in der Robotik - T-INFO-101294	
5.130. Mensch-Maschine-Interaktion - T-INFO-101266	
5.131. Mikroprozessoren I - T-INFO-101972	
5.132. Mobile Computing und Internet der Dinge - T-INFO-102061	
5.133. Modellieren und OR-Software: Einführung - T-WIWI-106199	
5.134. Moderne Physik für Informatiker - T-PHYS-102323	
5.135. Modulprüfung Einführung in die Philosophie - T-GEISTSOZ-106828	
5.136. Modulprüfung Praktische Philosophie I - T-GEISTSOZ-100828	
5.137. Modulprüfung Theoretische Philosophie I - T-GEISTSOZ-109222	
5.138. Modulteilprüfung 1 - Ars Rationalis (Klausur) - T-GEISTSOZ-110370	
5.139. Modulteilprüfung 2 - Ars Rationalis (Argumentanalyse) - T-GEISTSOZ-110371	
5.140. Nachrichtentechnik I - T-ETIT-101936	
5.141. Nachrichtentechnik II - T-ETIT-100745	
5.142. Nachrichtentechnik II / Communications Engineering II - T-ETIT-110697	
5.143. Nichtlineare Optimierung I - T-WIWI-102724	
5.144. Nichtlineare Optimierung I und II - T-WIWI-103637	
5.145. Nichtlineare Optimierung II - T-WIWI-102725	
5.146. Numerische Mathematik für die Fachrichtung Informatik - T-MATH-102242	
5.147. Numerische Mathematik für die Fachrichtung Informatik, Übungsschein - T-MATH-102243	
5.148. Öffentliche Einnahmen - T-WIWI-102739	
5.149. Öffentliches Finanzwesen - T-WIWI-109590	
5.150. Öffentliches Recht I & II - T-INFO-110300	
5.151. Operatives CRM - T-WIWI-102597	
5.152. Optik und Festkörperelektronik - T-ETIT-110275	
5.153. Optimierungsansätze unter Unsicherheit - T-WIWI-106545	
5.154. Optoelectronic Components - T-ETIT-101907	
5.155. Organisationsmanagement - T-WIWI-102630	356
5.156. Photovoltaische Systemtechnik - T-ETIT-100724	357
5.157. Physik für Informatiker I und II - T-PHYS-102303	358
5.158. Physiologie und Anatomie I - T-ETIT-101932	359
5.159. Platform Economy - T-WIWI-109936	360
5.160. PLM-CAD Workshop - T-MACH-102153	361
5.161. Praktikum Hard- und Software in leistungselektronischen Systemen - T-ETIT-106498	
5.162. Praktikum: Lego Mindstorms - T-INFO-107502	363
5.163. Praktische Philosophie 1.1 (Einführung/Überblick zu entw. Ethik, Politische Philosophie oder	364
Handlungstheorie) - T-GEISTSOZ-101170	
5.164. Praktische Philosophie 1.2 - T-GEISTSOZ-101081	365
5.165. Praktische Philosophie 1.3 - T-GEISTSOZ-101171	366
5.166. Praxis der Software-Entwicklung - T-INFO-102031	367
5.167. Praxis der Unternehmensberatung - T-INFO-101975	368
5.168. Praxis des Lösungsvertriebs - T-INFO-101977	
5.169. Principles of Insurance Management - T-WIWI-102603	370
5.170. Privatrechtliche Übung - T-INFO-102013	
5.171. Problemlösung, Kommunikation und Leadership - T-WIWI-102871	
5.172. Product Lifecycle Management - T-MACH-105147	
5.173. Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung - T-MACH-102155	
5.174. Produktion und Nachhaltigkeit - T-WIWI-102820	
5.175. Produktion, Logistik und Wirtschaftsinformatik - T-WIWI-111602	
5.176. Programmieren - T-INFO-101531	
5.177. Programmieren Übungsschein - T-INFO-101967	
5.178. Programmierparadigmen - T-INFO-101530	
5.179. Projektmanagement aus der Praxis - T-INFO-101976	
5.180. Projektmanagement im Zeitalter der Digitalisierung - T-INFO-110998	
5.181. Proseminar - T-INFO-101971	
5.182. Proseminar Mathematik - T-MATH-103404	
5.183. Radiation Protection - T-ETIT-100825	
5.184. Real Estate Management I - T-WIWI-102744	

5.185. Real Estate Management II - T-WIWI-102745	387
5.186. Rechnerstrukturen - T-INFO-101355	
5.187. Renewable Energy-Resources, Technologies and Economics - T-WIWI-100806	389
5.188. Robotik I - Einführung in die Robotik - T-INFO-108014	390
5.189. Selbstverbuchung-HOC-SPZ-ZAK-benotet - T-INFO-111475	391
5.190. Selbstverbuchung-HOC-SPZ-ZAK-benotet - T-INFO-111476	392
5.191. Selbstverbuchung-HOC-SPZ-ZAK-benotet - T-INFO-111474	393
5.192. Selbstverbuchung-HOC-SPZ-ZAK-unbenotet - T-INFO-111479	394
5.193. Selbstverbuchung-HOC-SPZ-ZAK-unbenotet - T-INFO-111478	395
5.194. Selbstverbuchung-HOC-SPZ-ZAK-unbenotet - T-INFO-111477	396
5.195. Seminar aus Rechtswissenschaften I - T-INFO-101997	397
5.196. Seminar Batterien I - T-ETIT-110800	
5.197. Seminar Betriebswirtschaftslehre (Bachelor) - T-WIWI-103486	399
5.198. Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung - T-ETIT-100714	402
5.199. Seminar Operations Research (Bachelor) - T-WIWI-103488	403
5.200. Seminar Statistik (Bachelor) - T-WIWI-103489	404
5.201. Seminar über ausgewählte Kapitel der Biomedizinischen Technik - T-ETIT-100710	405
5.202. Seminar Volkswirtschaftslehre (Bachelor) - T-WIWI-103487	406
5.203. Seminar: Advanced Topics in High Performance Computing, Data Management and Analytics - T-INFO-11183	
5.204. Sicherheit - T-INFO-101371	
5.205. Signale und Systeme - T-ETIT-101922	410
5.206. Softwaretechnik I - T-INFO-101968	411
5.207. Softwaretechnik I Übungsschein - T-INFO-101995	412
5.208. Softwaretechnik II - T-INFO-101370	
5.209. Spezialveranstaltung Wirtschaftsinformatik - T-WIWI-109940	414
5.210. Standortplanung und strategisches Supply Chain Management - T-WIWI-102704	415
5.211. Strategic Finance and Technology Change - T-WIWI-110511	
5.212. Systemdynamik und Regelungstechnik - T-ETIT-101921	
5.213. Taktisches und operatives Supply Chain Management - T-WIWI-102714	
5.214. Teamarbeit im Bereich Serviceorientierte Architekturen - T-INFO-104385	
5.215. Teamarbeit im Bereich Web-Anwendungen - T-INFO-102068	420
5.216. Teamarbeit und Präsentation in der Softwareentwicklung - T-INFO-102018	
5.217. Technische Informatik - T-INFO-101970	422
5.218. Technische Informationssysteme - T-MACH-102083	423
5.219. Telematik - T-INFO-101338	
5.220. Theoretische Grundlagen der Informatik - T-INFO-103235	425
5.221. Theoretische Philosophie 1.1 (Einführung in /Überblick über ein Teilgebiet der Theoretischen Philosophie)	- T-426
GEISTSOZ-101176	
5.222. Theoretische Philosophie 1.2 - T-GEISTSOZ-101177	427
5.223. Theoretische Philosophie 1.3 - T-GEISTSOZ-101178	428
5.224. Übungen zu Computergrafik - T-INFO-104313	
5.225. Übungsschein Mensch-Maschine-Interaktion - T-INFO-106257	430
5.226. Unternehmensführung und Strategisches Management - T-WIWI-102629	431
5.227. Virtual Reality Praktikum - T-MACH-102149	
5.228. Volkswirtschaftslehre I: Mikroökonomie - T-WIWI-102708	
5.229. Volkswirtschaftslehre II: Makroökonomie - T-WIWI-102709	
5.230. Wahrscheinlichkeitstheorie - T-MATH-102257	
5.231. Web-Anwendungen und Serviceorientierte Architekturen (I) - T-INFO-103122	
5.232. Wohlfahrtstheorie - T-WIWI-102610	437

1 Studienplan - Einführung

Der Studienplan definiert über die abstrakten Regelungen der Prüfungsordnung hinausgehende Details des Bachelor-Studiengangs Informatik am Karlsruher Institut für Technologie (KIT). Um Studienanfängerinnen und -anfängern wie auch bereits Studierenden die Studienplanung zu erleichtern, dient der Studienplan als Empfehlung, das Studium optimal zu strukturieren. So können u. a. persönliche Fähigkeiten der Studierenden in Form von Wahlpflichtfächern, Ergänzungsfächern wie auch Überfachliche Qualifikationen von Anfang an berücksichtigt werden und Pflichtveranstaltungen, abgestimmt auf deren Turnus (WS/SS), in den individuellen Studienplan von Beginn an aufgenommen werden.

1.1 Studiengangs- und Qualifikationsprofil

Der Bachelorstudiengang Informatik vermittelt die wissenschaftlichen Grundlagen der Informatik, einschließlich umfangreicher Mathematikkenntnisse. Der Studiengang bietet eine fundierte und zugleich breit angelegte Ausbildung, die die verschiedenen Teilgebiete der Informatik abdeckt (Grundlagenstudium), wobei theoretische Kenntnisse und praktische Fähigkeiten aufeinander aufbauend vermittelt werden. Hinzu kommt ein Wahlbereich, in dem aus einem vielfältigen, vertiefenden Lehrangebot ausgewählt werden kann und eine erste Spezialisierung in mindestens zwei Gebieten erfolgt (Wahlfach). Das Studium wird ergänzt durch Inhalte aus einem benachbarten Fachgebiet (Ergänzungsfach) sowie durch die Vermittlung sozialer Kompetenz und Teamfähigkeit (als Überfachliche Qualifikationen).

Absolventinnen und Absolventen des Bachelorstudiengangs Informatik verfügen insbesondere über die folgenden Kompetenzen:

- Methoden der Informatik (Kernkompetenz)
 Sie kennen die theoretischen Grundlagen der Informatik ebenso wie die praktisch relevanten Methoden und Verfahren der verschiedenen Informatik-Gebiete. Sie sind in der Lage, die vielfältigen Aufgabenstellungen der Informatik selbstständig zu bewältigen – insbesondere auch Aufgabenstellungen, die sich aus Anwendungsgebieten ergeben. Sie können komplexe Probleme erfassen, strukturieren und mit Methoden der Informatik lösen.
- Kommunikation
 Sie können Themen der Informatik in Wort und Schrift darstellen und mit Informatikern wie Fachfremden überzeugend diskutieren.
- Teamarbeit
 Sie können in Teams interdisziplinär arbeiten.
- Gesellschaftliche Bedeutung (zivilgesellschaftliches Engagement) Sie kennen die gesellschaftliche Relevanz von Informatik und können entsprechend verantwortungsvoll handeln.
- Fortbildung (Persönlichkeitsentwicklung)
 Sie können sich auf neue Technologien einstellen und ihr Wissen auf zukünftige Entwicklungen übertragen.

1.2 Modularisierung der Informatik-Studiengänge

Wesentliche Merkmale des neuen Systems im Zuge des Bologna-Prozesses ergeben sich in der modularisierten Struktur des Studiengangs. So können mehrere Lehrveranstaltungen zu einem Modul gebündelt werden. Ein Modul kann allerdings auch aus nur einer Lehrveranstaltung bestehen. Module selbst werden wiederum in folgende sieben Fächer eingeordnet (s. auch Abschnitt Aufbau des Studiengangs):

- Theoretische Informatik
- Praktische Informatik
- Technische Informatik
- Mathematik
- · Wahlbereich Informatik
- Ergänzungsfach
- Schlüsselqualifikationen

Im Bachelor-Studiengang Informatik gibt es eine Differenzierung zwischen Pflicht-, Stamm- und Wahlmodulen. Pflichtmodule vermitteln die Grundlagen des Informatikstudiums und müssen daher von allen Studierenden im Laufe ihres Studiums besucht werden. Sie stammen aus den Fächern Theoretische Informatik, Praktische Informatik, Technische Informatik und Mathematik. Stammmodule hingegen werden im Bachelor-Studiengang dem Fach Wahlbereich Informatik zugeordnet. Inhaltlich dienen sie der Ergänzung der im Pflichtbereich noch nicht abgedeckten Basisthemen der Informatik. Wahlmodule sind ihrem Namen entsprechend für Studierende aus dem Angebot des jeweiligen Semesters frei wählbar.

Um die Transparenz bezüglich der durch den Studierenden erbrachten Leistung zu gewährleisten, werden Studien- und Prüfungsleistungen mit Leistungspunkten (LP), den so genannten ECTS-Punkten, bewertet. Diese sind im Modulhandbuch einzelnen Teilleistungen sowie Modulen zugeordnet und weisen durch ihre Höhe einerseits auf die Gewichtung einer Teilleistung in einem Modul und andererseits auf den mit der Veranstaltung verbundenen Arbeitsaufwand hin. Dabei entspricht ein Leistungspunkt einem Aufwand von ca. 30 Arbeitsstunden für einen durchschnittlichen Studierenden. Werden durch die belegten Studien- und Prüfungsleistungen in einem Modul mehr LP als dem Modul zugeordnet sind erreicht, so

werden die überschüssigen LP auf die Modulgröße abgeschnitten. Die Note des Moduls berechnet sich mit Berücksichtigung aller im Modul erbrachten LP. Für die Abschlussnote werden die überschüssigen LP allerdings nicht berücksichtigt. Weitere Details zur Berechnung der Bachelor-Abschlussnote werden auf der Fakultätswebseite (https://www.informatik.kit.edu/faq-wiki/doku.php) veröffentlicht.

In den Modulen wird durch diverse Erfolgskontrollen am Ende der Veranstaltung/-en überprüft, ob der Lerninhalt beherrscht wird. Diese Prüfungen können benotet (Prüfungsleistungen) in schriftlicher oder mündlicher Form, wie auch als Prüfungsleistung anderer Art oder unbenotet (Studienleistungen) stattfinden (nähere Erläuterungen hierzu finden sich in der Studien- und Prüfungsordnung (SPO) § 4). In jedem Modul werden Teilleistungen definiert. Diese sind abstrakte Beschreibungen der Erfolgskontrolle (Prüfungs- oder Studienleistungen). Die Lehrveranstaltungen, die im Modul geprüft werden, werden mit einer oder mehreren Teilleistungen verknüpft. Beispielsweise sind im Modul Grundlagen der Informatik zwei Teilleistungen vorgesehen: Eine Teilleistung modelliert eine Studienleistung (unbenotete Erfolgskontrolle), die das Bestehen des Übungsscheins überprüft. Die zweite Teilleistung ist benotet und modelliert die schriftliche Prüfungsleistung. Jede Teilleistung ist mit der zugehörigen Lehrveranstaltung (Übung bzw. Vorlesung) verknüpft. Im Fall des Moduls Programmieren werden beide Teilleistungen (Übungsschein und Prüfungsleistung) mit der Vorlesung verknüpft.

Im Abschnitt Aufbau des Studiengangs werden die einzelnen Module mit den darin zu erreichenden Leistungspunkte und die Zuordnung der Module zu den jeweiligen Fächern detailliert beschrieben. Die daraus resultierenden Möglichkeiten, Module untereinander zu kombinieren, werden somit veranschaulicht. Da die Module sowie deren innere Struktur variieren, gibt das Modulhandbuch nähere Auskunft über die Teilleistungen, Prüfungsbedingungen, Inhalte sowie die Gewichtung hinsichtlich der ECTS-Punkte in einem Modul.

1.2.1 Versionierung von Modulen und Teilleistungen

Module sind dynamische Konstrukte, in denen es regelmäßig zu Aktualisierungen und somit zu Änderungen kommt. In manchen Fällen werden Module nicht mehr angeboten, manchmal ändern sich die darin angebotenen Teilleistungen und die damit verbundenen Lehrveranstaltungen und/oder Voraussetzungen/Bedingungen.

Wenn auch für die Studierenden immer das Modulhandbuch des aktuellen Semesters verbindlich ist, so gilt im Änderungsfall grundsätzlich Vertrauensschutz. Ein Studierender hat einen Anspruch darauf, ein Modul in derselben Form abzuschließen, in der er es begonnen hat. Der Schutz bezieht sich nur auf die Möglichkeit, die Prüfung für das Modul weiterhin ablegen zu können, nicht aber auf das Angebot der Lehrveranstaltung während des Semesters. Als Beginn gilt dabei das Semester, indem die ersten Studien- oder Prüfungsleistungen im Modul erbracht wurden. Bei Problemen mit der Online-Anmeldung zu Prüfungen sollte der Informatik Studiengangservice (ISS) (E-Mail: beratung-informatik@informatik.kit.edu) kontaktiert werden. Ebenfalls sollte ISS kontaktiert werden, wenn ein Modul begonnen wurde, aber nicht mehr beendet werden kann.

Teilleistungen werden i.d.R. nur dann versioniert, wenn sich die Erfolgskontrolle ändert.

1.2.2 Leistungsstufen

Das Bachelorstudium Informatik besteht aus drei Studienjahren mit jeweils zwei Semestern, wodurch verschiedene Leistungsstufen entstehen, die bei der Wahl des persönlichen Studienplans berücksichtigt werden müssen. Die Module der Leistungsstufe 1 ermöglichen den Einstieg in das Informatikstudium und sind somit für Studienanfängerinnen und -anfängern im ersten bzw. zweiten Semester zu absolvieren. Mit Leistungsstufe 2 werden Module bezeichnet, die im zweiten Studienjahr, also im dritten und vierten Semester, relevant sind. Die Leistungsstufe 3 bezeichnet die höchste Stufe der Anforderungen und ist für das fünfte bzw. sechste Semester bestimmt, wo vielfältige Grundlagen des Studiums den Studierenden bereits bekannt sind und die Anforderungen an sie gesteigert werden können. Für Teilnehmende am MINT-Kolleg beziehen sich die Leistungsstufen auf das Studium nach dem MINT-Kolleg.

1.3 An-/Abmeldung und Wiederholung von Prüfungen

Die An- und Abmeldung zu Modul(teil)prüfungen erfolgt in den Bachelor-/Master-Studiengängen online über das Studierendenportal. Die An- und Abmeldefristen werden rechtzeitig in den Lehrveranstaltungen und/oder auf den Webseiten der Lehrveranstaltungen bekanntgegeben. Studierende werden dazu aufgefordert, sich vor dem Prüfungstermin zu vergewissern, dass sie im System tatsächlich den Status "angemeldet" haben (z.B. Ausdruck). In Zweifelsfällen sollte der ISS (E-Mail: beratung-informatik@informatik.kit.edu) kontaktiert werden. Die Teilnahme an einer Prüfung ohne Anmeldung ist nicht gestattet!

Grundsätzlich kann jede Erfolgskontrolle (mündlicher, schriftlicher oder anderer Art) einmal wiederholt werden. Im Falle einer schriftlichen Prüfung erfolgt nach zweimaligem Nichtbestehen zeitnah (in der Regel im selben Prüfungszeitraum) eine mündliche Nachprüfung. In dieser können nur noch die Noten "ausreichend" (4,0) oder "nicht ausreichend" (5,0) vergeben werden. Ist eine Prüfung endgültig nicht bestanden, so gilt der Prüfungsanspruch im Fach Informatik und für alle artverwandten Studiengänge als verloren. Eine Teilnahme an weiteren Prüfungen ist nicht möglich. Durch Genehmigung eines Antrags auf Zweitwiederholung können weitere Prüfungen unter Vorbehalt (https://www.informatik.kit.edu/faq-wiki/doku.php) abgelegt werden. Studierende bekommen diese aber im Erfolgsfall erst angerechnet, wenn die endgültig nicht bestandene Prüfung bestanden wurde. Der Prüfungsanspruch gilt erst dann als wiederhergestellt, wenn die nicht bestandene Prüfung bestanden ist. Studienleistungen (unbenotete Erfolgskontrolle) können beliebig wiederholt werden, falls in der Modul- oder Teillleistungsbeschreibung keine weiteren Regelungen vorgesehen sind. Der Zweitwiederholungsantrag ist bei dem Informatik Studiengangservice (ISS) schriftlich einzureichen.

Zu beachten ist, dass für Prüfungen, die Bestandteil der Orientierungsprüfung sind, kein Antrag auf Zweitwiederholung gestellt werden kann!

Die Anmeldung zu Prüfungen erfolgt i.d.R. über den Studienablaufplan: Studierende müssen zuvor im Studierendenportal in Ihrem persönlichen Studienablaufplan zunächst die für die Prüfung passenden Module und Teilleistungen wählen. Die Pflichtmodule sind bereits im Studienablaufplan integriert.

1.4 Studienberatung

Hilfe bei Problemen mit dem Studium, Anträgen aller Art oder auch einfach bei Fragen zur Studienplanung wird von der KIT-Fakultät für Informatik durch den Informatik Studiengangservice (ISS) (beratung-informatik@informatik.kit.edu), angeboten. Der ISS ist offizieller Ansprechpartner und erteilt verbindliche Auskünfte.

Aber auch die Fachschaft der KIT-Fakultät für Informatik bietet eine qualifizierte Beratung an. Hier können beispielsweise Detailfragen zur Formulierung von Härtefallanträgen geklärt werden. Darüber hinaus können bei der Fachschaft alte Klausuren und Prüfungsprotokolle erworben werden.

Viele Fragen werden durch unsere FAQ beantwortet: https://www.informatik.kit.edu/faq-wiki/doku.php.

2 Studienplan - Struktur des Bachelor-Studiengangs Informatik

Im Laufe des sechssemestrigen Studiums werden insgesamt 180 Leistungspunkte für den erfolgreichen Abschluss erbracht. Die Leistungspunkte werden überwiegend in den verschiedenen Modulen der einzelnen Fächer erzielt, aber auch in der am Ende des Studiums angefertigten Bachelorarbeit, die mit 15 Leistungspunkten angerechnet wird. Hier sei noch angemerkt, dass die Verteilung der zu erwerbenden Leistungspunkte gleichmäßig auf die einzelnen Semester erfolgen sollte.

Im Folgenden wird ein überblick zum gesamten Bachelorstudium vermittelt (s. auch Tabelle 1). Einige der Module des Bachelor-Studiengangs sind Pflichtmodule, welche immer absolviert werden müssen. Andere sind Wahlmodule und können je nach individuellem Studienplan

belegt werden. Es müssen im Laufe des Bachelorstudiums aber mindestens zwei Stammmodule im Umfang von je 6 LP belegt werden, die dem Wahlbereich Informatik zugeordnet werden.

Sem.		Grund	llagenstudium				Überfachliche
Fach	Theoretische Informatik 18 LP	Praktische Informatik 38 LP	Mathematik 38 – 45 LP	Technische Informatik 12 LP	Wahlbereich 25 – 32 LP	Ergänzungs- fach 21 LP	Qualifikationen 6 LP
	Grundbegriffe der	D	Höhere Mathematik I ¹ 9 LP / Analysis I ¹ 9 LP				
1	Informatik 6 LP	Programmieren 5 LP	Lineare Algebra I für Informatik ² 9 LP / Lineare Algebra I ² 9 LP				
	Algorithmen I	Softwaretechnik I	Höhere Mathematik II ¹ 6 LP / Analysis II ¹ 9 LP	Digitaltechnik & Entwurfsverfahren			Teamarbeit in der Software-
2	6 LP	6 LP	Lineare Algebra II für Informatik ² 5 LP / Lineare Algebra II ² 9 LP	Entwurfsverfahren 6 LP			entwicklung 2 LP +
3	Theoretische Grundlagen der Informatik	Praxis der Software- entwicklung 7 LP	Wahrscheinlich- keitstheorie & Statistik	Rechnerorganisation ³ 6 LP			Sonstige Schlüssel- qualifikationen 4 LP
	6 LP	Betriebssysteme 6 LP	4,5 LP	619	Proseminar 3 LP		
4		Kommunikation & Datenhaltung 8 LP	Numerische Mathematik ⁴ 4,5 LP		+ Stammmodul I & II 12 LP	Elektrotechnik /Mathematik/ Physik/ Recht/ Maschinenbau/ Wirtschafts-	
5		Programmier- paradigmen 6 LP		•	+ Sonstige Wahlmodule		
6		Ва	chelorarbeit 15 LP			wissenschaften	
² Die Verans Algebra I un ³ Die Verans	ite Veranstaltungen Höhere Mathematik I und Höhere Mathematik II sind dem Modul Höher Mathematik zugeordnet. Die Veranstaltungen Analysis II sind dem Modul Analysis I und 2 zugeordnet. Die Veranstaltungen Lineare Algebra II der Informatik sind dem Modul Lineare Algebra II der Informatik sind dem Modul Lineare Algebra II der Informatik sind dem Modul Lineare Algebra II der Informatik volgeordnet. Die Veranstaltungen Lineare Algebra I und Lineare Algebra II der Informatik and Enwarder Veranstaltungen Digitatier in der Veranstaltungen Digitatier in Kantin kan Entwurfsverfahren zugeordnet. Die Veranstaltungen Wahrscheinlichkeitsberior & Studisk und Kumerische Mathematik sind dem Modul Praktsche Mathematik zugeordnet.						

Tabelle 1: Struktur des Bachelorstudiengangs Informatik.

2.1 Pflichtmodule - SPO 2015

Die Pflichtmodule des Studiengangs stammen aus den Fächern Theoretische Informatik, Praktische Informatik, Technische Informatik, Mathematik und Überfachliche Qualifikationen.

Tabelle 3 gibt einen genauen Überblick, welche Lehrveranstaltungen des Pflichtprogramms in den einzelnen Semestern studienplanmässig zu besuchen sind. Dabei ist zu beachten, dass im Fach Mathematik wahlweise das Modul Höhere Mathematik (15 LP) oder Analysis 1 und 2 (18 LP) sowie statt dem Modul Lineare Algebra für die Fachrichtung Informatik (14 LP) auch das Modul Lineare Algebra 1 und 2 (18 LP) belegt werden kann.

2.2 Orientierungsprüfung

Nach Ablauf des ersten Studienjahres wird von den Studierenden das Ablegen einer Orientierungsprüfung verlangt. Sie dient der Kontrolle, ob die für das weiterführende Studium relevanten Grundkenntnisse erworben wurden. Die Orientierungsprüfung ist spätestens bis zum Ende des dritten Fachsemesters zu bestehen, einschließlich etwaiger Wiederholungen. Bei nachweislicher Teilnahme am MINT-Kolleg (siehe § 8 (2) der SPO) verlängert sich der Prüfungszeitraum für die Orientierungsprüfung.

Die Orientierungsprüfung erfolgt studienbegleitend. Ab dem Wintersemester 2015 / 2016 setzt sich die Orientierungsprüfung aus den Modulprüfungen:

- · Grundbegriffe der Informatik (inkl. Übungsschein),
- · Programmieren (inkl. Übungsschein) und
- Lineare Algebra I oder Lineare Algebra für die Fachrichtung Informatik I (inkl. Übungsschein)

zusammen.

Für Studierende, die bereits im Sommersemester 2015 im Studiengang immatrikuliert waren, ändern sich die Bedingungen nicht.

Modul-ID	Lehrveranstaltung	SWS	LP
1. Semester			
M-INFO-101170	Grundbegr. d. Informatik	2/1/2	6.0
M-INFO-101174	Programmieren	2/0/2	5.0
M-MATH-101305	Höhere Mathematik I	4/2/2	9.0
M-MATH-101307	Lineare Algebra I f. Informatiker	4/2/2	9.0
			29.0
2. Semester			
M-INFO-100030	Algorithmen I	3/1/2	6.0
M-INFO-101175	Softwaretechnik I	3/1/2	6.0
M-INFO-101180	Digitaltechnik u. Entwurfsverfahren	3/1/2	6.0
M-MATH-101305	Höhere Mathematik II	3/1/2	6.0
M-MATH-101307	Lineare Algebra II f. Informatiker	2/1/2	5.0
			29.0
3. Semester			
M-INFO-101172	Theor. Grundl. der Informatik	3/1/2	6.0
M-INFO-101176	Praxis der Software-Entwicklung	0/4/0	7.0
M-INFO-101225	Teamarbeit in der Softwareentwicklung	0/2/0	2.0
M-INFO-101177	Betriebssysteme	3/1/2	6.0
M-INFO-101180	Rechnerorganisation	3/1/2	6.0
M-MATH-101308	Wahrscheinlichkeitstheorie u. Statistik	2/1/0	4.5
			31.5
4. Semester			
M-INFO-101178	Einführung in Rechnernetze	2/1/0	4.0
M-INFO-101178	Datenbanksysteme	2/1/0	4.0
M-MATH-101308	Numerik	2/1/0	4.5
			12.5
5. Semester			
M-INFO-101179	Programmierparadigmen	3/1	6.0
			6.0
			108.0

Tabelle 3: Studienplan für die Pflichtveranstaltungen – SPO 2015

2.3 Wahlmodule

Im Wahlbereich können beliebige Module aus dem Wahlangebot belegt werden. Insgesamt umfasst der Wahlbereich max. 32 LP (falls das Modul Analysis 1 und 2 statt Höhere Mathematik und/oder das Modul Lineare Algebra 1 und 2 statt Lineare Algebra für die Fachrichtung Informatik belegt wurde, max. 29 LP bzw. 25 LP). Dabei muss beachtet werden, dass mindestens zwei Stammmodule, wie im Abschnitt Stammmodule aufgeführt, belegt werden müssen. Außerdem muss ein Proseminar mit mindestens 3 LP absolviert werden (Es kann nur ein Proseminar belegt werden). Insgesamt können im Bachelor-Studiengang Informatik bis zu 9 LP aus Praktika, Basispraktika und Seminaren (inkl. das Proseminar) erbracht werden. Hierbei werden nur die (Pro-)Seminare und (Basis-)Praktika berücksichtigt, die an der KIT-Fakultät für Informatik (also nicht im Ergänzungsfach) erbracht werden.

Wenn durch die belegten Module mehr als 32 LP im Wahlbereich anfallen, findet auf der Ebene des Wahlbereichs ein Verschnitt statt. Die Note des Wahlbereichs trägt mit max. 32 LP zu der Bachelor-Abschlussnote bei. Es ist nicht möglich neue Module im Wahlbereich zu belegen, wenn die Grenze von 32 LP erreicht wurde.

2.3.1 Stammmodule

Stammmodule bestehen aus Veranstaltungen, die inhaltlich wichtige Basisthemen der Informatik abdecken, die im Kernstudium nicht als Pflichtveranstaltung eingeschlossen sind.

Für Studierende garantieren Stammmodule auch die Kontinuität eines jährlichen Turnus: Alle Stammmodule werden entweder jedes Winter- oder jedes Sommersemester angeboten. Dies kann im Allgemeinen für vertiefende Veranstaltungen des Wahlbereichs nicht garantiert werden.

Es ist zu beachten, dass auch im Master-Studiengang Informatik mindestens vier Stammmodule erbracht werden müssen und dass bereits im Bachelor geprüfte Module im Master-Studiengang nicht mehr belegt werden können. Die Liste der Stammmodule ist dem Abschnitt Aufbau des Studiengangs im Fach Wahlbereich zu entnehmen.

2.3.2 Proseminar

Im Wahlbereich des Bachelor-Studiengangs muss ein Proseminar im Umfang von 3 Leistungspunkten absolviert werden. Ein Proseminar dient als Vorbereitung für die Bachelorarbeit und vermittelt erste Kenntnisse in der Literaturrecherche und im Verfassen wissenschaftlicher Texte. Das im Modulhandbuch vorhandene Proseminarmodul dient als Container für die einzelnen an den Instituten der KIT-Fakultät für Informatik angebotenen Proseminare. Als Proseminar können alle an der Fakultät angebotenen Informatik-Proseminare belegt werden. Es wird empfohlen, das Proseminar im 3. oder im 4. FS abzulegen.

2.3.3 Sonstige Informatik-Wahlmodule

Sonstige vertiefende Wahlmodule werden nicht unbedingt regelmäßig angeboten. Das aktuelle Angebot finden Sie im Abschnitt Aufbau des Studiengangs. Studierende können aus diesen Modulen frei wählen und sich so einen ersten Überblick über interessante Vertiefungsgebiete im späteren Masterstudium verschaffen.

Mit Genehmigung des Bachelor-Prüfungsausschusses können Studierende auch Veranstaltungen aus dem Masterstudium im Wahlbereich des Bachelorstudiums einbringen. Dafür müssen Studierende im Modul Fortgeschrittene Informatikthemen die gewünschten Teilleistungen wählen. Nach der Genehmigung der Wahl kann die gewünschte Prüfung online angemeldet werden. Sollte die gewünschte Teilleistung im Modul nicht beinhaltet sein, müssen Studierenden sich an den ISS wenden.

2.4 Ergänzungsfachmodule

Das Ergänzungsfach im Umfang von 21 Leistungspunkten soll Kenntnisse in einem der vielen Anwendungsgebiete der Informatik vermitteln. Es ist von eminenter Bedeutung für die weitere berufliche Entwicklung, die Informatik auch außerhalb der Kerngebiete erlernt zu haben.

Die Ergänzungsfächer werden im Abschnitt 3.7 dargestellt.

Teils werden die erforderlichen Leistungspunkte durch das Bestehen eines Moduls erreicht, teils ist das Ergänzungsfach in verschiedene Module aufgeteilt. Es ist zu beachten, dass die gewählten Module immer einem Fach entstammen. Analog zum Wahlbereich werden anfallende überschüssige LP nicht in die Notenberechnung mit einbezogen. Es ist nicht möglich neue Module nach Erreichen von 21 LP zu belegen.

Sollten für das gewählte Ergänzungsfach im Modulhandbuch keine Module aufgelistet sein, ist eine individuelle Zusammenstellung von Modulen möglich (s. FAQ).

2.5 Überfachliche Qualifikationen

Der Erwerb von Überfachliche Qualifikationen im Umfang von 6 LP ist ebenfalls Teil des Studiums. Zu diesem Bereich zählen überfachliche Veranstaltungen zu gesellschaftlichen Themen, fachwissenschaftliche Ergänzungsangebote, welche die Anwendung des Fachwissens im Arbeitsalltag vermitteln, Kompetenztrainings zur gezielten Schulung von Soft-Skills sowie Fremdsprachentrainings.

Im Modul Überfachliche Qualifikationen können alle Veranstaltungen des House of Competence (HoC), des Zentrums für angewandte Kulturwissenschaften (ZAK) (mit Ausnahme der Informatikveranstaltungen und Veranstaltungen aus dem Ergänzungsfach) und des Sprachenzentrums (SpZ) (mit Ausnahme von Deutschkursen), aber auch spezielle fakultätsinterne Angebote belegt werden. In dem hier integrierten Modulhandbuch werden im Gegensatz zu den fakultätsinternen Lehrveranstaltungen die einzelnen Lehrveranstaltungen des HoC, ZAK und SpZ nicht aufgeführt. 2 LP des Bereichs Schlüsselqualifikationen werden mit dem Pflichmodul Teamarbeit in der Softwareentwicklung erbracht.

Auf Fachebene werden Schlüsselqualifikationen als nicht benotete Leistungen im Studium eingerechnet. Leistungen werden mit oder ohne Note verbucht (so wie vom Dozent bescheinigt), der Bereich Überfachliche Qualifikationen wird aber im Studienablaufplan nur mit bestanden / nicht bestanden ausgewiesen. Für den Abschluss werden somit nur die Leistungspunkte (und nicht die Noten) berücksichtigt.

Teilnahmebescheinigungen können im Bereich der Schlüsselqualifikationen nicht angerechnet werden. Um die Leistungen anrechnen zu können, muss eine Erfolgskontrolle durchgeführt und deren Ergebnis bescheinigt werden.

2.6 Zusatzleistungen

Im Bachelor-Studiengang Informatik können bis zu 30 Leistungspunkte durch Zusatzleistungen erbracht werden. Diese zählen weder was den Umfang noch die Note betrifft zum Bachelor-Abschluss. Diese Leistungen können manuell im Studierendenservice (SPO 2008) oder online (SPO 2015) angemeldet werden.

2.7 Vorzugsleistungen für das Masterstudium

Um den Übergang vom Bachelor- in das Masterstudium ohne Zeitverlust zu ermöglichen, besteht die Möglichkeit in den letzten Semestern des Bachelorstudiums bis zu 30 LP Vorzugsleistungen zu erbringen. Diese Leistungen können manuell im Studierendenservice (SPO 2008) oder online (SPO 2015) angemeldet werden. Um Vorzugsleistungen erbringen zu dürfen, müssen Studierende mind. 120 LP im Bachelorstudium bereits erbracht haben. Die Übertragung dieser Leistungen im Masterstudium erfolgt anhand eines Antragsformulars im ersten Fachsemester des Studiums.

3 Aufbau des Studiengangs

Pflichtbestandteile	
Bachelorarbeit	15 LP
Theoretische Informatik	18 LP
Praktische Informatik	38 LP
Technische Informatik	12 LP
Mathematik	38-45 LP
Wahlbereich Informatik	25-32 LP
Ergänzungsfach	21 LP
Überfachliche Qualifikationen	6 LP

3.1 Bachelorarbeit Leistungspunkte 15

Pflichtbestandteil	e	
M-INFO-101721	Modul Bachelorarbeit	15 LP

3.2 Theoretische Informatik

Leistungspunkte

18

Pflichtbestandteile			
M-INFO-101170	Grundbegriffe der Informatik	6 LP	
M-INFO-100030	Algorithmen I	6 LP	
M-INFO-101172	Theoretische Grundlagen der Informatik	6 LP	

3.3 Praktische Informatik

Leistungspunkte

38

Pflichtbestandteile		
M-INFO-101174	Programmieren	5 LP
M-INFO-101175	Softwaretechnik I	6 LP
M-INFO-101176	Praxis der Software-Entwicklung	7 LP
M-INFO-101177	Betriebssysteme	6 LP
M-INFO-101178	Kommunikation und Datenhaltung	8 LP
M-INFO-101179	Programmierparadigmen	6 LP

3.4 Technische Informatik

Leistungspunkte

12

Pflichtbestandteile		
M-INFO-101180	Technische Informatik	12 LP

3 AUFBAU DES STUDIENGANGS Mathematik

3.5 Mathematik

Pflichtbestandteile		
M-MATH-101308	Praktische Mathematik	9 LP
Wahlpflichtmodule 1 (Wahl: 1 Bestandteil)		
M-MATH-101305	Höhere Mathematik	15 LP
M-MATH-101306	Analysis 1 und 2	18 LP
Wahlpflichtmodule 2 (Wahl: 1 Bestandteil)		
M-MATH-101309	Lineare Algebra 1 und 2	18 LP
M-MATH-101307	Lineare Algebra für die Fachrichtung Informatik	14 LP

3.6 Wahlbereich Informatik

Pflichtbestandtei	le	
M-INFO-101181	Proseminar	3 LP
Stammmodule (W	ahl: 2 Bestandteile)	
M-INFO-100729	Mensch-Maschine-Interaktion	6 LP
M-INFO-100799	Formale Systeme	6 LP
M-INFO-100801	Telematik	6 LP
M-INFO-100803	Echtzeitsysteme	6 LP
M-INFO-100818	Rechnerstrukturen	6 LP
M-INFO-100819	Kognitive Systeme	6 LP
M-INFO-100833	Softwaretechnik II	6 LP
M-INFO-100834	Sicherheit	6 LP
M-INFO-100856	Computergrafik	6 LP
M-INFO-100893	Robotik I - Einführung in die Robotik	6 LP
M-INFO-101173	Algorithmen II	6 LP
	nl: mindestens 1 Bestandteil sowie zwischen 10 und 17 LP)	0 21
M-INFO-100729	Mensch-Maschine-Interaktion	6 LP
M-INFO-100756	Geometrische Grundlagen der Geometrieverarbeitung	5 LP
M-INFO-100757	Mechano-Informatik in der Robotik	4 LP
M-INFO-100799	Formale Systeme	6 LP
M-INFO-100801	Telematik	6 LP
M-INFO-100803	Echtzeitsysteme	6 LP
M-INFO-100818	Rechnerstrukturen	6 LP
M-INFO-100819	Kognitive Systeme	6 LP
M-INFO-100833	Softwaretechnik II	6 LP
M-INFO-100834	Sicherheit	6 LP
M-INFO-100856	Computergrafik	6 LP
M-INFO-100893	Robotik I - Einführung in die Robotik	6 LP
M-INFO-101173	Algorithmen II	6 LP
M-INFO-101183	Mikroprozessoren I	3 LP
M-INFO-101184	Basispraktikum Mobile Roboter	4 LP
M-INFO-101219	Basispraktikum TI: Hardwarenaher Systementwurf	4 LP
M-INFO-101220	Algorithmen für planare Graphen	5 LP
M-INFO-101230	Basispraktikum zum ICPC-Programmierwettbewerb	4 LP
M-INFO-101237	Algorithmische Methoden für schwere Optimierungsprobleme	5 LP
M-INFO-101247	Basispraktikum Protocol Engineering	4 LP
M-INFO-101248	Kurven im CAD	5 LP
M-INFO-101249	Mobile Computing und Internet der Dinge	5 LP
M-INFO-101254	Flächen im CAD	5 LP
M-INFO-101633	Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I)	5 LP
M-INFO-101636	Web-Anwendungen und Serviceorientierte Architekturen (I)	4 LP
M-INFO-102557	Lego Mindstorms - Basispraktikum	4 LP
M-INFO-101865	Basispraktikum Arbeiten mit Datenbanksystemen	4 LP
M-INFO-101245	MARS-Basispraktikum	4 LP
M-INFO-105723	Fortgeschrittenes Algorithmisches Programmieren	6 LP
M-INFO-105735	Geometrische Grundlagen der Geometrieverarbeitung neu	3 LP
M-INFO-105888	Seminar: Advanced Topics in High Performance Computing, Data Management and Analytics neu	4 LP

3 AUFBAU DES STUDIENGANGS Ergänzungsfach

3.7 Ergänzungsfach Leistungspunkte 21

Ergänzungsfach (Wahl: höchstens 1 Bestandteil)	
Recht	21 LP
Mathematik	21 LP
Physik	21 LP
Informationsmanagement im Ingenieurwesen	21 LP
Elektro- und Informationstechnik	21 LP
Betriebswirtschaftslehre (ab 01.10.2021) neu	21 LP
Volkswirtschaftslehre	21 LP
Operations Research	21 LP
Philosophie neu Die Erstverwendung ist ab 01.04.2022 möglich.	21 LP

3.7	7.1 Recht	Leistungspunkte
Bes	standteil von: Ergänzungsfach	21

Ansprechpartner Prof. Dreier, Dr. Matz, yvonne.matz@kit.edu

Wahlpflichtmodule (Wahl: mind. 21 LP)		
M-INFO-101190	Einführung in das Privatrecht	5 LP
M-INFO-101191	Wirtschaftsprivatrecht	9 LP
M-INFO-101192	Verfassungs- und Verwaltungsrecht	6 LP
M-INFO-101218	Seminarmodul Recht	3 LP
M-INFO-101253	Geistiges Eigentum und Datenschutz	6 LP

3.7.2 Mathematik	Leistungspunkte
Bestandteil von: Ergänzungsfach	21

Ansprechpartner Dr. Kühnlein, stefan.kuehnlein@kit.edu

Pflichtbestandteile		
M-MATH-101313	Proseminar Mathematik	3 LP
Wahlpflichtmodul	le (Wahl: mind. 18 LP)	
M-MATH-101314	Einführung in die Algebra und Zahlentheorie	9 LP
M-MATH-101315	Algebra	9 LP
M-MATH-101318	Analysis 3	9 LP
M-MATH-101320	Funktionalanalysis	9 LP
M-MATH-101321	Einführung in die Stochastik	6 LP
M-MATH-101322	Wahrscheinlichkeitstheorie	6 LP
M-MATH-101323	Markovsche Ketten	6 LP
M-MATH-101336	Graphentheorie	9 LP
M-MATH-103152	Elementare Geometrie	9 LP
M-MATH-103164	Analysis 4	9 LP
M-MATH-102950	Kombinatorik	9 LP

3 AUFBAU DES STUDIENGANGS Ergänzungsfach

3.7.3 Physik	Leistungspunkte
Bestandteil von: Ergänzungsfach	21

 $An sprechpartner\ Dr.\ Haberland, \\ \textbf{hagen.haberland@kit.edu}$

Pflichtbestandteile		
M-PHYS-101339	Grundlagen der Physik	12 LP
M-PHYS-101340	Moderne Physik für Informatiker	9 LP

3.7.4 Informationsmanagement im Ingenieurwesen	Leistungspunkte
Bestandteil von: Ergänzungsfach	21

 $An sprechpartner in \ Prof.\ Ovtchar ova, jivka.ovtchar ova@kit.edu$

Wahl Informationsmanagement im Ingenieurwesen (Wahl: mind. 21 LP)		
M-MACH-102399	Informationsmanagement im Ingenieurwesen	21 LP

3.7.5 Elektro- und Informationstechnik

Leistungspunkte 21

Bestandteil von: Ergänzungsfach

Ansprechpartner Prof. Heizmann, michael.heizmann@kit.edu

Studierende müssen sich selbst erkundigen, welche notwendige oder empfohlenen Vorkenntnisse für die gewählten Module genannt werden.

Elektrotechnik (W	/ahl: mindestens 1 Bestandteil)	
M-ETIT-101845	Lineare Elektrische Netze	7 LP
M-ETIT-104428	Elektromagnetische Felder	6 LP
M-ETIT-104515	Elektromagnetische Wellen	6 LP
M-ETIT-105005	Optik und Festkörperelektronik	6 LP
M-ETIT-104465	Elektronische Schaltungen	7 LP
Informationstech	nik (Wahl: mindestens 1 Bestandteil)	•
M-ETIT-102103	Nachrichtentechnik I	6 LP
M-ETIT-102123	Signale und Systeme	6 LP
M-ETIT-104539	Informationstechnik I	6 LP
Wahlbereich (Wa	hl: max. 9 LP)	•
M-ETIT-102124	Elektrische Maschinen und Stromrichter	6 LP
M-ETIT-102129	Grundlagen der Hochfrequenztechnik	6 LP
M-ETIT-102156	Elektroenergiesysteme	5 LP
M-ETIT-102181	Systemdynamik und Regelungstechnik	6 LP
M-ETIT-100383	Seminar über ausgewählte Kapitel der Biomedizinischen Technik	3 LP
M-ETIT-100384	Bildgebende Verfahren in der Medizin I	3 LP
M-ETIT-100390	Physiologie und Anatomie I	3 LP
M-ETIT-100397	Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung	4 LP
M-ETIT-100407	Erzeugung elektrischer Energie	3 LP
M-ETIT-100411	Photovoltaische Systemtechnik	3 LP
M-ETIT-100440	Nachrichtentechnik II	4 LP
M-ETIT-100509	Optoelectronic Components	4 LP
M-ETIT-100514	Hybride und elektrische Fahrzeuge	4 LP
M-ETIT-100518	Labor Schaltungsdesign	6 LP
M-ETIT-100562	Radiation Protection	3 LP
M-ETIT-100565	Antennen und Mehrantennensysteme	5 LP
M-ETIT-101847	Dosimetrie ionisierender Strahlung	3 LP
M-ETIT-102113	Elektrotechnisches Grundlagenpraktikum	6 LP
M-ETIT-102651	Bildverarbeitung	3 LP
M-ETIT-105319	Seminar Batterien I	3 LP
M-ETIT-103043	Fertigungsmesstechnik	3 LP
M-ETIT-103263	Praktikum Hard- und Software in leistungselektronischen Systemen	6 LP
M-ETIT-103271	Batteriemodellierung mit MATLAB	3 LP
M-ETIT-104547	Informationstechnik II und Automatisierungstechnik	4 LP
M-ETIT-104823	Labor für angewandte Machine Learning Algorithmen	6 LP
M-ETIT-105274	Nachrichtentechnik II / Communications Engineering II	4 LP

3 AUFBAU DES STUDIENGANGS Ergänzungsfach

3.7.6 Betriebswirtschaftslehre (ab 01.10.2021)

Leistungspunkte

Bestandteil von: Ergänzungsfach

21

Ansprechparter Herr Hilser, pruefungssekretariat@wiwi.kit.edu

Pflicht Betriebswirtschaftslehre (Wahl: mindestens 2 Bestandteile)			
M-WIWI-105768	Management und Marketing neu	6 LP	
M-WIWI-105769	Finanzierung und Rechnungswesen neu	6 LP	
M-WIWI-105770	Produktion, Logistik und Wirtschaftsinformatik neu	6 LP	
Wahl Betriebswirt	schaftslehre (Wahl: mind. 9 LP)		
M-WIWI-101402	eFinance neu	9 LP	
M-WIWI-101421	Supply Chain Management neu	9 LP	
M-WIWI-101424	Grundlagen des Marketing neu	9 LP	
M-WIWI-101425	Strategie und Organisation neu	9 LP	
M-WIWI-101434	eBusiness und Service Management neu	9 LP	
M-WIWI-101435	Essentials of Finance neu	9 LP	
M-WIWI-101436	Risk and Insurance Management neu	9 LP	
M-WIWI-101437	Industrielle Produktion I neu	9 LP	
M-WIWI-101460	CRM und Servicemanagement neu	9 LP	
M-WIWI-101464	Energiewirtschaft neu	9 LP	
M-WIWI-101465	Topics in Finance I neu	9 LP	
M-WIWI-101466	Real Estate Management neu	9 LP	
M-WIWI-101467	Bauökologie neu	9 LP	
M-WIWI-101826	Seminarmodul Wirtschaftswissenschaften neu	3 LP	
M-WIWI-105610	Financial Data Science neu	9 LP	

3.7.7 Volkswirtschaftslehre

Leistungspunkte

Bestandteil von: Ergänzungsfach

21

Ansprechparter Herr Hilser, pruefungssekretariat@wiwi.kit.edu

Wahlpflichtmodule (Wahl: mind. 21 LP)				
M-WIWI-101398	Einführung in die Volkswirtschaftslehre	12 LP		
M-WIWI-101403	Finanzwissenschaft	9 LP		
M-WIWI-101501	Wirtschaftstheorie	9 LP		

3.7.8 Operations Research Bestandteil von: Ergänzungsfach

Leistungspunkte

21

Ansprechparter Herr Hilser, pruefungssekretariat@wiwi.kit.edu

Wahlpflichtmodule (Wahl: mind. 21 LP)			
M-WIWI-101413	Anwendungen des Operations Research	9 LP	
M-WIWI-101414	Methodische Grundlagen des OR	9 LP	
M-WIWI-101418	Einführung in das Operations Research	12 LP	
M-WIWI-103278	Optimierung unter Unsicherheit	9 LP	

3.7.9 Philosophie Bestandteil von: Ergänzungsfach Leistungspunkte 21

Hinweise zur Verwendung

Die Erstverwendung ist ab 01.04.2022 möglich. Ansprechpartner Dr. Link, h.link@kit.edu

Wahlinformationen

Es muss eines der beiden Module "Einführung in die Philosophie" besucht werden, entweder "Einführung in die Philosophie" [M-GEISTSOZ-103430] mit 14 LP oder "Einführung in die Philosophie (Euklid)" [M-GEISTSOZ-104500] mit 10 LP. Die anderen Module können frei hinzugewählt werden, wobei nicht alle Kombinationen sinnvoll sind.

So empfiehlt es sich, das Modul Ars Rationalis [M-GEISTSOZ-100614] mit 10 LP nur in Kombination mit dem Modul M-GEISTSOZ-103430 zu belegen, da für das Bestehen des Ergänzungsfach Philosophie 21LP vorgeschrieben sind (was mit M-GEISTSOZ-104500 nicht erreicht wird; man müsste noch ein drittes Modul belegen).

Das Modul Ars rationalis M-GEISTSOZ-100614 ist nur in Kombination mit dem Modul Einführung in die Philosophie M-GEISTSOZ-103430 sinnvoll, da für das Bestehen des Ergänzungsfach Philosophie 21LP vorgeschrieben sind.

Alle weiteren Kombinationen der Wahlpflicht-Module sind in Kombination zu dem Pflicht-Modul Einführung in die Philosophie M-GEISTSOZ-104500 frei wählbar.

Pflicht (Wahl: 1 Bestandteil)				
M-GEISTSOZ-103430 Einführung in die Philosophie neu				
M-GEISTSOZ-104500 Einführung in die Philosophie (Euklid) neu		10 LP		
Auswahl (Wahl: höchstens 1 Bestandteil)				
M-GEISTSOZ-104507	Praktische Philosophie I neu	11 LP		
M-GEISTSOZ-104509 Theoretische Philosophie I neu				
M-GEISTSOZ-100614	Ars Rationalis neu	10 LP		

3.8 Überfachliche Qualifikationen Leistungspunkte 6

Überfachliche Qualifikationen (Wahl: 6 LP)			
M-INFO-101225	Teamarbeit in der Softwareentwicklung	2 LP	
M-INFO-101723	Schlüsselqualifikationen	4 LP	

4 Module

4.1 Modul: Algebra [M-MATH-101315]

Verantwortung: Prof. Dr. Frank Herrlich **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
9	Zehntelnoten	Jedes Wintersemester	1 Semester	3	1

Pflichtbestandteile			
T-MATH-102253	Algebra	9 LP	Herrlich, Kühnlein

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Voraussetzungen

Das Modul Proseminar Mathematik [ProMath] muss geprüft werden.

Qualifikationsziele

Absolventinnen und Absolventen können

- · wesentliche Konzepte der Algebra nennen und erörtern,
- · den Aufbau der Galoistheorie nachvollziehen und ihre Aussagen auf konkrete Fragestellungen anwenden,
- grundlegende Resultate über Bewertungsringe und ganze Ringerweiterungen nennen und zueinander in Beziehung setzen,
- · und sind darauf vorbereitet, eine Abschlussarbeit im Bereich Algebra zu schreiben

Inhalt

- Körper: algebraische Körpererweiterungen, Galoistheorie, Einheitswurzeln und Kreisteilung, Lösen von Gleichungen durch Radikale
- Bewertungen: Beträge, Bewertungsringe
- Ringtheorie: Tensorprodukt von Moduln, ganze Ringerweiterungen, Normalisierung, noethersche Ringe, Hilbertscher Basissatz

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Das Modul "Einführung in Algebra und Zahlentheorie" sollte bereits belegt worden sein.

4.2 Modul: Algorithmen für planare Graphen [M-INFO-101220]

Verantwortung: Prof. Dr. Dorothea Wagner **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-INFO-101986	Algorithmen für planare Graphen	5 LP	Wagner

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Die Teilnehmer besitzen einen vertieften Einblick in die theoretischen Aspekte und algorithmischer Grundlagen im Gebiet der planaren Graphen. Sie kennen zentrale Konzepte und Techniken zur Behandlung algorithmischer Fragestellungen auf planaren Graphen und können diese erläutern. Dabei nutzt der/die Studierende das Wissen aus der Vorlesung welches in Teilen auf bestehendem Wissen aus den Themenbereichen Graphentheorie und Algorithmik fußt. Außerdem kann er/sie erlernte Techniken auf verwandte Fragestellungen anwenden und aktuelle Forschungstehmen im Bereich planare Graphen interpretieren und nachvollziehen.

Studierende sind außerdem in der Lage die besonderen strukturellen Unterschiede zwischen allgemeinen Graphen und planaren Graphen zu erörtern. Sie können weiterhin erläutern wie sich diese speziellen Eigenschaften planarer Graphen auf die Laufzeit von Algorithmen auswirken. Insbesondere ist es ihm/ihr möglich zu erläutern warum einige Algorithmen für planaren Graphen korrekt sind und eine polynomielle Laufzeit haben, während sie für allgemeine Graphen entweder nicht das korrekte Ergebnis produzieren oder eine deutlich schlechtere Laufzeit haben. Das gilt im Besonderen für Probleme für die kein Algorithmus mit polynomieller Laufzeit für allgemeine Graphen bekannt ist, die aber auf planaren Graphen in Polynomialzeit lösbar sind. Dieses Wissen können die Teilnehmer nutzen um algorithmische Probleme für planare Graphen zu identifzieren, auf ihren algorithmischen Kern reduzieren und anschließend formal formulieren.

Inhalt

Ein planarer Graph ist ein Graph, der in der Ebene gezeichnet werden, ohne dass die Kanten sich kreuzen. Planare Graphen haben viele schöne Eigenschaften, die benutzt werden können um für zahlreiche Probleme besonders einfache, schnelle und schöne Algorithmen zu entwerfen. Oft können sogar Probleme, die auf allgemeinen Graphen (NP-)schwer sind auf planaren Graphen sehr effizient gelöst werden. In dieser Vorlesung werden einige dieser Probleme und Algorithmen zu ihrer Lösung vorgestellt.

Anmerkungen

Dieses Modul wird in unregelmäßigen Abständen angeboten.

Arbeitsaufwand

2 SWS Vorlesung, 1 SWS Übung, 5 LP entspricht **150h** aufgeteilt in 30h Vorlesungsbesuch

15h Übung

40h Nachbereitung

25h Lösen der Übungsaufgaben

40h Prüfungsvorbereitung

4.3 Modul: Algorithmen I [M-INFO-100030]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Theoretische Informatik

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
1Version
1

Pflichtbestandteile				
T-INFO-100001	Algorithmen I	6 LP	Dachsbacher	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende

- kennt und versteht grundlegende, häufig benötigte Algorithmen, ihren Entwurf, Korrektheits- und Effizienzanalyse, Implementierung, Dokumentierung und Anwendung,
- kann mit diesem Verständnis auch neue algorithmische Fragestellungen bearbeiten,
- wendet die im Modul Grundlagen der Informatik (Bachelor Informationswirtschaft / Wirtschaftsinformatik) erworbenen Programmierkenntnisse auf nichttriviale Algorithmen an,
- wendet die in Grundbegriffe der Informatik und den Mathematikvorlesungen erworbenen mathematischen Herangehensweise an die Lösung von Problemen an. Schwerpunkte sind hier formale Korrektheitsargumente und eine mathematische Effizienzanalyse.

Inhalt

Dieses Modul soll Studierenden grundlegende Algorithmen und Datenstrukturen vermitteln.

Die Vorlesung behandelt unter anderem:

- · Grundbegriffe des Algorithm Engineering
- · Asymptotische Algorithmenanalyse (worst case, average case, probabilistisch, amortisiert)
- Datenstrukturen z.B. Arrays, Stapel, Warteschlangen und Verkettete Listen
- Hashtabellen
- Sortieren: vergleichsbasierte Algorithmen (z.B. quicksort, insertionsort), untere Schranken, Linearzeitalgorithmen (z.B. radixsort)
- · Prioritätslisten
- · Sortierte Folgen, Suchbäume und Selektion
- Graphen (Repräsentation, Breiten-/Tiefensuche, Kürzeste Wege, Minimale Spannbäume)
- · Generische Optimierungsalgorithmen (Greedy, Dynamische Programmierung, systematische Suche, Lokale Suche)
- · Geometrische Algorithmen

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Vorlesung mit 3 SWS + 1 SWS Übung.

6 LP entspricht ca. 180 Stunden

ca. 45 Std. Vorlesungsbesuch,

ca. 15 Std. Übungsbesuch,

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

Empfehlungen Siehe Teilleistung

4.4 Modul: Algorithmen II [M-INFO-101173]

Verantwortung: Prof. Dr. Peter Sanders

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)

Wahlbereich Informatik (Wahlmodule)

Leistungspunkte

6

Notenskala Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester **Sprache** Deutsch

Level 3 Version 1

Pflichtbestandteile			
T-INFO-102020	Algorithmen II	6 LP	Sanders

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der/die Studierende besitzt einen vertieften Einblick in die theoretischen und praktischen Aspekte der Algorithmik und kann algorithmische Probleme in verschiedenen Anwendungsgebieten identifizieren und formal formulieren. Außerdem kennt er/sie weiterführende Algorithmen und Datenstrukturen aus den Bereichen Graphenalgorithmen, Algorithmische Geometrie, String-Matching,

Algebraische Algorithmen, Kombinatorische Optimierung und Algorithmen für externen Speicher. Er/Sie kann unbekannte Algorithmen eigenständig verstehen, sie den genannten Gebieten zuordnen, sie anwenden, ihre Laufzeit bestimmen, sie beurteilen sowie geeignete

Algorithmen für gegebene Anwendungen auswählen. Darüber hinaus ist der/die Studierende in der Lage bestehende Algorithmen auf verwandte Problemstellungen zu übertragen.

Neben Algorithmen für konkrete Problemstellungen kennt der/die Studierende fortgeschrittene Techniken des algorithmischen Entwurfs. Dies umfasst parametrisierte Algorithmen, approximierende Algorithmen, Online-Algorithmen, randomisierte Algorithmen, parallele Algorithmen, lineare Programmierung, sowie Techniken des Algorithme Engenieering. Für gegebene Algorithmen kann der/die Studierende eingesetzte Techniken identifizieren und damit diese Algorithmen besser verstehen. Darüber hinaus kann er für eine gegebene Problemstellung geeignete Techniken auswählen und sie nutzen, um eigene Algorithmen zu entwerfen.

Inhalt

Dieses Modul soll Studierenden die grundlegenden theoretischen und praktischen Aspekte der Algorithmentechnik vermitteln. Es werden generelle Methoden zum Entwurf und der Analyse von Algorithmen für grundlegende algorithmische Probleme vermittelt sowie die Grundzüge allgemeiner algorithmischer Methoden wie Approximationsalgorithmen, Lineare Programmierung, Randomisierte Algorithmen, Parallele Algorithmen und parametrisierte Algorithmen behandelt.

Anmerkungen

Im Bachelor-Studiengang SPO 2008 ist das Modul Algorithmen II ein Pflichtmodul.

Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung. 6 LP entspricht ca. 180 Stunden

ca. 45 Std. Vorlesungsbesuch,

ca. 15 Std. Übungsbesuch,

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

4.5 Modul: Algorithmische Methoden für schwere Optimierungsprobleme [M-INFO-101237]

Verantwortung: Prof. Dr. Dorothea Wagner **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Unregelmäßig	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-INFO-103334	Algorithmische Methoden für schwere Optimierungsprobleme	5 LP	Wagner

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende

- identifiziert algorithmische Optimierungsprobleme aus unterschiedlichen Bereichen und kann diese entsprechend formal beschreiben.
- kann sich qualifiziert und in strukturierter Form zu verschiedenen Aspekten der Optimierung äußern,
- kann einfache Algorithmen exemplarisch ausführen und ihre Eigenschaften erklären,
- kennt methodische Ansätze für den Entwurf und die Beurteilung von Optimierungs-Algorithmen und weiß diese geeignet anzuwenden,
- kann die Berechnungskomplexität algorithmischer Probleme aus unterschiedlichen Bereichen herleiten und einschätzen
- · kann geeignete algorithmische Lösungstechniken erkennen und auf verwandte unbekannte Probleme anwenden.

Inhalt

Es gibt viele praktische Probleme, die nicht perfekt gelöst werden können oder bei denen es sehr lange dauern würde, eine optimale Lösung zu finden. Ein Beispiel dafür ist Bin-Packing, wo Objekte in Behältern ("bins") einzupacken sind, wobei man möglichst wenige Behälter benutzen will. Manchmal gibt es auch Probleme, bei denen man Entscheidungen treffen muss, ohne vollständige Kenntnis über die Zukunft oder die Gegenwart zu haben (Online-Probleme). Man möchte etwa beim Bin-Packing irgendwann auch Bins abschließen und wegschicken, während vielleicht noch neue Objekte ankommen. Für verschiedene NP-schwere Problemstellungen behandelt die Vorlesung neben Approximationsalgorithmen und Online-Verfahren auch Lösungstechniken, die der menschlichen Intuition oder natürlichen Vorgängen nachempfunden sind (Heuristiken und Metaheuristiken).

Anmerkungen

Dieses Modul wird in unregelmäßigen Abständen angeboten.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

Empfehlungen

Siehe Teilleistungen

4.6 Modul: Analysis 1 und 2 [M-MATH-101306]

Verantwortung: Prof. Dr. Michael Plum **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematik (Wahlpflichtmodule 1)

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit
M-INFO-101721 - Modul Bachelorarbeit

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
18	Zehntelnoten	Jedes Wintersemester	2 Semester	1	2

Pflichtbestandteile	Pflichtbestandteile					
T-MATH-106335	Analysis 1 - Klausur	9 LP	Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt			
T-MATH-106336	Analysis 2 - Klausur	9 LP	Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt			
T-MATH-102235	Analysis 1 Übungsschein Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt			
T-MATH-102236	Analysis 2 Übungsschein Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt			

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von zwei schriftlichen Prüfungen von jeweils 120 Minuten Dauer sowie den beiden bestandenen Studienleistungen aus den Übungen.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können einfache Beweise führen und dabei mathematische Aussagen formal korrekt ausdrücken und die Grundregeln der elementaren Logik anwenden. Sie beherrschen insbesondere das Beweisprinzip der vollständigen Induktion. Sie können die zentralen Aussagen zur Konvergenz von Folgen von Reihen und Funktionen erläutern und damit Beispiele behandeln. Die wichtigen Eigenschaften der elementaren Funktionen können sie wiedergeben. Die Theorie der Stetigkeit und Differenzierbarkeit können sie im skalaren und im vektorwertigen Fall beschreiben und daraus Eigenschaften von Funktionen herleiten. Die Studierenden sind in der Lage, die topologischen Grundbegriffe im Rahmen der normierten Vektorräume zu diskutieren und bei einfachen Beispielen zu verwenden. Sie können eindimensionale Integrale und Kurvenintegrale berechnen und die zugrunde liegende Theorie erläutern. Sie können die grundlegenden Existenzaussagen zu gewöhnlichen Differentialgleichungen beschreiben und damit Anwendungsbeispiele lösen.

Inhalt

- · Vollständige Induktion, reelle und komplexe Zahlen,
- · Konvergenz von Folgen, Zahlenreihen, Potenzreihen
- Elementare Funktionen
- · Stetigkeit reeller Funktionen
- · Differentiation reeller Funktionen, Satz von Taylor
- Integration reeller Funktionen, uneigentliches Integral
- · Konvergenz von Funktionenfolgen- und reihen
- Normierte Vektorräume, topologische Grundbegriffe, Fixpunktsatz von Banach
- Mehrdimensionale Differentiation, implizit definierte Funktionen, Extrema ohne/mit Nebenbedingungen
- Kurvenintegral, Wegunabhängigkeit
- · Lineare gewöhnliche Differentialgleichungen, Trennung der Variablen, Satz von Picard und Lindelöf.

Zusammensetzung der Modulnote

Die Modulnote ist die Durchschnittsnote der beiden Teilprüfungen.

Beide Teilprüfungen sind getrennt zu bestehen.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 540 Stunden

Präsenzzeit: 240 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 300 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung der Vorlesungsinhalte
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

4.7 Modul: Analysis 3 [M-MATH-101318]

Verantwortung: Prof. Dr. Wolfgang Reichel **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
9	Zehntelnoten	Jedes Wintersemester	1 Semester	3	1

Pflichtbestandteile					
T-MATH-102245	Analysis 3 - Klausur	9 LP	Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt		

Erfolgskontrolle(n)

Die Modulprüfung erfogt in Form einer schriftlichen Gesamtprüfung (120min).

Voraussetzungen

Das Modul Proseminar Mathematik [ProMath] muss geprüft werden.

Qualifikationsziele

Absolventinnen und Absolventen können

- das Problem des Messens von Inhalten von Mengen beurteilen
- die Konstruktion des Lebesgueschen Masses, des Lebesgueschen Integrals und des Oberflächenintegrals reproduzieren und grundlegende Eigenschaften nennen
- · Volumina von Körpern und mehrdimensionale Integrale berechnen
- · Integralsätze erläutern und anwenden
- Aussagen zur Konvergenz von Fourierreihen treffen.

Inhalt

- Messbare Mengen, messbare Funktionen
- · Lebesguesche Mass, Lebesguesches Integral
- · Konvergenzsätze für Lebesgue Integrale
- Prinzip von Cavalieri, Satz von Fubini
- Transformationssatz
- Divergenzsatz (Gausscher Integralsatz)
- Satz von Stokes
- Fourierreihen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 270 Stunden

Präsenzzeit: 120 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen Folgende Module sollten bereits belegt worden sein: Analysis 1 und 2 Lineare Algebra 1 und 2

4.8 Modul: Analysis 4 [M-MATH-103164]

Verantwortung: Prof. Dr. Roland Schnaubelt **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile					
T-MATH-106286	Analysis 4 - Prüfung	9 LP	Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt		

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können einfache Anwendungsprobleme als gewöhnliche Differentialgleichungen modellieren. Für Anfangswertprobleme können sie die Existenz und Eindeutigkeit der Lösungen nachweisen. Sie sind in der Lage qualitative Eigenschaften der Lösungen mit Hilfe der Phasenebene zu analysieren und die Stabilität von Fixpunkten bestimmen. Sie können lineare Randwertprobleme auf ihre Lösbarkeit untersuchen und beherrschen einfache Lösungsmethoden für elementare partielle Differentialgleichungen.

Die Studierenden verstehen den grundsätzlichen Unterschied zwischen reeller und komplexer Funktionentheorie. Anhand von Reihendarstellungen und dem Satz von Cauchy können sie die besonderen Eigenschaften holomorpher Funktionen begründen und die Hauptsätze der Funktionentheorie ableiten. Sie können isolierte Singularitäten bestimmen und damit reelle Integrale berechnen.

Inhalt

- Modellierung mit Differentialgleichungen
- Existenztheorie
- · Phasenebene, Stabilität
- Randwertprobleme, elementare partielle Differentialgleichungen
- Holomorphie
- Integralsatz und -formel von Cauchy
- · Hauptsätze der Funktionentheorie
- isolierte Singularitäten, reelle Integrale

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Empfehlung: Analysis 1-3, Lineare Algebra 1+2.

4.9 Modul: Antennen und Mehrantennensysteme [M-ETIT-100565]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
3

 Pflichtbestandteile

 T-ETIT-106491
 Antennen und Mehrantennensysteme
 5 LP Zwick

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen

Das Modul "Antennen und Antennensysteme" darf nicht begonnen oder abgeschlossen sein.

Qualifikationsziele

Die Studierenden besitzen ein vertieftes Wissen zu Antennen und Antennensystemen. Hierzu gehören Funktionsweise, Berechnungsmethoden aber auch Aspekte der praktischen Umsetzung. Sie sind in der Lage, die Funktionsweise beliebiger Antennen zu verstehen sowie Antennen mit vorgegebenen Eigenschaften zu entwickeln und dimensionieren.

Inhalt

Die Vorlesung vermittelt die feldtheoretischen Grundlagen sowie die Funktionsweise aller wesentlichen Antennenstrukturen. Die Funktionsweise von Antennenarrays wird zusätzlich über Matlab-Übungen visualisiert. Des Weiteren werden Antennenmessverfahren vermittelt, sowie ein Einblick in moderne Antennen- und Mehrantennensysteme. Daneben wird ein praxisorientierter Workshop zum rechnergestützten Entwurf und zur Simulation von Antennen durchgeführt, in dem die Studierenden das Softwaretool CST einsetzen lernen und damit selbständig Antennendesignaufgaben durchführen. Einzelne Antennen werden anschließend aufgebaut und vermessen sodass die Studierenden den gesamten Prozess kennen lernen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

Präsenzstudienzeit Vorlesung/Übung: 30 h

Präsenzstudienzeit Rechnerübung CST/MATLAB: 30h

Selbststudienzeit inkl. Prüfungsvorbereitung: 90 h

Insgesamt 150 h = 5 LP

4.10 Modul: Anwendungen des Operations Research [M-WIWI-101413]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** Ergänzungsfach / Operations Research

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	1 Semester	Deutsch	3	9

Wahlpflichtangebot (Wahl: zwischen 1 und 2 Bestandteilen)				
T-WIWI-102704	Standortplanung und strategisches Supply Chain Management	4,5 LP	Nickel	
T-WIWI-102714	Taktisches und operatives Supply Chain Management	4,5 LP	Nickel	
Ergänzungsangebot	(Wahl: höchstens 1 Bestandteil)			
T-WIWI-102726	Globale Optimierung I	4,5 LP	Stein	
T-WIWI-106199	Modellieren und OR-Software: Einführung	4,5 LP	Nickel	
T-WIWI-106545	Optimierungsansätze unter Unsicherheit	4,5 LP	Rebennack	

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen des OR.

Mindestens eine der Teilleistungen "Standortplanung und strategisches Supply Chain Management" sowie "Taktisches und operatives Supply Chain Management" muss absolviert werden.

Qualifikationsziele

Der/ die Studierende

- · ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagement vertraut,
- ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.

Inhalt

Supply Chain Management befasst sich mit der Planung und Optimierung des gesamten, unternehmensübergreifenden Beschaffungs-, Herstellungs- und Distributionsprozesses mehrerer Produkte zwischen allen beteiligten Geschäftspartnern (Lieferanten, Logistikdienstleistern, Händlern). Ziel ist es, unter Berücksichtigung verschiedenster Rahmenbedingungen die Befriedigung der (Kunden-) Bedarfe, so dass die Gesamtkosten minimiert werden.

Dieses Modul befasst sich mit mehreren Teilgebieten des Supply Chain Management. Zum einen mit der Bestimmung optimaler Standorte innerhalb von Supply Chains. Diese strategischen Entscheidungen über die die Platzierung von Anlagen wie Produktionsstätten, Vertriebszentren und Lager u.ä., sind von großer Bedeutung für die Rentabilität von Supply Chains. Sorgfältig durchgeführte Standortplanungen erlauben einen effizienteren Materialfluss und führen zu verringerten Kosten und besserem Kundenservice. Einen weiteren Schwerpunkt bildet die Planung des Materialtransports im Rahmen des Supply Chain Managements. Durch eine Aneinanderreihung von Transportverbindungen und Zwischenstationen wird die Lieferstelle (Produzent) mit der Empfangsstelle (Kunde) verbunden. Es wird betrachtet, wie für vorgegebene Warenströme oder Sendungen aus den möglichen Logistikketten die optimale Liefer- und Transportkette auszuwählen ist, die bei Einhaltung der geforderten Lieferzeiten und Randbedingungen zu den geringsten Kosten führt.

Darüber hinaus bietet das Modul die Möglichkeit verschiedene Aspekte der taktischen und operativen Planungsebene im Supply Chain Management kennenzulernen. Hierzu gehören v.a. Methoden des Schedulings sowie verschiedene Vorgehensweisen in der Beschaffungs- und Distributionslogistik. Fragestellungen der Warenhaltung und des Lagerhaltungsmanagements werden ebenfalls angesprochen.

Anmerkungen

Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 5 Leistungspunkten ca. 150 Stunden, für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen

Kenntnisse aus den Vorlesungen "Einführung in das Operations Research I" sowie "Einführung in das Operations Research II" sind hilfreich.

4.11 Modul: Ars Rationalis [M-GEISTSOZ-100614]

Verantwortung: Prof. Dr. Gregor Betz

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: Ergänzungsfach / Philosophie (Auswahl)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
10	Zehntelnoten	Jährlich	2 Semester	Deutsch	3	4

Pflichtbestandteile				
T-GEISTSOZ-101174	Ars Rationalis I	0 LP	Betz	
T-GEISTSOZ-101175	Ars Rationalis II	0 LP	Betz	
T-GEISTSOZ-110370	Modulteilprüfung 1 - Ars Rationalis (Klausur)	5 LP	Betz	
T-GEISTSOZ-110371	Modulteilprüfung 2 - Ars Rationalis (Argumentanalyse)	5 LP	Betz	

Erfolgskontrolle(n)

Das Bestehen der Studienleistungen in den beiden Veranstaltungen sowie das Bestehen der Modulprüfung.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können natürlichsprachliche Argumente in Texten erkennen und rekonstruieren, was insbesondere eine formale Analyse mit den Mitteln der klassischen Logik einschließt. Sie kennen die für die Philosophie charakteristischen Argumentationsmuster (wie zum Beispiel transzendentale Argumente, Selbstanwendungsargumente). Sie können deduktive, induktive und abduktive Argumente entwickeln und voneinander unterscheiden sowie deren Schlüssigkeit bzw. Plausibilität selbstständig beurteilen.

Inhalt

Theoretische und praktische Aspekte der Argumentationsanalyse auf der Grundlage der klassischen Logik

Zusammensetzung der Modulnote

Die Modulnote ergibt sich aus dem arithmetischen Mittel der beiden Prüfungsleistungen.

Arbeitsaufwand

Insgesamt ca. 300 h: Präsenz in den Veranstaltungen und der Klausur ca. 60 h, Vor- und Nachbereitung (einschl. Tutorien und Hausaufgaben), 150 h, selbständige Lektüre empfohlener Fachliteratur ca. 50 h, Klausurvorbereitung ca. 40 h

4.12 Modul: Basispraktikum Arbeiten mit Datenbanksystemen [M-INFO-101865]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-INFO-103552	Basispraktikum: Arbeiten mit Datenbanksystemen	4 LP	Böhm

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Im Praktikum soll das in Vorlesungen wie "Datenbanksysteme" und "Datenbankeinsatz" erlernte Wissen in der Praxis erprobt werden. Schrittweise sollen die Programmierung von Datenbankanwendungen, Benutzung von Anfragesprachen sowie Datenbankentwurf für überschaubare Realweltszenarien erlernt werden. Darüber hinaus sollen die Studenten lernen, im Team zusammenzuarbeiten und dabei wichtige Werkzeuge zur Teamarbeit kennenlernen.

Inhalt

Das Datenbankpraktikum bietet Studierenden einen Einstieg in das Arbeiten mit Datenbanksystemen, als Ergänzung zu den Inhalten der Datenbankvorlesungen. Zunächst werden den Teilnehmern die wesentlichen Bestandteile von Datenbanksystemen in ausgewählten Versuchen mit relationaler Datenbanktechnologie nähergebracht. Sie erproben die klassischen Konzepte des Datenbankentwurfs und von Anfragesprachen an praktischen Beispielen. Darauf aufbauend führen Sie die folgenden Versuche durch:

- · Zugriff auf Datenbanken aus Anwendungsprogrammen heraus,
- · Verwaltung großer Datenbestände interessanter Anwendungsgebiete,
- · Performanceoptimierungen bei der Anfragebearbeitung.

Arbeiten im Team ist ein wichtiger Aspekt bei allen Versuchen.

Arbeitsaufwand

120 h

4.13 Modul: Basispraktikum Mobile Roboter [M-INFO-101184]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte

4

Notenskala best./nicht best. **Turnus** Jedes Sommersemester

Dauer 1 Semester **Sprache**Deutsch/
Englisch

Level 3

4 LP | Asfour

Version 2

Pflichtbestandteile

T-INFO-101992 Basispraktikum Mobile Roboter

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der/Die Studierende kann Schaltpläne lesen, selbständig komplexe Platinen bestücken, testen, Fehler in der Elektronik erkennen und beheben. Er/Sie kann eingebettete Systeme auf Basis von Mikrocontrollern in der Sprache C und unter Verwendung eines Cross-Compilers programmieren. Er/Sie kann Methoden zur Ansteuerung von Sensoren und Aktoren in der Robotik anwenden, Versuche mit Robotern durchführen und Aufgaben aus diesem Themenbereich eigenständig und im Team lösen.

Inhalt

Im Rahmen des Praktikums werden in Zweierteams ASURO-Roboter aufgebaut. Jeder Student erhält seinen eigenen Roboter und nimmt diesen unter Anleitung eigenständig in Betrieb. Mit dem Roboter wird jede Woche ein neuer Versuch durchgeführt, auf den die Studenten sich mit den zur Verfügung gestellten Unterlagen vorbereiten. Die Versuche basieren auf der Programmierung von Mikrocontrollern in C und umfassen die Ansteuerung der Sensoren und Aktoren des Roboters sowie mit Generierung von reaktiven Verhaltensmustern. Am Ende des Praktikums findet ein Abschlussrennen statt, bei dem die Roboter einen Hindernisparcours bewältigen müssen.

Arbeitsaufwand

Wöchentliche Anwesenheit: 12 x 4h Wöchentliche Vorbereitung: 12 x 5h Vorbereitung Abschlussrennen: 2 x 5h

Summe: 118h

Empfehlungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

4.14 Modul: Basispraktikum Protocol Engineering [M-INFO-101247]

Verantwortung: Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion4ZehntelnotenJedes Wintersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-INFO-102066	Basispraktikum Protocol Engineering	4 LP	Zitterbart

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der/Die Studierende kennt den Prozess der Standardisierung von Internetprotokollen und wendet dieses Wissen an, um ein neues Internetprotokoll in Gruppenarbeit zu entwerfen. Hierbei bewertet der/die Studierende verschiedene Herangehensweisen. In der Diskussion mit den weiteren Teilnehmern, wählen diese gemeinsam passende Lösungen aus. Hierbei wendet der/die Studierende die theoretischen Grundkenntnisse aus der LV Telematik [24128] in der Praxis an und vertieft somit die erlernten Konzepte.

Inhalt

Das semesterbegleitende Projekt behandelt die Standardisierung eines Internetprotokolls. Diese gliedert sich in Entwurf, Spezifikation, Implementierung und Interoperabilitätstest.

Arbeitsaufwand

Präsenzzeit / Treffen in Groß- und Kleingruppen: 30h

Konzeption + Spezifikation: 20h

Implementierung: 40h Präsentation: 10h

Interoparabilitätstest + Nachbereitung: 10h

4.15 Modul: Basispraktikum TI: Hardwarenaher Systementwurf [M-INFO-101219]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-INFO-102011	Basispraktikum TI: Hardwarenaher Systementwurf	4 LP	Karl	
	Basispraktikum Technische Informatik: Hardwarenaher Systementwurf Übung	0 LP	Karl	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Die Studierenden verstehen grundlegende Methoden der Informatik auf dem Gebiet des Hardwareentwurfs und können diese an einfachen Beispielen anwenden. Sie können Probleme beim Entwurf von Hardware erfassen und diese für einfache Beispiele selbständig strukturieren und lösen. Zudem sind sie in der Lage die Lösungen in Wort und Schrift wiederzugeben und die erzielten Resultate Fachfremden zu präsentieren. Des Weiteren können komplexere Aufgabenstellungen im Bereich des Hardwareentwurfs geeignet in einem Team gelöst werden.

Lernziele:

Studierende sind in der Lage einfache Hardwareschaltungen mittels der Hardwarebeschreibungssprache VHDL zu entwickeln und diese korrekt auf einem FPGA-basierten Entwicklungsboard laufen zu lassen. Sie sind fähig herstellerspezifische Werkzeuge für obigen Vorgang zu verwenden. Durch die eigenständige Planung eines Abschlussprojekts in einem Team, haben die Studierende die Kompetenz die erlernten Methoden für komplexere Aufgabenstellung anzuwenden. Somit sind sie in der Lage auch komplexere Aufgaben geeignet zu analysieren, zu planen, Aufgaben zu verteilen und diese zu einer funktionierenden Schaltung zusammenzuführen. Zudem können sie die Ergebnisse geeignet aufbereiten, um auch Fachfremden diese vermitteln zu können

Inhalt

- · Kennenlernen der Hardwarebeschreibungssprache VHDL
- · Einführung in verschiedene generische und herstellerspezifizsche Entwurfswerkzeuge
- · Einführung und Grundlagen programmierbarer Logikbausteine (FPGAs)
- · Schaltungsentwurf und -implementation
- · Selbständiger Entwurf einer Hardwareschaltung in Teamarbeit
- · Projektplannung
- · Implementierungsphase in einem Team
- · Vorstellung der Ergebnisse durch eine Präsentation

Arbeitsaufwand

Themen-Einführungen: 6 x 3 SWS = 18 SWS Übungsblätter: 2 x 3 x 4 SWS = 24 SWS

Abschlussprojekt:

- Entwurf/Projektplan 8 SWS
- Implementierungsphase 8 x 8 SWS = 64 SWS
- Projektvorstellung: 1 x 10 SWS = 10 SWS
- = 124 SWS = 4 ECTS

Empfehlungen Siehe Teilleistung.

4.16 Modul: Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) [M-INFO-101633]

Verantwortung: Prof. Dr. Sebastian Abeck **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile			
T-INFO-103119	Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I)	5 LP	Abeck

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden können die kennengelernten Konzepte und Technologien durch den Einsatz von Werkzeugen in einem konkreten Projektkontext anwenden (Anwenden).
- Die Studierenden können die Einsetzbarkeit der kennengelernten Konzepte und Technologien in der Praxis einschätzen (Beurteilen).

Inhalt

Im Praktikum wird eine individuelle Projektaufgabe gestellt, die vom Studierenden unter Nutzung der in der Vorlesung "Web-Anwendungen und Serviceorientierte Architekturen (I)" behandelten Konzepte in einem Projektteam zu lösen ist.

Arbeitsaufwand

150h

Präsenzzeit (Projektteamtreffen) 22,5 (15 x 1,5) Nacharbeit der Projektteamtreffen 22,5 (15 x 1,5) Entwicklungsarbeiten, praktische Experimente 45 (15 x 3)

Ausarbeitung 60 (15 x 4)

4.17 Modul: Basispraktikum zum ICPC-Programmierwettbewerb [M-INFO-101230]

Verantwortung: Prof. Dr. Dorothea Wagner **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	best./nicht best.	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-INFO-101991	Basispraktikum zum ICPC Programmierwettbewerb	4 LP	Wagner

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der/Die Studierende soll

- vertiefte und erweiterte Kompetenzen in den Bereichen Problemanalyse, Softwareentwicklung und Teamarbeit erwerben.
- die Fähigkeit, in einem vorgegebenen Zeitrahmen zu einer vorgegebenen Aufgabe eine Lösung selbständig erarbeiten und praktiksch umsetzen zu koennen, erwerben.

Inhalt

Der ACM International Collegiate Programming Contest (ICPC) ist ein jährlich stattfindender, weltweiter Programmierwettbewerb für Studierende. Der Wettbewerb findet in zwei Runden statt. Im Herbst jedes Jahres treten Teams aus jeweils drei Studierenden, die sich in den ersten vier Jahren ihres Studiums befinden müssen, in weltweit 32 Regional Contests gegeneinander an. Das Gewinnerteam jedes Regionalwettbewerbs hat im Frühjahr des Folgejahres die Möglichkeit, an den World Finals teilzunehmen.

Im Praktikum werden zu allen für den Wettbewerb relevanten Themengebieten die wichtigsten theoretisch Grundlagen vermittelt und an praktischen Übungsaufgaben erprobt. Höhepunkte des Praktikums sind Local Contests, in denen sich die Praktikumsteilnehmer unter Wettbewerbsbedingungen miteinander messen.

Aus den Teilnehmern des Praktikums werden außerdem die Teams ausgewählt, die die Universität Karlsruhe beim ACM ICPC Regionalwettbewerb der Region Südwesteuropa (SWERC) im Herbst vertreten werden.

Arbeitsaufwand

ca. 120 Stunden

4.18 Modul: Batteriemodellierung mit MATLAB [M-ETIT-103271]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

LeistungspunkteNotenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

 Pflichtbestandteile

 T-ETIT-106507
 Batteriemodellierung mit MATLAB
 3 LP Weber

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind mit den Grundlagen der Lithium-Ionen Batterietechnologie vertraut, sie sind in der Lage Batteriemodelle aufzustellen und in MATLAB zu implementieren.

Inhalt

Im Vorlesungsteil der Lehrveranstaltung werden die benötigten Grundlagen der Modellierung von Lithium-Ionen Batterien vermittelt. Nach einer kurzen Einführung in die Lithium-Ionen Batterietechnologie wird anhand von Beispielen vorgestellt, wie Batteriemodelle für verschiedene Applikationen in MATLAB umgesetzt werden können. Themen sind unter anderem Modelle zur Simulation des komplexen Innenwiderstandes, der nichtlinearen Lade-/Entladekurve sowie des dynamischen Strom-/Spannungsverlaufs einer Batterie während eines Fahrprofils.

Im Übungsteil der Lehrveranstaltung werden von den Studierenden selbstständig MATLAB-Modelle zur Simulation von Batterien entworfen, implementiert und getestet. Der praktische Teil der Lehrveranstaltung umfasst nach einer Einweisung in MATLAB (fakultativ) die Konzeptionierung verschiedener Modelle, das Aufstellen der benötigten Modellgleichungen, die Implementierung dieser in MATLAB und den Test des Modelle in Simulationsrechnungen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

1. Präsenzzeit Vorlesung: 7 * 2 h = 14 h

2. Präsenzzeit Übung: 8 * 2h = 16 h

3. selbstständiges Implementieren der Modelle: 15 * 3 h = 45 h

4. Prüfungsvorbereitung und Präsens in selbiger: 15 h

Insgesamt: 90 h = 3 LP

4.19 Modul: Bauökologie [M-WIWI-101467]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	2 Semester	Deutsch	3	3

Pflichtbestandteile			
T-WIWI-102742	Bauökologie I	4,5 LP	Lützkendorf
T-WIWI-102743	Bauökologie II	4,5 LP	Lützkendorf

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Qualifikationsziele

Der/die Studierende

- kennt die Grundlagen des nachhaltigen Planens, Bauens und Betreibens von Gebäuden mit einem Schwerpunkt im Themenbereich Bauökologie
- besitzt Kenntnisse über die bauökologischen Bewertungsmethoden sowie Hilfsmittel zur Planung und Bewertung von Gehäuden
- ist in der Lage, diese Kenntnisse zur Beurteilung der ökologischen Vorteilhaftigkeit sowie des Beitrages zu einer nachhaltigen Entwicklung von Immobilien einzusetzen.

Inhalt

Nachhaltiges Planen, Bauen und Betreiben von Immobilien sowie "green buildings" und "sustainable buildings" sind z.Z. die beherrschenden Themen in der Immobilienbranche. Diese Themen sind nicht nur für Planer sondern insbesondere auch für Akteure von Interesse, die sich künftig mit der Entwicklung, Finanzierung und Versicherung von Immobilien beschäftigen oder mit der Steuerung von Gebäudebeständen und Immobilienfonds betraut sind.

Das Lehrangebot vermittelt einerseits die Grundlagen des energiesparenden, ressourcenschonenden und gesundheitsgerechten Planens, Bauens und Betreibens. Andererseits werden bewertungsmethodische Grundlagen für die Analyse und Kommunikation der ökologischen Vorteilhaftigkeit von Lösungen erörtert. Mit den Grundlagen für die Zertifizierung der Nachhaltigkeit von Gebäuden werden Kenntnisse erworben, die momentan stark nachgefragt werden.

Zur Veranschaulichung der Lehrinhalte des Moduls werden Videos und Simulationstools eingesetzt.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen

Es wird eine Kombination mit dem Modul *Real Estate Management* empfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- Industrielle Produktion (Stoff- und Energieflüsse in der Ökonomie, Stoff- und Energiepolitik, Emissionen in die Umwelt)
- · Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion)

4.20 Modul: Betriebssysteme [M-INFO-101177]

Verantwortung: Prof. Dr.-Ing. Frank Bellosa
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Praktische Informatik

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-INFO-101969	Betriebssysteme	6 LP	Bellosa

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Die Studierenden beschreiben die grundlegenden Mechanismen und Strategien eines Betriebssystems. Die Studierenden zeigen die Abläufe in den einzelnen Komponenten eines Betriebssystems auf und verfolgen die Interaktion über genormte Schnittstellen.

Die Studierenden nutzen praktisch die Systemschnittstelle, um Dienste vom Betriebssystem anzufordern. Dazu entwerfen und implementieren die Studierenden kleine Anwendung und nutzen dabei Systemaufrufe.

Inhalt

Studierende beschreiben Mechanismen, Verfahren und Kontrollstrukturen in folgenden Betriebssystemkomponenten:

- Prozessverwaltung
- Synchronisation
- Speicherverwaltung
- Dateisystem
- I/O Verwaltung

Anmerkungen

Die semesterbegleitenden Übungsaufgaben sind freiwillig.

Arbeitsaufwand

60 h 4 SWS * 15 Nachbearbeitung 60 h 4 h * 15 Nachbearbeitung 30 h 2 h * 15 Tutorium 30 h Klausurvorbereitung 180 h = 6 ECTS

Empfehlungen

Siehe Teilleistung.

4.21 Modul: Bildgebende Verfahren in der Medizin I [M-ETIT-100384]

Verantwortung: Prof. Dr. Olaf Dössel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
3

Pflichtbestandteile			
T-ETIT-101930	Bildgebende Verfahren in der Medizin I	3 LP	Dössel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden haben ein umfassendes Verständnis für alle Methoden der medizinischen Bildgebung mit ionisierender Strahlung. Sie kennen die physikalischen Grundlagen, die technischen Lösungen und die wesentlichen Aspekte bei der Anwendung der Bildgebung in der Medizin.

Inhalt

- Röntgen-Physik und Technik der Röntgen-Abbildung
- Digitale Radiographie, Röntgen-Bildverstärker, Flache Röntgen-detektoren
- Theorie der bildgebenden Systeme, Modulations- Übertragungs-funktion
- und Quanten-Detektions-Effizienz
- Computer Tomographie CT
- Ionisierende Strahlung, Dosimetrie und Strahlenschutz
- SPECT und PET

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h

Selbststudium (3 h je 15 Termine) = 45 h

Vor-/Nachbereitung = 20 h

Gesamtaufwand ca. 95 Stunden = 3 LP

4.22 Modul: Bildverarbeitung [M-ETIT-102651]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Sommersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-ETIT-105566	Bildverarbeitung	3 LP	Heizmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden besitzen nach Absolvieren des Moduls erweitertes Wissen im Bereich der Bildverarbeitung. Sie sind mit den Grundlagen, Methoden und mit der Praxis der Bildgewinnung und Bildauswertung vertraut.

Inhalt

Das Modul behandelt grundlegende und weiterführende Gebiete der Bildverarbeitung. Schwerpunkte des Moduls sind die folgenden Themen: Optische Abbildung; Farbe; Sensoren zur Bildgewinnung; Bildaufnahmeverfahren; Bildsignale; Vorverarbeitung und Bildverbesserung; Segmentierung; Texturanalyse; Detektion.

Hinweis: Der Dozent behält sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (1 h) der wöchentlichen Vorlesung sowie die Vorbereitung (40 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von ca. 80 h.

Empfehlungen

Die Kenntnis der Inhalte der Module "Signale und Systeme" und "Messtechnik" wird dringend empfohlen. Die Kenntnis der Inhalte des Moduls "Methoden der Signalverarbeitung" ist von Vorteil.

4.23 Modul: Computergrafik [M-INFO-100856]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)

Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile				
T-INFO-101393	Computergrafik	6 LP	Dachsbacher	
T-INFO-104313	Übungen zu Computergrafik	0 LP	Dachsbacher	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Die Studierenden verstehen grundlegende Konzepte und Algorithmen der Computergrafik, können diese analysieren und implementieren und für Anwendungen in der Computergrafik einsetzen. Die erworbenen Kenntnisse ermöglichen einen erfolgreichen Besuch weiterführender Veranstaltungen im Vertiefungsgebiet Computergrafik.

Inhalt

Diese Vorlesung vermittelt grundlegende Algorithmen der Computergrafik, Farbmodelle, Beleuchtungsmodelle, Bildsynthese-Verfahren (Ray Tracing, Rasterisierung), Transformationen und Abbildungen, Texturen und Texturierungstechniken, Grafik-Hardware und APIs (z.B. OpenGL), geometrisches Modellieren und Dreiecksnetze.

Arbeitsaufwand

Präsenzzeit = 60h

Vor-/Nachbereitung = 90h

Klausurvorbereitung = 30h

Empfehlungen

Siehe Teilleistung.

4.24 Modul: CRM und Servicemanagement [M-WIWI-101460]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Le	eistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
	9	Zehntelnoten	Jedes Semester	1 Semester	Deutsch/Englisch	3	3

Wahlpflichtangebot (Wahl: 2 Bestandteile)				
T-WIWI-102596	Analytisches CRM	4,5 LP	Geyer-Schulz	
T-WIWI-102595	Customer Relationship Management	4,5 LP	Geyer-Schulz	
T-WIWI-102597	Operatives CRM	4,5 LP	Geyer-Schulz	

Erfolgskontrolle(n)

Dieses Modul wird letztmalig im Wintersemester 2019/20 angeboten.

Die Modulprüfung erfolgt in Form von mehreren Teilprüfungen zu den gewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt wird. Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Teilnoten der einzelnen Lehrveranstaltungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWLprüfbar.

Qualifikationsziele

Der/die Studierende

- versteht Servicemanagement als betriebswirtschaftliche Grundlage für Customer Relationship Management und kennt die sich daraus ergebenden Konsequenzen für die Unternehmensführung, Organisation und die einzelnen betrieblichen Teilbereiche,
- entwickelt und gestaltet Servicekonzepte und Servicesysteme auf konzeptueller Ebene,
- bearbeitet Fallstudien im Team unter Einhaltung von Zeitvorgaben und zieht dabei internationale Literatur aus dem Bereich heran.
- · kennt die aktuellen Entwicklungen im CRM-Bereich in Wissenschaft und Praxis,
- versteht die wichtigsten wissenschaftlichen Methoden (BWL, Statistik, Informatik) des analytischen CRM und kann diese Methoden selbständig auf Standardfälle anwenden,
- gestaltet, implementiert und analysiert operative CRM-Prozesse in konkreten Anwendungsbereichen (wie Marketing Kampagnen Management, Call Center Management, ...).

Inhalt

Im Modul CRM und Servicemanagement werden die Grundlagen moderner kunden- und serviceorientierter Unternehmensführung und ihre praktische Unterstützung durch Systemarchitekturen und CRM-Softwarepakete vermittelt. Customer Relationship Management (CRM) als Unternehmensstrategie erfordert Servicemanagement und dessen konsequente Umsetzung in allen Unternehmensbereichen.

Im operativen CRM wird die Gestaltung kundenorientierter IT-gestützter Geschäftsprozesse auf der Basis der Geschäftsprozessmodellierung an konkreten Anwendungsszenarien erläutert (z.B. Kampagnenmanagement, Call Center Management, Sales Force Management, Field Services, ...).

Im analytischen CRM wird Wissen über Kunden auf aggregierter Ebene für betriebliche Entscheidungen (z.B. Sortimentsplanung, Kundenloyalität, Kundenwert, ...) und zur Verbesserung von Services nutzbar gemacht. Voraussetzung dafür ist die enge Integration der operativen Systeme mit einem Datawarehouse, die Entwicklung eines kundenorientierten und flexiblen Reportings, sowie die Anwendung statistischer Analysemethoden (z.B. Clustering, Regression, stochastische Modelle, ...).

Anmerkungen

Die Lehrveranstaltung Customer Relationship Management [2540508] wird auf Englisch gehalten.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.25 Modul: Dosimetrie ionisierender Strahlung [M-ETIT-101847]

Verantwortung: Prof. Dr. Olaf Dössel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Wintersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-ETIT-104505	Dosimetrie ionisierender Strahlung	3 LP	Dössel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (2 h).

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können Strahlenexpositionen durch die verschiedenen Dosisgrößen beschreiben und charakterisieren und dabei die Dosisbegriffe im Strahlenschutz richtig anwenden. Sie können für ein gegebenes Szenario die adäquaten Methoden und Techniken der Dosimetrie ionisiernder Strahlung auswählen.

Inhalt

Dosimetrie ionisierender Strahlung

Die Vorlesung definiert die verschiedenen Dosisbegriffe zur Charakterisierung von Strahlenexpositionen und das zu Grunde liegende dosimetrische System. Sie beschreibt die Methoden und Techniken der Dosimetrie für ionisierende Strahlung für verschiedene Anwendungen. Die behandelten Themen sind:

Ionisierende Strahlung und Wechselwirkungen mit Materie, Biologische Strahlenwirkungen

Charakterisierung von Strahlenfeldern

Dosisbegriffe und Ihre Anwendungen

Methoden und Techniken für die Dosimetrie bei äußerer Exposition (externe Dosimetrie) Methoden und Techniken für die Dosimetrie bei innerer Exposition (interne Dosimetrie)

Anwendungen der Dosimetrie in der Medizin

Dosimetrische Labore im KIT

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30 h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h

Selbststudium (3 h je 15 Termine) = 45 h

Vor-/Nachbereitung = 20 h

Gesamtaufwand ca. 95 Stunden = 3 LP

4.26 Modul: eBusiness und Service Management [M-WIWI-101434]

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	1 Semester	Deutsch	3	10

Wahlpflichtangebot (Wahl: 9 LP)				
T-WIWI-111307	Digital Services: Foundations	4,5 LP	Satzger, Weinhardt	
T-WIWI-110797	eFinance: Informationssysteme für den Wertpapierhandel	4,5 LP	Weinhardt	
T-WIWI-109816	Foundations of Interactive Systems	4,5 LP	Mädche	
T-WIWI-109936	Platform Economy	4,5 LP	Weinhardt	
T-WIWI-109940	Spezialveranstaltung Wirtschaftsinformatik	4,5 LP	Weinhardt	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Oualifikationsziele

Die Studierenden

- · verstehen die strategischen und operativen Gestaltungen von Informationen und Informationsprodukten,
- · analysieren die Rolle von Informationen auf Märkten,
- evaluieren Fallbeispiele bzgl. Informationsprodukte,
- erarbeiten Lösungen in Teams.

Inhalt

Dieses Modul vermittelt einen Überblick über die gegenseitigen Abhängigkeiten von strategischem Management und Informationssystemen. Es wird eine klare Unterscheidung in der Betrachtung von Information als Produktions- und Wettbewerbsfaktor sowie als Wirtschaftsgut eingeführt. Die zentrale Rolle von Informationen wird durch das Konzept des Informationslebenszyklus

erläutert, deren einzelne Phasen vor allem aus betriebswirtschaftlicher und mikroökonomischer Perspektive analysiert werden. Über diesen Informationslebenszyklus hinweg wird jeweils der Stand der Forschung in der ökonomischen Theorie dargestellt. Die Veranstaltung wird durch begleitende Übungen ergänzt. Die Vorlesungen "Plattformökonomie", "eFinance: Wirtschaftsinformatik für den Wertpapierhandel" und "eServices" bilden drei Vertiefungs- und Anwendungsbereiche für die Inhalte der Pflichtveranstaltung. In der Kernveranstaltung "Plattformökonomie" wird insbesondere auf den Austausch zweier Handelspartner über einen Intermediär auf Internetplattformen eingegangen. Themen sind Netzwerkeffekte, Peer-To-Peer Märkte, Blockchains und Marktmechanismen. Über den englischsprachigen Vorlesungsteil hinaus vermittelt der Kurs das Wissen anhand einer Fallstudie, in der die Studierenden selbst eine Plattform analysieren sollen.

Die Vorlesung "eFinance: Wirtschaftsinformatik für den Wertpapierhandel"vermittelt tiefgehende und praxisrelevante Inhalte über den börslichen und außerbörslichen Wertpapierhandel. Der Fokus liegt auf der ökonomischen und technischen Gestaltung von Märkten als informationsverarbeitenden Systemen.

In "eServices" wird die zunehmende Entwicklung von elektronischen Dienstleistungen im Gegensatz zu den klassischen Diensleistungen hervorgehoben. Die Informations- und Kommunikationstechnologie ermöglicht die Bereitstellung von Diensten, die durch Interaktivität und Individualität gekennzeichnet sind. In dieser Veranstaltung werden die Grundlagen für die Entwicklung und das Management IT-basierter Dienstleistungen gelegt.

Die Veranstaltung "Spezialveranstaltung Wirtschaftsinformatik" festigt die theoretischen Grundlagen und ermöglicht weitergehende praktische Erfahrungen im Bereich der Wirtschaftsinformatik. Seminarpraktika des IM können als Spezialveranstaltung Wirtschaftsinformatik belegt werden.

Anmerkungen

Als Spezialveranstaltung Wirtschaftsinformatik können alle Seminarpraktika des IM belegt werden. Aktuelle Informationen zum Angebot sind unter: www.iism.kit.edu/im/lehre zu finden.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.27 Modul: Echtzeitsysteme [M-INFO-100803]

Verantwortung: Prof. Dr.-Ing. Thomas Längle **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)

Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-INFO-101340	Echtzeitsysteme	6 LP	Längle

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teileistung.

Qualifikationsziele

- Der Student versteht grundlegende Verfahren, Modellierungen und Architekturen von Echtzeitsystemen am Beispiel der Automatisierungstechnik mit Messen, Steuern und Regeln und kann sie anwenden.
- Er kann einfache zeitkontinuierliche und zeitdiskrete PID-Regelungen modellieren und entwerfen sowie deren Übertragungsfunktion und deren Stabilität berechnen.
- · Er versteht grundlegende Rechnerarchitekturen und Hardwaresysteme für Echtzeit- und Automatisierungssysteme.
- Er kann Rechnerarchitekturen für Echtzeitsysteme mit Mikrorechnersystemen und mit Analog- und Digitalschnittstellen zum Prozess entwerfen und analysieren.
- Der Student versteht die grundlegenden Problemstellungen wie Rechtzeitigkeit, Gleichzeitigkeit und Verfügbarkeit in der Echtzeitprogrammierung und Echtzeitkommunikation und kann die Verfahren synchrone, asynchrone Programmierung und zyklische zeitgesteuerte und unterbrechungsgesteuerte Steuerungsverfahren anwenden.
- Der Student versteht die grundlegenden Modelle und Methoden von Echtzeitbetriebssystemen wie Schichtenmodelle, Taskmodelle, Taskzustände, Zeitparameter, Echtzeitscheduling, Synchronisation und Verklemmungen, Taskkommunikation, Modelle der Speicher- und Ausgabeverwaltung sowie die Klassifizierung und Beispiele von Echtzeitsystemen.
- Er kann kleine Echtzeitsoftwaresysteme mit mehreren synchronen und asynchronen Tasks verklemmungsfrei entwerfen.
- Er versteht die Grundkonzepte der Echtzeitmiddleware sowie der sicherheitskritischen Systeme
- Der Student versteht die grundlegenden Echtzeit-Problemstellungen in den Anwendungsbereichen Sichtprüfsysteme, Robotersteuerung und Automobil

Inhalt

Es werden die grundlegenden Prinzipien, Funktionsweisen und Architekturen von Echtzeitsystemen vermittelt. Einführend werden die grundlegenden Rechnerarchitekturen (Mikrorechner, Mikrokontroller Signalprozessoren, Parallelbusse) dargestellt. Echtzeitkommunikation wird am Beispiel verschiedener Feldbusse eingeführt. Es werden weiterhin die grundlegenden Methoden der Echtzeitprogrammierung (synchrone und asynchrone Programmierung), der Echtzeitbetriebssysteme (Taskkonzept, Echtzeitscheduling, Synchronisation, Ressourcenverwaltung) sowie der Echtzeit-Middleware dargestellt. Hierauf aufbauend wir die Thematik der Hardwareschnittstellen zwischen Echtzeitsystem und Prozess vertieft. Danach werden grundlegende Methoden für Modellierung und Entwurf von diskreten Steuerungen und zeitkontinuierlichen und zeitdiskreten Regelungen für die Automation von technischen Prozessen behandelt. Abgeschlossen wird die Vorlesung durch das Thema der sicherheitskritischen Systeme sowie den drei Anwendungsbeispielen Sichtprüfsysteme, Robotersteuerung und Automobil.

Arbeitsaufwand

 $(4 SWS + 1.5 \times 4 SWS) \times 15 + 15 \text{ h Klausurvorbereitung} = 165/30 = 5.5 \text{ LP} \sim 6 \text{ LP}.$

4.28 Modul: eFinance [M-WIWI-101402]

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	2 Semester	Deutsch/Englisch	3	8

Pflichtbestandteile						
T-WIWI-110797	eFinance: Informationssysteme für den Wertpapierhandel	4,5 LP	Weinhardt			
Ergänzungsangebot (Wahl: mind. 4,5 LP)						
T-WIWI-102643	Derivate	4,5 LP	Uhrig-Homburg			
T-WIWI-102646	Internationale Finanzierung	3 LP	Uhrig-Homburg			

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Die Lehrveranstaltung eFinance: Informationswirtschaft für den Wertpapierhandel [2540454] muss im Modul erfolgreich geprüft werden.

Qualifikationsziele

Die Studierenden

- · verstehen und analysieren die Wertschöpfungskette im Wertpapierhandel,
- bestimmen und gestalten Methoden und Systeme situationsangemessen und wenden diese zur Problemlösung im Bereich Finance an,
- beurteilen und kritisieren die Investitionsentscheidungen von Händlern,
- · wenden theoretische Methoden aus der Ökonometrie an,
- · erarbeiten Lösungen in Teams.

Inhalt

Das Modul "eFinance" adressiert aktuelle Probleme der Finanzwirtschaft und untersucht, welche Rolle dabei Information und Wissen spielen und wie Informationssysteme diese Probleme lösen bzw. mildern können. Dabei werden die Veranstaltungen von erfahrenen Vertretern aus der Praxis ergänzt. Das Modul ist unterteilt in eine Veranstaltung zum Umfeld von Banken und Versicherungen sowie eine weitere zum Bereich des elektronischen Handels von Finanztiteln auf globalen Finanzmärkten. Zur Wahl steht auch die Vorlesung Derivate, welche sich mit Produkten auf Finanzmärkten, und insbesondere mit Future- und Forwardkontrakten sowie der Bewertung von Optionen befasst. Als Ergänzung können zudem die Veranstaltungen Börsen und Internationale Finanzierung gewählt werden, um ein besseres Verständnis für Kapitalmärkte zu entwickeln.

Anmerkungen

Das aktuelle Angebot an Seminaren passend zu diesem Modul ist auf der folgenden Webseite aufgelistet: http://www.iism.kit.edu/im/lehre

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden, für Lehrveranstaltungen mit 3 Leistungspunkten ca. 90 Stunden und für Lehrveranstaltungen mit 1,5 Leistungspunkten 45 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.29 Modul: Einführung in das Operations Research [M-WIWI-101418]

Verantwortung: Prof. Dr. Stefan Nickel

Prof. Dr. Steffen Rebennack

Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Operations Research

Leistungspunkte
12Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
2 SemesterSprache
2 SemesterLevel
3Version
3

Pflichtbestandteile			
T-WIWI-102758	Einführung in das Operations Research I und II	12 LP	Nickel, Rebennack, Stein

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtklausur (120 min.) (nach §4(2), 1 SPO).

Die Klausur wird in jedem Semester (in der Regel im März und Juli) angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- benennt und beschreibt die Grundbegriffe der entscheidenden Teilbereiche im Fach Operations Research (Lineare Optimierung, Graphen und Netzwerke, Ganzzahlige und kombinatorische Optimierung, Nichtlineare Optimierung, Dynamische Optimierung und stochastische Modelle),
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle.
- modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um einfache Optimierungsprobleme selbständig zu lösen,
- · validiert, illustriert und interpretiert erhaltene Lösungen.

Inhalt

Nach einer einführenden Thematisierung der Grundbegriffe des Operations Research werden insbesondere die lineare Optimierung, die Graphentheorie und Netzplantechnik, die ganzzahlige und kombinatorische Optimierung, die nichtlineare Optimierung, die deterministische und stochastische dynamische Optimierung, die Wartesschlangentheorie sowie Heuristiken behandelt.

Dieses Modul bildet die Basis einer Reihe weiterführender Veranstaltungen zu theoretischen und praktischen Aspekten des Operations Research.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Klausurnote.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte).

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.30 Modul: Einführung in das Privatrecht [M-INFO-101190]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Recht

Voraussetzung für: T-INFO-102013 - Privatrechtliche Übung

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	3

Pflichtbestandteile			
T-INFO-103339	BGB für Anfänger	5 LP	Matz

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der/die Studierende

- kennt die Grundstruktur des deutschen Rechtssystems und versteht die Unterschiede von Privatrecht, öffentlichem Recht und Strafrecht.
- Kenntnisse über die Grundprinzipien (Privatautonomie, Abstraktions- und Trennungsprinzip) und Grundbegriffe des Bürgerlichen Rechts (Rechtssubjekte, Rechtsobjekte, Willenserklärung, Vertragsschluss, allgemeine Geschäftsbedingungen, Verbraucherschutz, Leistungsstörungen usw.).
- · hat ein Grundverständnis für rechtliche Problemlagen und juristische Lösungsstrategien entwickelt.
- · erkennt rechtlich relevante Sachverhalte und kann anhand der Gesetzestexte einfach gelagerte Fälle lösen.
- hat einen Eindruck davon, wie Juristen ihre Lösungen im Gutachtenstil darstellen und macht sich zunehmend mit der juristischen Arbeitsweise und Darstellungsform vertraut

Inhalt

Die Vorlesung beginnt mit einer allgemeinen Einführung ins Recht. Was ist Recht, warum gilt Recht und was will Recht im Zusammenspiel mit Sozialverhalten, Technikentwicklung und Markt? Welche Beziehung besteht zwischen Recht und Gerechtigkeit? Ebenfalls einführend wird die Unterscheidung von Privatrecht, öffentlichem Recht und Strafrecht vorgestellt sowie die Grundzüge der gerichtlichen und außergerichtlichen Rechtsdurchsetzung erläutert. Anschließend werden die Grundbegriffe des Rechts in ihrer konkreten Ausformung im deutschen Bürgerlichen Gesetzbuch (BGB) besprochen. Das betrifft insbesondere Rechtssubjekte, Rechtsobjekte, Willenserklärung, die Einschaltung Dritter (insbes. Stellvertretung), Vertragsschluss (einschließlich Trennungs- und Abstraktionsprinzip), allgemeine Geschäftsbedingungen, Verbraucherschutz, Leistungsstörungen. Abschließend erfolgt ein Ausblick auf das Schuld- und das Sachenrecht. Schließlich wird eine Einführung in die Subsumtionstechnik gegeben.

Arbeitsaufwand

Der Arbeitsaufwand für dieses Modul beträgt ca. 150 Std., davon 45 Std. Präsenz, 50 Std. Vor und Nachbereitungszeit, 55 Std. Prüfungsvorbereitungs- und Prüfungszeit.

4.31 Modul: Einführung in die Algebra und Zahlentheorie [M-MATH-101314]

Verantwortung: PD Dr. Stefan Kühnlein **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

LeistungspunkteNotenskalaTurnusDauerLevelVersion9ZehntelnotenJedes Sommersemester1 Semester31

Pflichtbestandteile			
T-MATH-102251	Einführung in Algebra und Zahlentheorie	9 LP	Herrlich, Kühnlein

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Voraussetzungen

Das Modul Proseminar Mathematik [ProMath] muss geprüft werden.

Qualifikationsziele

Absolventinnen und Absolventen

- beherrschen die grundlegenden algebraischen und zahlentheoretischen Strukturen
- verstehen die Denkweise der modernen Algebra,
- sind in der Lage, an weiterführenden Vorlesungen und Seminaren teilzunehmen.

Inhalt

- Zahlen: größter gemeinsamer Teiler, Euklidscher Algorithmus, Primzahlen, Fundamentalsatz der Arithmetik
- Gruppen : Satz von Lagrange, Normalteiler und Faktorgruppen, Freie Gruppen, Sylowsätze
- Ringe: Ideale und modulares Rechnen, Chinesischer Restsatz, quadratisches Reziprozitätsgesetz, Endliche Körper

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung

4.32 Modul: Einführung in die Philosophie [M-GEISTSOZ-103430]

Verantwortung: Prof. Dr. Christian Seidel-Saul

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: Ergänzungsfach / Philosophie (Pflicht)

Voraussetzung für: T-GEISTSOZ-109222 - Modulprüfung Praktische Philosophie I

T-GEISTSOZ-109224 - Modulprüfung Theoretische Philosophie I

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
14	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	3

Pflichtbestandteile					
T-GEISTSOZ-111610	Einführung in die Philosophie 1	0 LP	Seidel-Saul		
T-GEISTSOZ-111612	Einführung in die Philosophie 2	0 LP	Seidel-Saul		
T-GEISTSOZ-111608	Einführung in die Philosophie 3	0 LP	Seidel-Saul		
T-GEISTSOZ-111607	Einführung in die Philosophie 4	0 LP	Seidel-Saul		
T-GEISTSOZ-111606	Einführung in die Philosophie 5	0 LP	Seidel-Saul		
T-GEISTSOZ-106828	Modulprüfung Einführung in die Philosophie	14 LP	Seidel-Saul		

Erfolgskontrolle(n)

Das Bestehen der Studienleistungen und der Modulprüfung

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden lernen die unterschiedlichen Bereiche der Philosophie anhand der jeweils grundlegenden Fragestellungen und Begriffe kennen. Sie erwerben Grundkenntnisse über wichtige philosophische Strömungen und klassische Werke und sind darüber hinaus in der Lage, die üblichen epochalen Gliederungen der philosophischen Ideengeschichte darzustellen und in ihrem Verhältnis zu den Wissensformen Wissenschaft, Kunst und Religion zu verstehen. Die Studierenden lernen unterschiedliche Arten kennen, Sinnfragen zu stellen, und erwerben ein Verständnis für die geschichtliche Verfasstheit menschlicher Wissenskulturen.

Inhalt

Überblick über die systematischen Bereiche der Philosophie und deren geschichtliche Entwicklung unter Berücksichtigung des Verhältnisses zu den Wissensformen Wissenschaft, Kunst, Religion.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Modulprüfung

Arbeitsaufwand

Präsenz in den Veranstaltungen 120 h, Vor- und Nachbereitung (einschl. Studienleistungen) 120 h, Studienleistung "Philosophisches Tagebuch" 120 h, Modulprüfung ca. 60 h (Insgesamt ca. 420 h)

4.33 Modul: Einführung in die Philosophie (Euklid) [M-GEISTSOZ-104500]

Verantwortung: Prof. Dr. Christian Seidel-Saul

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: Ergänzungsfach / Philosophie (Pflicht)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
10	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	5	

Pflichtbestandteile					
T-GEISTSOZ-111610	Einführung in die Philosophie 1	0 LP	Seidel-Saul		
T-GEISTSOZ-111612	Einführung in die Philosophie 2	0 LP	Seidel-Saul		
T-GEISTSOZ-111608	Einführung in die Philosophie 3	0 LP	Seidel-Saul		
T-GEISTSOZ-111607	Einführung in die Philosophie 4	0 LP	Seidel-Saul		
T-GEISTSOZ-106828	Modulprüfung Einführung in die Philosophie	14 LP	Seidel-Saul		

Erfolgskontrolle(n)

Das Bestehen der Studienleistungen und der Modulprüfung

Voraussetzungen

keine

Oualifikationsziele

Die Studierenden lernen die unterschiedlichen Bereiche der Philosophie anhand der jeweils grundlegenden Fragestellungen und Begriffe kennen. Sie erwerben Grundkenntnisse über wichtige philosophische Strömungen und klassische Werke und sind darüber hinaus in der Lage, die üblichen epochalen Gliederungen der philosophischen Ideengeschichte darzustellen und in ihrem Verhältnis zu den Wissensformen Wissenschaft, Kunst und Religion zu verstehen. Die Studierenden lernen unterschiedliche Arten kennen, Sinnfragen zu stellen, und erwerben ein Verständnis für die geschichtliche Verfasstheit menschlicher Wissenskulturen.

Inhalt

Überblick über die systematischen Bereiche der Philosophie und deren geschichtliche Entwicklung unter Berücksichtigung des Verhältnisses zu den Wissensformen Wissenschaft, Kunst, Religion.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Modulprüfung

Arbeitsaufwand

Präsenz in den Veranstaltungen 120 h, Vor- und Nachbereitung (einschl. Studienleistungen) 120 h, Modulprüfung ca. 60 h (Insgesamt ca. 300 h)

4.34 Modul: Einführung in die Stochastik [M-MATH-101321]

Verantwortung: Prof. Dr. Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	3	1

Pflichtbestandteile				
T-MATH-102256	Einführung in die Stochastik	6 LP	Bäuerle, Ebner, Fasen- Hartmann, Hug, Klar, Last, Trabs, Winter	

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (120 Minuten).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Das Modul Proseminar Mathematik muss geprüft werden.

Qualifikationsziele

Die Studierenden

- können einfache stochastische Vorgänge modellieren,
- können Laplace-Wahrscheinlichkeiten mit Hilfe der kombinatorischen Grundformeln berechnen,
- wissen, in welchen Zusammenhängen (Urnenmodelle, Bernoulli-Kette) die wichtigsten diskreten Verteilungen auftreten,
- beherrschen die grundlegenden Rechenregeln im Umgang mit Wahrscheinlichkeiten,
- · kennen die Begriffe Erwartungswert, Varianz, Kovarianz, Korrelation und Quantil und wissen mit ihnen umzugehen,
- können das schwache Gesetz großer Zahlen sowie den Zentralen Grenzwertsatz von de Moivre-Laplace formulieren und anwenden.
- sind mit den Begriffen Parameterschätzung und statistischer Test am Beispiel der Binomialverteilung vertraut,
- · können mit den Begriffen Verteilungsfunktion und Dichte umgehen,
- kennen die stetige Gleichverteilung, die Exponentialverteilung und die ein- und mehrdimensionale Normalverteilung

Inhalt

Deskriptive Statistik, Diskrete Wahrscheinlichkeitsräume, Kombinatorik, bedingte Wahrscheinlichkeiten, stochastische Unabhängigkeit, Zufallsvariablen und ihre Verteilungen, Kenngrößen von Verteilungen, bedingte Erwartungswerte und bedingte Verteilungen, schwaches Gesetz großer Zahlen, Zentrale Grenzwertsätze, statistische Verfahren im Zusammenhang mit der Binomialverteilung, allgemeine Wahrscheinlichkeitsräume, Rechnen mit Verteilungsdichten, Quantile, multivariate Normalverteilung

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden

Präsenzzeit: 90 Stunden

• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Die Inhalte der Module Analysis 1 und 2 sowie Lineare Algebra 1 und 2 werden dringend empfohlen.

4.35 Modul: Einführung in die Volkswirtschaftslehre [M-WIWI-101398]

Verantwortung: Prof. Dr. Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** Ergänzungsfach / Volkswirtschaftslehre

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
12	Zehntelnoten	Jedes Semester	2 Semester	3	1

Pflichtbestandteile				
T-WIWI-102708	Volkswirtschaftslehre I: Mikroökonomie	6 LP	Puppe, Reiß	
T-WIWI-102709	Volkswirtschaftslehre II: Makroökonomie	6 LP	Wigger	

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4(2), 1 SPO) über die einzelnen Lehrveranstaltungen des Moduls. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Voraussetzungen

Keine

Oualifikationsziele

Der/die Studierende

- · kennt und versteht die grundsätzlichen volkswirtschaftlichen Fragestellungen,
- · kann die aktuellen wirtschaftspolitischen Probleme der globalisierten Welt benennen,
- ist in der Lage, elementare Lösungsstrategien zu entwickeln.

Dabei ist der Fokus der beiden Lehrveranstaltungen des Moduls unterschiedlich. Während in der Vorlesung VWL I die ökonomischen Probleme hauptsächlich als Entscheidungsprobleme aufgefasst und gelöst werden, soll in VWL II das Verständnis des Studenten für die Dynamik wirtschaftlicher Prozesse gefördert werden.

Inhalt

Es werden die grundlegende Konzepte, Methoden und Modelle der Mikro- und Makroökonomie vermittelt. In der Lehrveranstaltung VWL I [2600012] geht es neben der Mikroökonomischen Entscheidungstheorie, Fragen der Markttheorie und Problemen des unvollständigen Wettbewerbs auch um die Grundzüge der Spieltheorie und der Wohlfahrtstheorie. VWL II [2600014] thematisiert volkswirtschaftliche Ordnungsmodelle und die volkswirtschaftliche Gesamtrechnung ebenso wie Fragen des Außenhandels und der Geldpolitik. Zudem werden das komplexe Wachstum und Konjunktur und volkswirtschaftliche Spekulation behandelt.

Zusammensetzung der Modulnote

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Anmerkungen

Achtung: Die Lehrveranstaltung Volkswirtschaftslehre I: Mikroökonomie [2610012] ist in den Studiengängen Wirtschaftsingenieurwesen B.Sc. und Technische Volkswirtschaftslehre B.Sc. Bestandteil der Orientierungsprüfung nach § 8(1), SPO. Deshalb muss die Prüfung in Volkswirtschaftslehre I: Mikroökonomie [2610012] bis zum Ende des Prüfungszeitraums des zweiten Fachsemesters, einschließlich etwaiger Wiederholungen bis zum Ende des Prüfungszeitraums des dritten Fachsemesters abgelegt werden, um den Prüfungsanspruch im Studiengang nicht zu verlieren.

Arbeitsaufwand

Gesamtaufwand bei 10 Leistungspunkten: ca. 300 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

4.36 Modul: Elektrische Maschinen und Stromrichter [M-ETIT-102124]

Verantwortung: Dr.-Ing. Klaus-Peter Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101954	Elektrische Maschinen und Stromrichter	6 LP	Becker

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden kennen die wesentlichen elektrischen Maschinen und Stromrichter.

Sie sind in der Lage, deren Verhalten durch Kennlinien und einfache Modelle zu beschreiben.

Sie analysieren die Netzrückwirkung und die Auswirkung von Stromrichtern auf die elektrische Maschine mit Hilfe der Beschreibung durch Fourierreihen.

Sie können die Bestandteile von Energieübertragungs- und Antriebssystemen erkennen und deren Verhalten durch Kopplung der Modelle von Stromrichter und Maschine berechnen.

Inhalt

Grundlagenvorlesung der Antriebstechnik und Leistungselektronik. Es werden zunächst Wirkungsweise und Betriebsverhalten der wichtigsten elektrischen Maschinen erläutert.

Anschließend werden die Funktion und das Verhalten der wichtigsten Stromrichterschaltungen beschrieben.

Wirkungsweise und Einsatzgebiete von elektrischen Maschinen und leistungselektronischen Schaltungen werden an Beispielen vertieft.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

14x V und 14x U à 1,5 h: =..35 h
14x Nachbereitung V à 1 h = 14 h
13x Vorbereitung zu U à 2 h = 26 h
Prüfungsvorbereitung: = 80 h
Prüfungszeit = 2 h
Insgesamt ca. 157 h
(entspricht 6 Leistungspunkten)

4.37 Modul: Elektroenergiesysteme [M-ETIT-102156]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
5Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101923	Elektroenergiesysteme	5 LP	Leibfried

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage elektrische Schaltungen (passive oder mit gesteuerten Quellen) im Zeit- und Frequenzbereich zu berechnen. Sie kennen ferner die wichtigsten Netzbetriebsmittel, ihre physikalische Wirkungsweise und ihre elektrische Ersatzschaltung.

Inhalt

Die Vorlesung behandelt im ersten Teil die Berechnung von Ausgleichsvorgängen in linearen elektrischen Netzwerken durch Differentialgleichungen und mit Hilfe der Laplace-Transformation. Im zweiten Teil der Vorlesung werden die elektrischen Netzbetriebsmittel behandelt.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzstudienzeit Vorlesung: 30 h

Präsenzstudienzeit Übung: 15 h

Selbststudienzeit: 90 h

Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt 135 h = 5 LP

4.38 Modul: Elektromagnetische Felder [M-ETIT-104428]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Elektrotechnik)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile				
T-ETIT-109078	Elektromagnetische Felder	6 LP	Doppelbauer	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Ziel ist die Vermittlung der theoretischen Grundlagen von elektrischen, magnetischen und elektromagnetischen Feldern auf Basis der Maxwell-Gleichungen. Die Studierenden können elektromagnetische Felder einfacher Anordnungen von Ladungen und stromführenden Leitern analytisch mit Hilfe der Maxwell-Gleichungen berechnen, Feldbilder skizzieren und die auftretenden Kräfte und Leistungen daraus ableiten. Sie können den Einfluss von Dielektrika und ferromagnetischen Materialien berücksichtigen.

Inhalt

Diese Vorlesung ist eine Einführung in die elektromagnetische Feldtheorie auf Basis der Maxwell-Gleichungen. Behandelt werden elektrostatische Felder, elektrische Strömungsfelder, magnetische Felder und zeitlich langsam veränderliche Felder:

- Mathematische Grundlagen der Feldtheorie
- · Grundlagen elektromagnetischer Felder
- · Elektrostatische Felder
- · Elektrische Strömungsfelder
- · Magnetische Felder
- Quasistationäre (zeitlich langsam veränderliche) Felder

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt.

Zusätzlich werden Tutorien in Kleingruppen angeboten.

Die Unterlagen zur Lehrveranstaltung (Skript und Formelsammlung) finden sich online auf der Webseite des Instituts. Das erforderliche Passwort wird in der ersten Vorlesungsstunde bekannt gegeben.

Arbeitsaufwand

Für das gesamte Modul werden 6 Credit Points (ECTS) vergeben, die sich folgendermaßen aufteilen:

- · Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h
- · Präsenzzeit in Übungen (1 h je 15 Termine) = 15 h
- · Präsenzzeit in Tutorien = 15 Wochen je 2 h = 30 h
- Vor-/Nachbereitung des Stoffes: 15 Wochen je 3 h = 45 h
- · Klausurvorbereitung und Präsenz in der Klausur: 1,5 Wochen je 40 h = 60 h

Gesamtaufwand ca. 180 Stunden = 6 ECTS.

Empfehlungen

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden dringend empfohlen.

4.39 Modul: Elektromagnetische Wellen [M-ETIT-104515]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Elektrotechnik)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-109245	Elektromagnetische Wellen	6 LP	Randel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage, Berechnungen elektromagnetischen Wellenphänomenen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen.

Die Studierenden haben ein Verständnis für die physikalischen Zusammenhänge erlangt und können Lösungsansätze für grundlegende Aufgabenstellungen erarbeiten. Mit Hilfe der erlernten Methodik sind sie in die Lage versetzt, die Inhalte von Vorlesungen mit technischen Anwendungen zu verstehen.

Inhalt

Diese Vorlesung ist eine Einführung in die Theorie elektromagnetischer Wellen auf Basis der Maxwell-Gleichungen. Die Vorlesung basiert auf den Inhalten der Vorlesung elektromagnetische Felder. Behandelt werden die folgenden Themen

- Verschiebungsstromdichte
- · Die Wellengleichung
- Ebene Wellen im nichtleitenden Medium
- · Reflexion und Brechung von ebenen Wellen
- · Reflexion an einer Leiteroberfläche; der Skineffekt
- · Harmonische Wellen
- Linear und zirkular polarisierte Wellen
- · Lösungsmethoden zu Potentialproblemen
- · Separation der skalaren Wellengleichung
- Wellenleiter (Hohlleiter, Glasfaser)
- Der Hertzsche Dipol

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Für das gesamte Modul werden 6 Credit Points (ECTS) vergeben, die sich folgendermaßen aufteilen:

- Präsenzzeit in Vorlesungen (1,5 h je 13 Termine) und Übungen (1,5 h je 13 Termine) = 39 h
- Präsenzzeit in Tutorien = 13 Wochen je 2 h = 26 h
- Vor-/Nachbereitung des Stoffes: 13 Wochen je 3 h = 39 h
- Klausurvorbereitung und Präsenz in der Klausur: 2 Wochen je 40 h = 80 h

Gesamtaufwand ca. 180 Stunden = 6 ECTS.

Empfehlungen

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden dringend empfohlen.

4.40 Modul: Elektronische Schaltungen [M-ETIT-104465]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Elektrotechnik)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
7	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-ETIT-109318	Elektronische Schaltungen	6 LP	Ulusoy	
T-ETIT-109138	Elektronische Schaltungen - Workshop	1 LP	Zwick	

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- 1. einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Elektronische Schaltungen, (6 LP) und der freiwilligen Abgabe der Lösungen von Tutoriumsaufgaben
- 2. einer schriftlichen Ausarbeitung zu Lehrveranstaltung Elektronische Schaltungen Workshop, (1 LP)

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden werden befähigt, die Funktionen und Wirkungsweisen von Dioden, Z-Dioden, bipolaren- und Feldeffekttransistoren, analogen Grundschaltungen, von einstufigen Verstärkern bis hin zu Operationsverstärkern zu analysieren und zu bewerten. Durch die vermittelten Kenntnisse über Bauelementparameter und Funktion der Bauelemente werden die Studierenden in die Lage versetzt, verschiedene Verstärkerschaltungen analysieren und berechnen zu können. Durch den Erwerb von Kenntnissen um Groß- und Kleinsignalmodelle der Bauelemente können die Studierenden ihr theoretisches Wissen für den Aufbau von Schaltungen praktisch anwenden. Darüber hinaus wird den Studierenden erweiterte Kenntnisse über den schaltungstechnischen Aufbau und Anwendungen aller digitalen Grundelemente (Inverter, NAND, NOR, Tri-state Inverter und Transmission Gates) sowie von Schaltungen für den Einsatz in sequentielle Logik, wie Flipflops, Zähler, Schieberegister, vermittelt. Diese Kenntnisse erlauben den Studierenden aktuelle Trends in der Halbleiterentwicklung kritisch zu begleiten und zu analysieren. Abgerundet werden diese Kenntnisse durch den Aufbau und die Funktionsweise von Digital/Analog- und Analog/Digital-Wandlern. Auf diese Weise werden die Studierenden befähigt, moderne elektrische Systeme von der Signalerfassung (Sensor, Detektor) über die Signalkonditionierung (Verstärker, Filter, etc.) zu analysieren und ggfs. eigenständig zu optimieren.

Die Studierenden erlernen im Workshop die Koordination eines Projekts in kleinen Teams und die Darstellung der Ergebnisse in Form einer technischen Dokumentation. Weiterhin sind sie in der Lage, einfach elektronische Transistorschaltungen zu realisieren und charakterisieren.

Inhalt

Grundlagenvorlesung über passive und aktive elektronische Bauelemente und Schaltungen für analoge und digitale Anwendungen.

Schwerpunkte sind der Aufbau und die schaltungstechnische Realisierung analoger Verstärkerschaltungen mit Bipolar- und Feldeffekttransistoren, der schaltungstechnische Aufbau von einfachen Logikelementen für komplexe logische Schaltkreise. Zudem werden die Grundlagen der Analog/Digital und Digital/Analog-Wandlung vermittelt. Im Einzelnen werden die nachfolgenden Themen behandelt:

- Einleitung (Bezeichnungen, Begriffe)
- Passive Bauelemente (R, C, L)
- Halbleiterbauelemente (Dioden, Transistoren)
- Dioden
- Bipolare Transistoren
- Feldeffekttransistoren (JFET, MOSFET, CMOS), Eigenschaften und Anwendungen
- Verstärkerschaltungen mit Transistoren
- · Eigenschaften von Operationsverstärkern
- · Anwendungsbeispiele von Operationsverstärkern
- Kippschaltungen
- Kippschaltungen
- Schaltkreisfamilien (bipolar, MOS)
- Sequentielle Logik (Flipflops, Zähler, Schieberegister)
- · Codewandler und digitale Auswahlschaltungen

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt. Parallel dazu werden weitere Übungsaufgaben und Vorlesungsinhalte in Form dedizierter Tutorien in Kleinstgruppen zur Übung und Vertiefung der Lehrinhalte gestellt und gelöst.

Der Workshop greift zahlreiche dieser Schwerpunkte auf. Es werden unterschiedliche Sensoren analysiert. Zusätzlich zu der allgemeinen Funktionsweise und Theorie der Temperatur-, Licht- oder auch Drucksensoren wird geeignete Elektronik untersucht, um die physikalischen Größen in eine proportionale, auswertbare Größe wie Spannung oder Strom zu wandeln. Es werden einfache Sensor-Prinzipien behandelt, um die notwendigen Vorkenntnisse zur Durchführung des Versuches an das Semester anzupassen. Für die Temperaturmessung werden temperaturabhängige Widerstände eingesetzt oder pn-Übergänge untersucht. Mit LEDs, Photodioden und Phototransistoren werden Anwendungen für die Helligkeitsmessung realisiert. Die eigenständige Versuchsdurchführung verläuft folgendermaßen: Verständnis Sensor-Prinzip, Entwurf von Auswerteschaltungen für das Sensorsignal, Simulation der Schaltungen in LTSpice, Aufbau und Vergleich von Schaltungen sowie Auswertung mit dem µController-Board.

Zusammensetzung der Modulnote

Die Modulnote setzt sich aus der Note der schriftlichen Prüfung und einem eventuell erhaltenen Notenbonus aus Tutoriumsaufgaben zusammen.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht.

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (2 h) der wöchentlichen Vorlesung, der 14 tägigen Übung und den sechs Tutoriumsterminen sowie die Vorbereitung (82 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von ca. 180 h für die Lehrveranstaltung Elektronische Schaltungen, d.h. 6 LP.

Der Arbeitsaufwand des Workshops setzt sich wie folgt zusammen:

- 1. Präsenzzeit in der Vorbereitungsveranstaltung inkl. Nachbereitung: 2 h
- 2. Bearbeitung der Aufgabenstellung: 23 h
- 3. Anfertigung der schriftlichen Ausarbeitung (Protokoll): 5 h

Der Zeitaufwand pro Workshop beträgt etwa 30 Stunden. Dies entspricht 1 LP.

Empfehlungen

Der erfolgreiche Abschluss von LV "Lineare elektrische Netze" wird dringend empfohlen, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.

4.41 Modul: Elektrotechnisches Grundlagenpraktikum [M-ETIT-102113]

Verantwortung: Dr.-Ing. Armin Teltschik

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
6Notenskala
best./nicht best.Turnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
4

Pflichtbestandteile			
T-ETIT-101943	Elektrotechnisches Grundlagenpraktikum	6 LP	Teltschik

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines mündlichen Abschlusskolloquiums von 20min Dauer sowie während des Praktikums durch Überprüfung der absolvierten Versuchs-Aufgaben.

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Die Veranstaltung ist nicht benotet.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden erlernen den Umgang mit typischen Laborgeräten der Elektrotechnik (z.B. Multimeter, Funktionsgenerator, Oszilloskop). An praktischen Versuchen erfolgt die Anwendung Messgeräte. Die Studierenden vertiefen die bereits erlernten Grundlagen Elektronischer Schaltungstechnik, und Digitaltechnik in der Praxis. Sie erlernen den Umgang mit den zugehörigen Mess-, Analyse und Simulationswerkzeugen und werden mit der Interpretation von Datenblättern vertraut gemacht.

Inhalt

Es werden Versuche aus folgenden Bereichen durchgeführt:

- Oszilloskopmesstechnik,
- Operationsverstärker: Grundschaltungen, Rechenschaltungen, Fourier-/ analyse & synthese
- Messtechnik mit LabVIEW
- Schaltungssimulation mit SPICE
- Kleinsignalverhalten bipolarer Transistoren
- Wechselspannung, Kleintransformatoren, Gleichrichter, Linearregler
- Digitaltechnik, Automatenentwurf, Detektion von Laufzeitfehlern
- Gleichstromsteller

Zusammensetzung der Modulnote

Die Veranstaltung ist nicht benotet.

Anmerkungen

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit im Praktikum: 36 h
- 2. Vor-/Nachbereitung derselbigen: 63 / 36 h
- 3. Klausurvorbereitung und Präsenz in selber: 20 h

Empfehlungen

Die LV "Digitaltechnik" (23615) und "Elektronische Schaltungen" (23655) müssen zuvor gehört worden sein bzw. anderweitig die Kenntnisse zum Inhalt der o.g. LV müssen erworben worden sein.

4.42 Modul: Elementare Geometrie [M-MATH-103152]

Verantwortung: Prof. Dr. Enrico Leuzinger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
9	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1	

Pflichtbestandteile					
T-MATH-103464	Elementare Geometrie - Prüfung		Grensing, Hartnick, Herrlich, Kühnlein, Leuzinger, Link, Sauer, Tuschmann		

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min.).

Voraussetzungen

Keine

Qualifikationsziele

Absolventinnen und Absolventen

- verstehen grundlegende Strukturen und Techniken der Geometrie und der Topologie und können diese nennen, diskutieren und anwenden
- verstehen elementargeometrische Konzepte von einem höheren Standpunkt aus
- sind vorbereitet für weiterführende Seminare und Vorlesungen im Bereich Geometrie/Topologie

Inhalt

- Axiomatik der ebenen Geometrie: euklidische und nichteuklidische Geometrie
- Topologische Grundbegriffe mit Beispielen: topologische und metrische Räume, Stetigkeit, Zusammenhang, Kompaktheit, Quotienten
- Beispielklassen von topologischen Räumen und eine topologische Invariante: Simplizialkomplexe, Polyeder, Platonische Körper, Mannigfaltigkeiten, Euler-Charakteristik
- Geometrie von Flächen: parametrisierte Kurven und Flächen, 1./2. Fundamentalform, Gauß-Krümmung, Satz von Gauß-Bonnet

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- · Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Folgende Module sollten bereits belegt worden sein: Lineare Algebra 1 und 2 Analysis 1 und 2

4.43 Modul: Energiewirtschaft [M-WIWI-101464]

Verantwortung: Prof. Dr. Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	1 Semester	Deutsch/Englisch	3	4

Pflichtbestandteile						
T-WIWI-102746	Einführung in die Energiewirtschaft	5,5 LP	Fichtner			
Ergänzungsangebot (Wahl: 3,5 LP)						
T-WIWI-102607	Energiepolitik	3,5 LP	Wietschel			
T-WIWI-100806	Renewable Energy-Resources, Technologies and Economics	3,5 LP	Jochem			

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4(2), 1 SPO) über die Vorlesungen Einführung in die Energiewirtschaft und eine der zwei Ergänzungsveranstaltungen Renewable Energy - Resources, Technology and Economics oder Energiepolitik.

Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Die LV "Einführung in die Energiewirtschaft" [2581010] ist Pflicht im Modul.

Qualifikationsziele

Der/die Studierende

- ist in der Lage, energiewirtschaftliche Zusammenhänge zu benennen und ökologische Auswirkungen der Energieversorgung zu beurteilen,
- · kann die verschiedenen Energieträger und deren Eigenheiten bewerten,
- · kennt die energiepolitischen Rahmenvorgaben,
- besitzt Kenntnisse hinsichtlich der neuen marktwirtschaftlichen Gegebenheiten der Energiewirtschaft und insbesondere der Kosten und Potenziale Erneuerbarer Energien.

Inhalt

Einführung in die Energiewirtschaft: Charakterisierung (Reserven, Anbieter, Kosten, Technologien) verschiedener Energieträger (Kohle, Gas, Erdöl, Elektrizität, Wärme etc.)

Renewable Energy - Resources, Technology and Economics: Charakterisierung der verschiedenen erneuerbaren Energieträger (Wind, Sonne, Wasser, Erdwärme etc.)

Energiepolitik: Energiestrommanagement, energiepolitische Ziele und Instrumente (Emissionshandel etc.)

Anmerkungen

Auf Antrag beim Institut können auch zusätzliche Studienleistungen (z.B. von anderen Universitäten) im Modul angerechnet werden.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3,5 Credits ca. 105 Stunden, für Lehrveranstaltungen mit 5,5 Credits ca. 165 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen

Die Lehrveranstaltungen sind so konzipiert, dass sie unabhängig voneinander gehört werden können. Daher kann sowohl im Winter- als auch im Sommersemester mit dem Modul begonnen werden.

4.44 Modul: Erzeugung elektrischer Energie [M-ETIT-100407]

Verantwortung: Dr.-Ing. Bernd Hoferer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101924	Erzeugung elektrischer Energie	3 LP	Hoferer

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen

Wer das Modul Erzeugung Elektrischer Energie (EEE) im Bachelor (SPO 2015 und 2018) gemacht hat, soll im Master nicht das Modul Electric Power Generation and Power Grid wählen.

Qualifikationsziele

Die Studierenden sind in der Lage, energietechnische Problemstellungen zu erkennen und Lösungsansätze zu erarbeiten. Sie haben ein Verständnis für physikalisch-theoretische Zusammenhänge der Energietechnik erlangt. Sie sind ebenfalls in der Lage die erarbeiteten Lösungen fachlich in einem wissenschaftlichen Format zu beschreiben, zu analysieren und zu erklären.

Inhalt

Grundlagenvorlesung Erzeugung elektrischer Energie. Von der Umwandlung der Primärenergieressourcen der Erde in kohlebefeuerten Kraftwerken und in Kernkraftwerken bis zur Nutzung erneuerbarer Energien behandelt die Vorlesung das gesamte Spektrum der Erzeugung. Die Vorlesung gibt einen Überblick über die physikalischen Grundlagen, die technischwirtschaftlichen Aspekte und das Entwicklungspotential der Erzeugung elektrischer Energie sowohl aus konventionellen als auch aus regenerativen Quellen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

Präsenzstudienzeit: 30 h Selbststudienzeit: 60 h Insgesamt 90 h = 3 LP

4.45 Modul: Essentials of Finance [M-WIWI-101435]

Verantwortung: Prof. Dr. Martin Ruckes

Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile					
T-WIWI-102605	Financial Management	4,5 LP	Ruckes		
T-WIWI-102604	Investments	4,5 LP	Uhrig-Homburg		

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4(2), 1 SPO) über die einzelnen Lehrveranstaltungen des Moduls. Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWL [IN3WWBWL] prüfbar.

Qualifikationsziele

Der/die Studierende

- · besitzt grundlegende Kenntnisse in moderner Finanzwirtschaft,
- besitzt grundlegende Kenntnisse zur Fundierung von Investitionsentscheidungen auf Aktien-, Renten- und Derivatemärkten.
- wendet konkrete Modelle zur Beurteilung von Investitionsentscheidungen auf Finanzmärkten sowie für Investitionsund Finanzierungsentscheidungen von Unternehmen an.

Inhalt

Das Modul Essentials of Finance beschäftigt sich mit den grundlegenden Fragestellungen der modernen Finanzwirtschaft. In den Lehrveranstaltungen werden die Grundfragen der Bewertung von Aktien diskutiert. Ein weiterer Schwerpunkt ist die Vermittlung der modernen Portfoliotheorie und analytischer Methoden der Investitionsrechnung und Unternehmensfinanzierung.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.46 Modul: Fertigungsmesstechnik [M-ETIT-103043]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Sommersemester1 SemesterDeutsch31

 Pflichtbestandteile

 T-ETIT-106057
 Fertigungsmesstechnik
 3 LP Heizmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten. Bei weniger als 20 Prüflingen kann alternativ eine mündliche Prüfung im Umfang von ca. 20 Minuten. Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

- Studierende haben fundiertes Wissen über Grundlagen, Methoden und Verfahren für das Messen und Prüfen in der industriellen Fertigung.
- Studierende können unterschiedliche Messprinzipien, -verfahren und -geräte hinsichtlich ihrer Voraussetzungen, Eigenschaften, Anwendungsbereiche und Ergebnisse beurteilen.

Studierende sind in der Lage, fertigungsmesstechnische Aufgaben zu analysieren, die daraus folgenden Anforderungen an eine geeignete messtechnische Umsetzung abzuleiten, passende messtechnische Umsetzungen zu finden und die daraus folgenden Eigenschaften des Messergebnisses zu aufzuzeigen..

Inhalt

Die Fertigungsmesstechnik spielt eine wesentliche Rolle bei der Sicherstellung einer effizienten industriellen Fertigung. Sie stellt gewissenmaßen die Sinnesorgane für die Qualitätssicherung und die Automatisierungstechnik dar und umfasst alle mit dem Messen und Prüfen verbundenen Tätigkeiten.

Aufbauend auf den methodischen Grundlagen, die Thema der Pflichtvorlesung "Messtechnik" sind, vermittelt die Vorlesung Verfahren und Umsetzungen für das Messen und Prüfen in der industriellen Praxis. Dabei liegt der Schwerpunkt auf geometrischen Eigenschaften; die meisten vorgestellten Konzepte lassen sich darüber hinaus auf andere Eigenschaften übertragen. Sensorsysteme für die Messung geometrischer Eigenschaften werden vorgestellt und mit ihren charakteristischen Eigenschaften diskutiert.

Die Inhalte umfassen im Einzelnen:

- · Grundlagen der FMT
- o Grundbegriffe, Definitionen
- o Maßverkörperungen
- o Messunsicherheiten
- · Messtechnik im Betrieb und im Messraum
- o Koordinatenmesstechnik
- o Form- und Lagemesstechnik
- o Oberflächen- und Konturmesstechnik
- o Komparatoren
- o Mikro- und Nanomesstechnik
- o Messräume
- · Fertigungsorientierte Messtechnik
- o Messmittel und Lehren
- o Messvorrichtungen
- o Messen in der Maschine
- o Sichtprüfung
- o Statistische Prozessregelung (SPC)
- · Optische/berührungslose Messverfahren
- o Integrierbare optische Sensoren
- o Eigenständige optische Messsysteme
- o Optische 2,5D-Koordinatenmesstechnik
- o Optische 3D-Koordinatenmesstechnik
- o Computertomographie
- o Systemintegration und Standardisierung
- · Prüfmittelmanagement
- o Bedeutung und Zusammenhänge
- o Beherrschte Prüfprozesse

Prüfplanung

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung

Arbeitsaufwand

Gesamt: ca. 90h, davon

Präsenzzeit in Vorlesungen:
 Vor-/Nachbereitung der Vorlesungen:
 Klausurvorbereitung und Präsenz in selbiger:

Empfehlungen

Kenntnisse der Stochastik und von Grundlagen der Messtechnik sind hilfreich.

4.47 Modul: Financial Data Science [M-WIWI-105610]

Verantwortung: Prof. Dr. Maxim Ulrich

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion9ZehntelnotenUnregelmäßig1 SemesterEnglisch31

Pflichtbestandteile			
T-WIWI-111238	Financial Data Science	9 LP	Ulrich

Erfolgskontrolle(n)

Die Modulprüfung ist eine Prüfungsleistung anderer Art und besteht aus zwei Teilen in denen maximal 100 Punkte erreicht werden können:

Im ersten Teil der Prüfungsleistung anderer Art können maximal 30 Punkte erreicht werden, welche sich gleichgewichtet auf acht semesterbegleitend einzureichende Arbeitsblätter verteilen. Die Aufgabenblätter der ersten drei Wochen sind von Umfang und Schwierigkeitsgrad her repräsentativ für alle folgenden Aufgabenblätter. Mit Beginn der 4. Veranstaltungswoche gilt die Abgabe der Aufgabenblätter als Bestandteil der Prüfungsleistung anderer Art.

Im zweiten Teil der Prüfungsleistung anderer Art können maximal 70 Punkte erreicht werden. Dieser Teil der Prüfungsleistung anderer Art besteht aus einem schriftlichen 'Final Exam', das in der letzten Kalenderwoche der Vorlesungszeit stattfindet und 2 Stunden dauert.

Detaillierte Informationen zum Ablauf der Lehrveranstaltung und der Modulprüfung werden zum ersten Veranstaltungstermin bekannt gegeben.

Eine Wiederholungsmöglichkeit für Nichtbesteher der Modulprüfung findet am Ende der vierten September-Kalenderwoche des gleichen Jahres statt. Die Anmeldung zur Prüfungsleistung anderer Art muss spätestens 1 Tag vor Beginn der Prüfung erfolgen. Für die Abmeldung zur Prüfungsleistung anderer Art gilt folgendes: Eine Abmeldung kann online im Studierendenportal bis 1Tage vor Beginn der Prüfung erfolgen.

Voraussetzungen

Keine.

Qualifikationsziele

Das Ziel des Moduls ist die Vermittlung von fundamentalem Finanzwissen für weiterführende Anwendungen im Financial Data Science und Financial Machine Learning. Der Kurs unterrichtet Konzepte und bietet wöchentliche Python Aufgaben an, um folgenden Themen wissenschaftlich zu bearbeiten: Robo Advisory, Linear Factor Models, Statistical Arbitrage, Monte-Carlo Simulation und Financial Machine Learning. Der Kurs ist sowohl für Finanzmarkt interessierte Studenten als auch für Data Science interessierte Studenten von Interesse. Wissenschaftliches Finanzmarktwissen hilft bei dem Bau von Finanzinnovationen, wie z.B. einem Robo Advisor. Praktisches Wissen im Umgang mit Python hilft bei der Programmierung von Maschinen, welche für das Anbieten von automatisierten Finanzmarktlösungen essentiell sind.

Inhalt

Das Modul behandelt folgende Themen:

- · Robo Advisory: Präferenzen von Investoren, Erwartete Nutzen Theorie, Mean-Variance Optimal Investing
- Lineare Faktormodelle: Vorhersage von Renditen, Zerlegung von Risiken, Capital Asset Pricing Model, Arbitrage-Pricing-Theor
- · Statistische Arbitrage: ARMA-GARCH Modellierung von Renditezeitreihen
- · Monte Carlo Simulation: Simulation von ARMA-GARCH Prozessen
- Machine Learning: Least-Squares Methods, Maximum Likelihood, Vorhersage von Renditen, Vorhersage von Risiken
- Neue Entwicklungen im Asset Management: Factor Investing, Smart Beta, I-CAPM, Fama-MacBeth Schätzung von Risikoprämien, Factor Anomalies

Anmerkungen

Bitte beachten Sie, dass das Modul nur jedes zweite Sommersemester (SS2021, SS2023) angeboten wird.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Gesamtstundenzahl ergibt sich aus dem Aufwand für das Studium von Onlinevideos, dem Bearbeiten von Quizfragen, dem Studium von Ipython- Notebooks, der Teilnahme an interaktiven "Python Sessions" und der Lektüre empfohlener Literatur.

4.48 Modul: Finanzierung und Rechnungswesen [M-WIWI-105769]

Verantwortung: Prof. Dr. Martin Ruckes

Dr. Jan-Oliver Strych Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Pflicht Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile						
T-WIWI-111595	Finanzierung und Rechnungswesen	6 LP	Luedecke, Ruckes, Strych, Uhrig- Homburg, Wouters			

Erfolgskontrolle(n)

Die Modulprüfung erfolgt schriftlich über die beiden Lehrveranstaltungen "Finanzierung und Rechnungswesen" sowie "Jahresabschluss und Bewertung". Die Prüfung wird jeweils zu Beginn der vorlesungsfreien Zeit angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

Oualifikationsziele

Der/die Studierende

- besitzt grundlegende Kenntnisse in finanzwirtschaftlichen Beurteilung wichtiger Unternehmensentscheidungen und des Funktionierens von Finanzmärkten,
- hat ein Verständnis für Probleme, Zusammenhänge und Lösungen des internen Rechnungswesens von Unternehmen,
- · kennt die Strukturen und Funktionen des externen Rechnungswesens,
- besitzt einen Überblick über wichtige Komponenten des Jahresabschlusses von Unternehmen und ist in der Lage diesen ökonomisch zu beurteilen.

Mit dem in den drei Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Inhalt

Es werden die Grundlagen für die finanzwirtschaftliche Analyse wichtiger unternehmerischer Entscheidungen vermittelt. Zudem werden die Grundlagen des internen und externen Rechnungswesens gelegt und es wird in die Rechnungslegung und den Jahresabschluss eingeführt.

Arbeitsaufwand

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden

4.49 Modul: Finanzwissenschaft [M-WIWI-101403]

Verantwortung: Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** Ergänzungsfach / Volkswirtschaftslehre

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	1 Semester	Deutsch	3	5

Wahlpflichtangebot (Wahl: 9 LP)						
T-WIWI-102877	Einführung in die Finanzwissenschaft	4,5 LP	Wigger			
T-WIWI-108711	Grundlagen der Unternehmensbesteuerung	4,5 LP	Gutekunst, Wigger			
T-WIWI-102739	Öffentliche Einnahmen	4,5 LP	Wigger			
T-WIWI-109590	Öffentliches Finanzwesen	4,5 LP	Wigger			

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (§4(2),1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an LP erfüllt wird. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben. Die Prüfungen werden zu Beginn der vorlesungsfreien Zeit über den Stoff der jeweils zuletzt gehörten Veranstaltung angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

Die Note der Teilprüfung entspricht jeweils der Note der bestandenen Klausur.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der Studierende

- · besitzt weiterführende Kenntnisse in der Theorie und Politik der Besteuerung und der Staatsverschuldung.
- versteht Umfang, Struktur und Formen der staatlichen Kreditaufnahme.
- kennt die Ausgestaltung des deutschen sowie internationalen Steuerrechts
- ist in der Lage fiskalpolitische Fragestellungen zu interpretieren und zu motivieren.

Inhalt

Die Finanzwissenschaft ist ein Teilgebiet der Volkswirtschaftslehre. Ihr Gegenstand ist die Theorie und Politik der öffentlichen oder Staatswirtschaft und deren Wechselbeziehungen zum privaten Sektor. Die Finanzwissenschaft betrachtet das staatliche Handeln aus normativer und aus positiver Perspektive. Erstere untersucht effizienz- und gerechtigkeitsorientierte Motive für die staatliche Aktivität und entwickelt Handlungsanleitungen für die Finanzpolitik. Letztere entwickelt Erklärungsansätze für das tatsächliche Handeln der finanzpolitischen Akteure. Zu den Teilgebieten der Finanzwissenschaft zählen öffentliche Einnahmen, insbesondere Steuern und öffentliche Kredite, und öffentliche Ausgaben für staatlich bereitgestellte Güter, Wohlfahrts- und Umverteilungsprogramme.

Anmerkungen

Die Teilleistung T-WIWI-102790 "Spezielle Steuerlehre" wird ab Wintersemester 2018/2019 nicht mehr im Modul angeboten.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen

Es wird empfohlen, die Lehrveranstaltung Öffentliche Einnahmen [2560120] vor der Lehrveranstaltung Spezielle Steuerlehre [2560129] zu besuchen.

4.50 Modul: Flächen im CAD [M-INFO-101254]

Verantwortung: Prof. Dr. Hartmut Prautzsch **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1	

Pflichtbestandteile				
T-INFO-102073	Flächen im CAD	5 LP	Prautzsch	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Die Hörer und Hörerinnen der Vorlesung beherschen wichtige Grundlagen und Techniken. Sie sind in der Lage, aufbauenden, weiterführenden und speziellen Vorlesungen wie den Vorlesungen "Kurven und Flächen im CAD III", "Rationale Splines" oder "Unterteilungsalgorithmen" zu folgen, sowie generell in der Lage, sich in dem Gebiet weiter zu vertiefen.

Inhalt

Bézier- und B-Spline-Techniken für Tensorprodukt- und Dreiecksflächen, de Casteljau-Algorithmus, konvexe Flächen, Unterteilung, differenzierbare Übergänge, Konstruktionen von Powell-Sabin, Clough-Tocher und Piper, Konstruktion glatter Freiformflächen, Punktumschließungsproblem, Boxsplines.

Arbeitsaufwand

150h davon etwa:

30h für den Vorlesungsbesuch

30h für die Nachbearbeitung

15h für den Besuch der Übungen

45h für das Lösen der Aufgaben

30h für die Prüfungsvorbereitung

4.51 Modul: Formale Systeme [M-INFO-100799]

Verantwortung: Prof. Dr. Bernhard Beckert **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)

Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile				
T-INFO-101336	Formale Systeme	6 LP	Beckert	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Nach Abschluss des Moduls verfügen Studierende über folgende Kompetenzen. Sie ...

- kennen und verstehen die vorgestellten logischen Grundkonzepte und Begriffe, insbesondere den Modellbegriff und die Unterscheidung von Syntax und Semantik,
- können natürlichsprachlich gegebene Sachverhalte in verschiedenen Logiken formalisieren sowie logische Formeln verstehen und ihre Bedeutung in natürliche Sprache übersetzen,
- können die vorgestellten Kalküle und Analyseverfahren auf gegebene Fragestellungen bzw. Probleme sowohl manuell als auch mittels interaktiver und automatischer Werkzeugunterstützung anwenden,
- · kennen die grundlegenden Konzepte und Methoden der formalen Modellierung und Verifikation,
- können Programmeigenschaften in formalen Spezifikationssprachen formulieren, und kleine Beispiele mit Unterstützung von Softwarewerkzeugen verifizieren.
- können beurteilen, welcher logische Formalismus und welcher Kalkül sich zur Formalisierung und zum Beweis eines Sachverhalts eignet

Inhalt

Logikbasierte Methoden spielen in der Informatik in zwei Bereichen eine wesentliche Rolle: (1) zur Entwicklung, Beschreibung und Analyse von IT-Systemen und (2) als Komponente von IT-Systemen, die diesen die Fähigkeit verleiht, die umgebende Welt zu analysieren und Wissen darüber abzuleiten.

Dieses Modul

- · führt in die Grundlagen formaler Logik ein und
- behandelt die Anwendung logikbasierter Methoden
 - · zur Modellierung und Formalisierung
 - zur Ableitung (Deduktion),
 - zum Beweisen und Analysieren

von Systemen und Strukturen bzw. deren Eigenschaften.

Mehrere verschiedene Logiken werden vorgestellt, ihre Syntax und Semantik besprochen sowie dazugehörige Kalküle und andere Analyseverfahren eingeführt. Zu den behandelten Logiken zählen insbesondere die klassische Aussagen- und Prädikatenlogik sowie Temporallogiken wie LTL oder CTL.

Die Frage der praktischen Anwendbarkeit der vorgestellten Logiken und Kalküle auf Probleme der Informatik spielt in dieser Vorlesung eine wichtige Rolle. Der Praxisbezug wird insbesondere auch durch praktische Übungen (Praxisaufgaben) hergestellt, im Rahmen derer Studierende die Anwendung aktueller Werkzeuge (z.B. des interaktiven Beweisers KeY) auf praxisrelevante Problemstellungen (z.B. den Nachweis von Programmeigenschaften) erproben können.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt 180h. Der Aufwand setzt sich zusammen aus: 34,5h = 23 * 1,5hVorlesung (Präsenz)

10,5h = 7 * 1,5h Übungen (Präsenz) 60h Vor- und Nachbereitung, insbes. Bearbeitung der Übungsblätter

40h Bearbeitung der Praxisaufgaben

35h Klausurvorbereitung

Empfehlungen

Siehe Teilleistungen.

4.52 Modul: Fortgeschrittenes Algorithmisches Programmieren [M-INFO-105723]

Verantwortung: TT-Prof. Dr. Thomas Bläsius **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile					
T-INFO-111399	Fortgeschrittenes Algorithmisches Programmieren	6 LP	Bläsius		

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teillesitung.

Qualifikationsziele

Nach erfolgter Teilnahme an der Lehrveranstaltung können die Studierenden

- problemorientiert effiziente Implementierungen mit bekannten algorithmischen Techniken in midestens einer Programmiersprache umsetzen,
- Laufzeit (in Sekunden) von Algorithmen und Implementierungen basierend auf der Eingabegröße abschätzen,
- Anwendungsfälle für existierende Algorithmen erkennen,
- algorithmische Methoden anpassen und kombinieren um neue Algorithmen zu entwickeln.

Inhalt

Im Verlauf des Semesters werden Algorithmen und Datenstrukturen vorgestellt, welche aufgrund ihrer Effizienz und vergleichsweise kurzen Implementierung Anwendung in Programmierwettbewerben finden. Zu jedem Themengebiet (Strings, Zahlentheorie, Graphen, Treaps, etc.) müssen praktischen Übungsaufgaben implementiert werden. Höhepunkte der Veranstaltung ist ein Contest, in dem sich die Studierenden unter Wettbewerbsbedingungen miteinander messen.

Aus den Teilnehmern der Veranstaltung werden außerdem die Teams ausgewählt, die die Universität Karlsruhe beim ACM ICPC Regionalwettbewerb der Region Nordwesteuropa (NWERC) vertreten werden.

Arbeitsaufwand

6 LP entspricht ca. 180 Arbeitsstunden

30 Std. Besuch der Vorlesung 30 Std. Vor- und Nachbereitung 100 Std. Bearbeitung der Übungsblätter 20 Std. Prüfungsvorbereitung

Empfehlungen

Grundkenntnisse über Algorithmen und Datenstrukturen (z.B. aus den Vorlesungen Algorithmen 1 + 2) und Programmierkenntnisse in C++ werden erwartet.

Erfolgreiche Teilnahme am Basispraktikum zum ICPC Programmierwettbewerb wird stark empfohlen.

4.53 Modul: Funktionalanalysis [M-MATH-101320]

Verantwortung: Prof. Dr. Roland Schnaubelt **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
9	Zehntelnoten	Jedes Wintersemester	1 Semester	3	1

Pflichtbestandteile						
T-MATH-102255	Funktionalanalysis	9 LP	Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt			

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Voraussetzungen

Das Modul Proseminar Mathematik [ProMath] muss geprüft werden.

Qualifikationsziele

Die Studierenden können im Rahmen der metrischen Räume topologische Grundbegriffe wie Kompaktheit erklären und in Beispielen anwenden. Sie sind in der Lage Hilbertraumstrukturen zu beschreiben und in Anwendungen zu verwenden. Sie können das Prinzip der gleichmäßigen Beschränktheit, den Banachschen Homomorphisatz und den Satz von Hahn-Banach wiedergeben und aus ihnen Folgerungen ableiten. Die Theorie dualer Banachräume, (insbesondere schwache Konvergenz, Reflexivität und Banach-Alaoglu) können sie beschreiben und in Beispielen diskutieren. Sie sind in der Lage einfache funktionalanalytische Beweise zu führen. Sie können den Spektralsatz für kompakte, selbstadjungierte Operatoren erläutern.

Inhalt

- · Metrische Räume (topologische Grundbegriffe, Kompaktheit)
- · Hilberträume, Orthonormalbasen, Sobolevräume
- · Stetige lineare Operatoren auf Banachräumen (Prinzip der gleichmäßigen Beschränktheit, Homomorphiesatz)
- Dualräume mit Darstellungssätzen, Sätze von Hahn-Banach und Banach-Alaoglu, schwache Konvergenz, Reflexivität
- · Spektralsatz für kompakte selbstadjungierte Operatoren.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung

Literatur

D. Werner, Funktionalanalysis

4.54 Modul: Geistiges Eigentum und Datenschutz [M-INFO-101253]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Recht

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile						
T-INFO-109840	Geistiges Eigentum und Datenschutz	6 LP	Dreier, Eichenhofer			

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende

- kennt und versteht die Grundzüge des Rechts des geistigen Eigentums sowie des Datenschutzes,
- definiert und differenziert die Grundbegriffe (Territorialität, Schutzvoraussetzungen, Ausschließlichkeitsrechte, Schrankenbestimmungen, Verletzungshandlungen und Rechtsfolgen), hat deren Bedeutung verinnerlicht und ist in der Lage, einfach gelagerte rechtlich relevante Sacherhalte zutreffend zu bewerten und zu lösen,
- kennt und versteht den Unterschied von Registerrechten und formlosen Schutzsystemen und findet sich in den internationalen, europäischen und nationalen Regelungsebenen des geistigen Eigentums zurecht,
- entwirft Lizenzverträge und löst einen Verletzungsfall in der Subsumtionsmethode gutachterlich,
- · versteht die die Grundprinzipien und systematischen Grundlagen des Bundesdatenschutzgesetzes,
- analysiert und bewertet Konzepte des Selbstdatenschutzes und des Systemdatenschutzes,
- besitzt differenzierte Kenntnisse hinsichtlich des bereichsspezifischen Datenschutzrechts, die er/sie insbesondere am Beispiel der Regelungen des Datenschutzes bei Tele- und Mediendiensten vertieft hat.

Inhalt

Aufbauend auf den in den ersten beiden Bachelorjahren erlernten Rechtskenntnissen dient das Modul Recht im 3. Bachelorjahr zum einen der Vertiefung der zuvor erworbenen Rechtskenntnisse und zum anderen der Spezialisierung in den Rechtsmaterien, denen in der informationswirtschaftlichen / wirtschaftsinformatischen Praxis die größte Bedeutung zukommt...

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.55 Modul: Geometrische Grundlagen der Geometrieverarbeitung [M-INFO-105735]

Verantwortung: Prof. Dr. Hartmut Prautzsch **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch/Englisch	3	2

Pflichtbestandteile					
T-INFO-111453	Geometrische Grundlagen der Geometrieverarbeitung	3 LP	Prautzsch		

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Die Studierenden kennen wichtige Grundlagen der angewandten Geometrie und können sie in ausgewählten Anwendungen und weiterführenden Vorlesungen der Geometrieverarbeitung, Computergrafik, algorithmischen Geometrie, Computervision benutzen.

Inhalt

Grundlagen der angewandten Geometrie nebst ausgewählten Anwendungen des Flächendesigns.

Anmerkungen

Ohne Übung.

Arbeitsaufwand

90h

4.56 Modul: Geometrische Grundlagen der Geometrieverarbeitung [M-INFO-100756]

Verantwortung: Prof. Dr. Hartmut Prautzsch **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Unregelmäßig	1 Semester	Deutsch	3	2

Pflichtbestandteile					
T-INFO-101293	Geometrische Grundlagen der Geometrieverarbeitung	5 LP	Prautzsch		

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Die Hörer und Hörerinnen der Vorlesung beherschen wichtige Konzepte, die zur Analyse und Bearbeitung von Problemen der Geometrieverarbeitung eingesetzt werden und sind in der Lage, aufbauenden, weiterführenden und speziellen Vorlesungen wie Vorlesungen zur Computergraphik oder der Konstruktion von Kurven und Flächen zu folgen.

Inhalt

Geometrische Transformationen, perspektivische Darstellungen, Stereobilder, Rekonstruktion aus Stereobildern, Abstands-, Schnitt- und Volumenberechnungen, mediale Achsen, Delaunay-Triangulierung, Voronoi-Diagramme, Hüllflächen, verallgemeinerte baryzentrische Koordinaten, Verzahnungen.

Arbeitsaufwand

150h davon etwa:

30h für den Vorlesungsbesuch

30h für die Nachbearbeitung

15h für den Besuch der Übungen

45h für das Lösen der Aufgaben

30h für die Prüfungsvorbereitung

4.57 Modul: Graphentheorie [M-MATH-101336]

Verantwortung: Prof. Dr. Maria Aksenovich **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Unregelmäßig	1 Semester	Englisch	3	1

Pflichtbestandteile			
T-MATH-102273	Graphentheorie	9 LP	Aksenovich

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Um einen Bonus zu bekommen, muss man jeweils 50% der Punkte für die Lösungen der Übungsblätter 1-6 sowie der Übungsblätter 7-12 erwerben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

Voraussetzungen

Das Modul Proseminar Mathematik [ProMath] muss geprüft werden.

Qualifikationsziele

Die Studierenden können grundlegende Begriffe und Techniken der Graphentheorie nennen, erörtern und anwenden. Sie können geeignete diskrete Probleme als Graphen modellieren und Resultate wie Menger's Satz, Kuratowski's Satz oder Turán's Satz, sowie die in den Beweisen entwickelten Ideen, auf Graphenprobleme anwenden. Insbesondere können die Studierenden Graphen hinsichtlich ihrer Kennzahlen wie Zusammenhang, Planarität, Färbbarkeit und Kantenzahl untersuchen. Sie sind in der Lage, Methoden aus dem Bereich der Graphentheorie zu verstehen und kritisch zu beurteilen. Desweiteren können die Studierenden in englischer Fachsprache kommunizieren.

Inhalt

Der Kurs über Graphentheorie spannt den Bogen von den grundlegenden Grapheneigenschaften, die auf Euler zurückgehen, bis hin zu modernen Resultaten und Techniken in der extremalen Graphentheorie. Insbesondere werden die folgenden Themen behandelt: Struktur von Bäumen, Pfaden, Zykeln, Wegen in

Graphen, unvermeidliche Teilgraphen in dichten Graphen, planare Graphen, Graphenfärbung, Ramsey-Theorie, Regularität in Graphen.

Zusammensetzung der Modulnote

Die Modulnote ist Note der Prüfung.

Anmerkungen

- · Turnus: jedes zweite Jahr im Wintersemester
- · Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung

4.58 Modul: Grundbegriffe der Informatik [M-INFO-101170]

Verantwortung: Prof. Dr. Carsten Sinz

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Theoretische Informatik

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

T-INFO-102031 - Praxis der Software-Entwicklung

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	1	1

Pflichtbestandteile					
T-INFO-101965	Grundbegriffe der Informatik Übungsschein	0 LP	Sinz		
T-INFO-101964	Grundbegriffe der Informatik	6 LP	Sinz		

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

- Die Studierenden kennen grundlegende Definitionsmethoden und sind in der Lage, entsprechende Definitionen zu lesen und zu verstehen.
- · Sie kennen den Unterschied zwischen Syntax und Semantik.
- Die Studierenden kennen die grundlegenden Begriffe aus diskreter Mathematik und Informatik und sind in der Lage sie richtig zu benutzen, sowohl bei der Beschreibung von Problemen als auch bei Beweisen

Inhalt

- · Algorithmen informell, Grundlagen des Nachweises ihrer Korrektheit
- · Berechnungskomplexität, "schwere" Probleme
- · O-Notation, Mastertheorem
- Alphabete, Wörter, formale Sprachen endliche Akzeptoren, kontextfreie Grammatiken
- induktive/rekursive Definitionen, vollständige und strukturelle Induktion Hüllenbildung
- · Relationen und Funktionen
- Graphen
- · Syntax für Aussagenlogik und Prädikatenlogik, Grundlagen ihrer Semantik

Anmerkungen

Siehe Teilleistung.

Arbeitsaufwand

Vorlesung: 15 x 1.5 h = 22.50 h Uebung: 15 x 0.75 h = 11.25 h Tutorium: 15 x 1.5 h = 22.50 h Nachbereitung: 15 x 2 h = 30.00 h

Bearbeitung von Aufgaben: 14 x 3 h = 42.00 h Klausurvorbereitung: 1 x 49.75 h = 49.75 h

Klausur: $2 \times 1 h = 2.00 h$

Summe 180 h

Lehr- und Lernformen

2 SWS Vorlesung, 1 SWS Übung, 2 SWS Tutotium

4.59 Modul: Grundlagen der Hochfrequenztechnik [M-ETIT-102129]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
5

Pflichtbestandteile			
T-ETIT-101955	Grundlagen der Hochfrequenztechnik	6 LP	Zwick

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird sowie durch die Bewertung von Hausübungen. Die Hausübungen können während des Semesters von den Studierenden bearbeitet und zur Korrektur abgegeben werden. Die Abgabe erfolgt in handschriftlicher Form.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden besitzen grundlegendes Wissen und Verständnis im Bereich der Hochfrequenztechnik und können dieses Wissen in andere Bereiche des Studiums übertragen. Dazu gehören insbesondere die Leitungstheorie, die Mikrowellennetzwerkanalyse und Grundlagen komplexerer Mikrowellensysteme (Empfängerrauschen, Nichtlinearität, Kompression, Antennen, Verstärker, Mischer, Oszillatoren, Funksysteme, FMCW-Radar, S-Parameter). Die erlernten Methoden ermöglichen die Lösung einfacher oder grundlegender hochfrequenztechnischer Problemstellungen (z.B. Impedanzanpassung, stehende Wellen).

Inhalt

Grundlagenvorlesung Hochfrequenztechnik: Schwerpunkte der Vorlesung sind die Vermittlung eines grundlegenden Verständnisses der Hochfrequenztechnik sowie der methodischen und mathematischen Grundlagen zum Entwurf von Mikrowellensystemen. Wesentliche Themengebiete sind dabei passive Bauelemente und lineare Schaltungen bei höheren Frequenzen, die Leitungstheorie, die Mikrowellennetzwerkanalyse, sowie ein Überblick über Mikrowellensysteme.

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt. Zusätzlich dazu werden in der Übung die wichtigsten Zusammenhänge aus der Vorlesung noch einmal wiederholt.

Zusätzlich zur Saalübung wird in einem Tutorium die selbstständige Bearbeitung von typischen Aufgabenstellungen der Hochfrequenz-technik geübt. Dazu bearbeiten die Studierenden die Aufgaben in Kleingruppen und erhalten Hilfestellung von einem studentischen Tutor.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

Präsenzstudienzeit Vorlesung/Übung: 60 h

Präsenzstudienzeit Tutorium: 15 h

Selbststudienzeit inkl. Prüfungsvorbereitung: 105 h

Insgesamt 180 h = 6 LP

Empfehlungen Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

4.60 Modul: Grundlagen der Physik [M-PHYS-101339]

Verantwortung: Prof. Dr. Guido Drexlin

Prof. Dr. Ralph Engel

Einrichtung: KIT-Fakultät für Physik **Bestandteil von:** Ergänzungsfach / Physik

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12	Zehntelnoten	Jedes Sommersemester	2 Semester	Deutsch	3	1

Pflichtbestandteile			
T-PHYS-102303	Physik für Informatiker I und II	12 LP	Engel

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Prüfung nach §4, Abs.1, Nr. 1 SPO im Umfang von 180 Minuten.

Voraussetzungen

Dieses Modul muss zusammen mit dem Modul Moderne Physik für Informatiker geprüft werden.

Qualifikationsziele

Nach Besuch der Veranstaltung können Sie die Grundlagen der klassischen und modernen Physik darstellen und mathematisch beschreiben. Sie können Vorgänge in der Natur nach physikalischen Prinzipien klassifizieren und kommentieren. Sie sind in der Lage mathematische Methoden anzuwenden, um einfache Probleme der klassischen und modernen Physik zu berechnen und zu bewerten. Ausserdem können Sie die im Studium der technischen Fächer auftretenden physikalischen Fragestellungen identifizieren und einordnen.

Inhalt

Die Veranstaltung bietet eine Einführung in die Grundlagen der klassischen und modernen Physik im Nebenfach. Sie bietet in Beispielen Einblicke in die physikalische Grundlagenforschung an Teilchenbeschleunigern. Folgende Themenschwerpunkte werden behandelt:

- · Dimensionen, Messgenauigkeit und Fehleranalyse
- Mechanik: Kinematik, Dynamik, Verhalten starrer Körper, Gravitation und Relativitätstheorie
- · Elektrodynamik: Elektrische und magnetische Wechselwirkungen, zeitabhängige elektromagnetische Felder
- · Schwingungen, harmonischer Oszillator
- Wellen: Wellenausbreitung und Wellengleichung, Interferenz und Beugung
- Experimentelle Grundlagen der Quantenphysik: Photonen, Teilchen und Felder
- · Quantenmechanik, Schrödingergleichung

Literatur

- Physik: Lehr und Übungsbuch, Douglas C. Giancoli, Pearson Studium
- · Physik, Paul A. Tipler, Spektrum Akademischer Verlag
- · Moderne Physik, P.A. Tipler, R.A. Llewellyn, Oldenbourg

4.61 Modul: Grundlagen des Marketing [M-WIWI-101424]

Verantwortung: Prof. Dr. Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	1 Semester	Deutsch/Englisch	3	7

Pflichtbestandteile						
T-WIWI-102805	Marketing Mix	4,5 LP	Klarmann			
Ergänzungsangebot (Wahl: mind. 4,5 LP)						
T-WIWI-111367	B2B Vertriebsmanagement	4,5 LP	Klarmann			
T-WIWI-106569	Consumer Behavior	4,5 LP	Scheibehenne			

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWL [IN3WWBWL] prüfbar.

Die Lehrveranstaltung Marketing Mix [2571152] (Kernveranstaltung) muss besucht werden.

Oualifikationsziele

Ziel dieses Moduls ist es, Studierende auf eine Tätigkeit in Marketing oder Vertrieb vorzubereiten. Gerade in technisch orientierten Unternehmen werden hierfür gerne Mitarbeiter eingesetzt, die als Wirtschaftsingenieure oder Wirtschaftsinformatiker auch selbst einen gewissen technischen Hintergrund haben.

Studierende

- kennen die wichtigsten Konzepte, Verfahren und Theorien der vier Instrumente des Marketing Mix (Produktmanagement, Preismanagement, Kommunikationsmanagement und Vertriebsmanagement)
- verfügen über das Wissen, Entscheidungen bezüglich der gegenwärtigen und zukünftigen Produkte (Produktinnovationen) zu treffen (z.B. mittels Conjoint-Analyse)
- wissen, wie Kunden Marken wahrnehmen und wie diese Wahrnehmung durch das Unternehmen beeinflusst werden kann
- verstehen, wie Kunden auf Preise reagieren (z.B. mittels Preis-Absatz-Funktionen)
- können Preise auf Basis konzeptioneller und quantitativer Überlegungen bestimmen
- kennen die Grundlagen der Preisdifferenzierung
- sind mit verschiedenen Instrumenten der Kommunikation vertraut (z.B. TV-Werbung) und können diese treffsicher gestalten
- treffen Kommunikationsentscheidungen systematisch (z.B. mittels Mediaplanung)
- können den Markt segmentieren und das Produkt positionieren
- · wissen, wie die Wichtigkeit und Zufriedenheit von Kunden beurteilt werden können.

Zusätzlich bei Belegung der Veranstaltung "B2B Vertriebsmanagement":

- können die Beziehung zu Kunden und Vertriebspartnern gestalten und kennen Grundlagen der vertrieblichen Organisation sowie essenzielle Vertriebswegeentscheidungen
- · wissen um Besonderheiten des Marketing im B2B-Bereich
- sind fähig, verschiedene B2B-Geschäftstypen und deren Besonderheiten in Vermarktung und Vertrieb zu identifizieren
- sind fähig eine Kundenpriorisierung vorzunehmen und die B2B Customer Lifetime Value zu berechnen
- sind in der Lage wertbasiert Preise zu bestimmen sowie B2B-Verkaufspräsentationen vorzubereiten und durchzuführen.

Zusätzlich bei Belegung der Veranstaltung "Consumer Behavior":

- wissen um die Einflüsse sozialer Faktoren, neuronaler Prozesse und kognitiver Ressourcen auf das Konsumentenverhalten
- kennen die Einflüsse von evolutionären Faktoren, Emotionen, individueller Differenzen und Motivation auf das Konsumentenverhalten.

Inhalt

Kernelement des Moduls ist die Veranstaltung "Marketing Mix" die als Pflichtelement auch immer absolviert werden muss. In dieser Veranstaltung werden Instrumente und Methoden vermittelt, die es Ihnen erlauben, zügig Verantwortung im operativen Marketingmanagement (Produktmanagement, Pricing, Kommunikationsmanagement und Vertrieb) zu übernehmen. Im Kurs "B2B Vertriebsmanagement" vermitteln wir Kenntnisse über Marketing und Vertrieb in Umgebungen, in denen Unternehmen (oft technisch hochkomplexe) Produkte selbst wieder an andere Unternehmen vertreiben und vermarkten ("Business-to-Business"). Im Kurs "Consumer Behavior" vermitteln wir ein Verständnis von situativen, biologischen, kognitiven und evolutionären Faktoren, die das Konsumentenverhalten beeinflussen. Dieses Verständnis wird aus einer interdisziplinären Perspektive heraus vermittelt, wobei relevante Theorien und empirische Forschungsergebnisse aus Psychologie, Kognitionswissenschaften, Biologie und Ökonomie mit einfließen.

Anmerkungen

Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing & Dertrieb (marketing. iism. kit.edu).

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

4.62 Modul: Höhere Mathematik [M-MATH-101305]

M-INFO-101721 - Modul Bachelorarbeit

Verantwortung: Dr. Christoph Schmoeger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematik (Wahlpflichtmodule 1)
Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

LeistungspunkteNotenskalaTurnusDauerLevelVersion15ZehntelnotenJedes Wintersemester2 Semester11

Pflichtbestandteile						
T-MATH-102234	Höhere Mathematik I und II	15 LP	Schmoeger			
Übungen (Wahl: mir	Übungen (Wahl: mindestens 1 Bestandteil)					
T-MATH-102232	Höhere Mathematik I Übungsschein Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Schmoeger			
T-MATH-102233	Höhere Mathematik II Übungsschein Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Schmoeger			

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung im Umfang von 240 Minuten nach § 4 Abs. 2 Nr. 1 SPO und einer Erfolgskontrolle anderer Art nach § 4 Abs. 3 SPO (mindestens ein Übungsschein aus den Lehrveranstaltungen Höhere Mathematik I [1330] oder Höhere Mathematik II [1868]).

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sollen am Ende des Moduls

- den Übergang von Schule zu Universität bewältigt haben,
- mit logischem Denken und strengen Beweisen vertraut sein,
- die Methoden und grundlegenden Strukturen der (reellen) Analysis beherrschen.

Inhalt

HM I:

- Reelle Zahlen (Körpereigenschaften, natürliche Zahlen, Induktion)
- Konvergenz in R (Folgen, Reihen, Potenzreihen, elementare Funktionen, q-adische Entwicklung reeller Zahlen)
- Funktionen (Grenzwerte bei Funktionen, Stetigkeit, Funktionenfolgen und -reihen)
- Differentialrechnung (Ableitungen, Mittelwertsätze, Regel v. de l'Hospital, Satz von Taylor)
- Integralrechnung (Riemann- Integral, Hauptsätze, Substitution, part. Integration, uneigentliche Integrale)
- Fourierreihen

HM II:

- Der Raum Rn (Konvergenz, Grenzwerte bei Funktionen, Stetigkeit)
- Differentialrechnung im Rn (partielle Ableitungen, (totale) Ableitung, Taylorentwicklung, Extremwertberechnungen)
- Das mehrdimensionale Riemann- Integral (Fubini, Volumenberechnung mit Cavalieri, Substitution, Polar-, Zylinder-, Kugelkoordinaten)
- Differentialgleichungen (Trennung der Ver., lineare DGL 1. Ordnung, Bernoulli-DGL, Riccati-DGL, lineare Systeme, lineare DGL höherer Ordnung)
- Fouriertransformation

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Die Übungsscheine zu den Lehrveranstaltungen der Module **Analysis1 und 2** [MATHANA], **Höhere Mathematik** [HMInfo] sind äquivalent. Eine Übertragung von einem auf das andere Modul ist möglich, hierzu ist ein Umbuchungsantrag notwendig.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 450 Stunden

Präsenzzeit: 150 Stunden

• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 300 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- · Vorbereitung auf die studienbegleitende Modulprüfung

4.63 Modul: Hybride und elektrische Fahrzeuge [M-ETIT-100514]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-100784	Hybride und elektrische Fahrzeuge	4 LP	Becker

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden verstehen die technische Funktion aller Antriebskomponenten von hybriden und elektrischen Fahrzeugen sowie deren Zusammenspiel im Antriebsstrang zu verstehen. Sie verfügen über Detailwissen der Antriebskomponenten, insbesondere Batterien und Brennstoffzellen, leistungselektronische Schaltungen und elektrische Maschinen inkl. der zugehörigen Getriebe. Weiterhin kennen sie die wichtigsten Antriebstopologien und ihre spezifischen Vor- und Nachteile. Die Studierenden können die technischen, ökonomischen und ökologischen Auswirkungen alternativer Antriebstechnologien für Kraftfahrzeuge beurteilen und bewerten.

Inhalt

Ausgehend von den Mobilitätsbedürfnissen der modernen Industriegesellschaft und den politischen Rahmenbedingungen zum Klimaschutz werden die unterschiedlichen Antriebs- und Ladekonzepte von batterieelektrischen- und hybridelektrischen Fahrzeugen vorgestellt und bewertet. Die Vorlesung gibt einen Überblick über die Komponenten des elektrischen Antriebsstranges, insbesondere Batterie, Ladeschaltung, DC/DC-Wandler, Wechselrichter, elektrische Maschine und Getriebe. Gliederung:

- · Hybride Fahrzeugantriebe
- · Elektrische Fahrzeugantriebe
- · Fahrwiderstände und Energieverbrauch
- Betriebsstrategie
- Energiespeicher
- · Grundlagen elektrischer Maschinen
- · Asynchronmaschinen
- Synchronmaschinen
- Sondermaschinen
- Leistungselektronik
- Laden
- Umwelt
- · Fahrzeugbeispiele

Anforderungen und Spezifikationen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

14x V und 7x U à 1,5 h: = 31,5 h 14x Nachbereitung V à 1 h = 14 h 6x Vorbereitung zu U à 2 h = 12 h Prüfungsvorbereitung: = 50 h Prüfungszeit = 2 h Insgesamt = 109,5 h (entspricht 4 Leistungspunkten)

Empfehlungen

Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").

4.64 Modul: Industrielle Produktion I [M-WIWI-101437]

Verantwortung: Prof. Dr. Frank Schultmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	2 Semester	Deutsch/Englisch	3	3

Pflichtbestandteile				
T-WIWI-102606	Grundlagen der Produktionswirtschaft	5,5 LP	Schultmann	
Ergänzungsangebot (Wahl: 3,5 LP)				
T-WIWI-102870	Logistics and Supply Chain Management	3,5 LP	Schultmann, Wiens	
T-WIWI-102820	Produktion und Nachhaltigkeit	3,5 LP	Schultmann, Volk	

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 SPO) über die Kernvorlesung *Grundlagen der Produktionswirtschaft* [2581950] und eine weitere Lehrveranstaltung des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWL prüfbar.

Die Lehrveranstaltung *Grundlagen der Produktionswirtschaft* [2581950] muss im Modul erfolgreich geprüft werden. Des Weiteren muss eine Lehrveranstaltung aus dem Ergänzungsangebot des Moduls erfolgreich geprüft werden.

Qualifikationsziele

- Die Studierenden beschreiben das Gebiet der industriellen Produktion und Logistik und erkennen deren Bedeutung für Industriebetriebe und die darin tätigen Wirtschaftsingenieure/Wirtschaftsinformatiker und Volkswirtschaftler.
- Die Studierenden verwenden wesentliche Begriffe aus der Produktionswirtschaft und Logistik korrekt.
- Die Studierenden geben produktionswirtschaftlich relevante Entscheidungen im Unternehmen und dafür wesentliche Rahmenbedingungen wieder.
- Die Studierenden kennen die wesentlichen Planungsaufgaben, -probleme und Lösungsstrategien des strategischen Produktionsmanagements sowie der Logistik.
- Die Studierenden kennen wesentliche Ansätze zur Modellierung von Produktions- und Logistiksystemen.
- Die Studierenden kennen die Bedeutung von Stoff- und Energieflüssen in der Produktion.
- · Die Studierenden wenden exemplarische Methoden zur Lösung ausgewählter Problemstellungen an.

Inhalt

Das Modul gibt eine Einführung in das Gebiet der Industriellen Produktion und Logistik. Im Mittelpunkt stehen Fragestellungen des strategischen Produktionsmanagements, die auch unter nachhaltig zeitrelevanten Aspekten betrachtet werden. Die Aufgaben der industriellen Produktionswirtschaft und Logistik werden mittels interdisziplinärer Ansätze der Systemtheorie beschrieben. Die behandelten Fragestellungen umfassen strategische Unternehmensplanung, die Forschung und Entwicklung (F&E) sowie die betriebliche Standortplanung. Unter produktionswirtschaftlicher Sichtweise werden zudem inner- und außerbetrieblichen Transport- und Lagerprobleme betrachtet. Dabei werden auch Fragen der Entsorgungslogistik und des Supply Chain Managements behandelt.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 LP). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3,5 LP ca. 105h, für Lehrveranstaltungen mit 5,5 LP ca. 165h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen

Die Lehrveranstaltungen sind so konzipiert, dass sie voneinander unabhängig gehört werden können.

Mit Blick auf den konsekutiven Masterstudiengang empfiehlt es sich, das Modul mit den Modulen Industrielle Produktion II und/oder Industrielle Produktion III zu kombinieren.

4.65 Modul: Informationsmanagement im Ingenieurwesen [M-MACH-102399]

Verantwortung: Dipl.-Ing. Thomas Maier

Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: Ergänzungsfach / Informationsmanagement im Ingenieurwesen

Leistungspunkte
21Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
2 SemesterSprache
DeutschLevel
3Version
4

Informationsmanagement im Ingenieurwesen - Bachelor Informatik (Kern) (Wahl: 1 Bestandteil)				
T-MACH-105147	Product Lifecycle Management	4 LP Ovtcharova		
Informationsmana	Informationsmanagement im Ingenieurwesen Bachelor Informatik (Wahl: mind. 17 LP)			
T-MACH-106744	Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte	4 LP	Kläger	
T-MACH-102187	CAD-Praktikum NX	2 LP	Ovtcharova	
T-MACH-111283	Entwicklungsmethoden technischer Systeme	4 LP	Maier, Ovtcharova	
T-MACH-102209	Information Engineering	3 LP	Ovtcharova	
T-MACH-106457	IT-Systemplattform I4.0	4 LP	Maier, Ovtcharova	
T-MACH-102153	PLM-CAD Workshop	4 LP	Ovtcharova	
T-MACH-102155	Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung	4 LP	Mbang	
T-MACH-102083	Technische Informationssysteme	4 LP	Ovtcharova	
T-MACH-102149	Virtual Reality Praktikum	4 LP	Ovtcharova	

Erfolgskontrolle(n)

Eine Erfolgskontrolle muss stattfinden und kann schriftlich, mündlich oder anderer Art sein.

Voraussetzungen

keine

Qualifikationsziele

Der / die Studierende:

besitzt grundlegende Kenntnisse über in Bezug auf Produkt- und Prozessdatenmanagement über den gesamten Produktlebenszyklus,

versteht Herausforderungen und Funktionskonzept des Product Lifecycle Managements,

ist in der Lage ansatzweise mit gängigen PLM/CAx/VR-Systemen zu arbeiten.

können in domänenübergreifenden Teams prototypische Lösungen erarbeiten und präsentieren.

Inhalt

Product Lifecycle Management (PLM), Generierung und Management von Informationen, Aufbau und Funktionsweise von Informationssystemen, Industrie 4.0, CAx und VR-Systeme

Arbeitsaufwand

315 Stunden

Lehr- und Lernformen

Vorlesungen, Übungen

4.66 Modul: Informationstechnik I [M-ETIT-104539]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Informationstechnik)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	4	2

Pflichtbestandteile			
T-ETIT-109300	Informationstechnik I	4 LP	Sax
T-ETIT-109301	Informationstechnik I - Praktikum	2 LP	Sax

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

- 1. Einer "schriftlichen Prüfung" im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung, Übung (4 LP)
- 2. Einer Erfolgskontrolle in Form von Projektdokumentationen und Kontrolle des Quellcodes im Rahmen der Lehrveranstaltung Praktikum (2 LP)

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden lernen Aufbau und Funktionsweise informationstechnischer Systeme und deren Verwendung kennen.

Die Studierenden können

- die Charakteristika von eingebetteten Systemen abgrenzen.
- · verschiedene Programmiersprachen und -paradigmen nennen und deren Unterschiede gegenüberstellen.
- die Grundbestandteile der Programmiersprache C++ erläutern sowie Programme in dieser Sprache anfertigen.
- die zur Erstellung eines ausführbaren Programms notwendigen Komponenten aufzählen und deren Interaktion beschreiben
- Programmstrukturen mit Hilfe grafischer Beschreibungsmittel darstellen.
- das objektorientierte Programmierparadigma gegenüber traditioneller Herangehensweise abgrenzen sowie objektorientierte Programme erstellen.
- · die Struktur objektorientierter Programme grafisch abbilden
- generelle Rechnerarchitekturen beschreiben, deren Vor- und Nachteile gegenüberstellen, sowie Möglichkeiten zur Performanzsteigerung erläutern.
- unterschiedliche Abstraktionsebenen der Datenspeicherung beschreiben. Sie können verschiedene Möglichkeiten, Daten strukturiert abzuspeichern und zu organisieren, nennen und bewerten.
- die Aufgaben eines Betriebssystems beschreiben, sowie die grundlegenden Funktionen von Prozessen und Threads wiedergeben.
- die Phasen und Prozesse des Projektmanagements erläutern und die Planung kleiner Projekte skizzieren.

Durch die Teilnahme am Praktikum Informationstechnik können die Studierenden komplexe programmiertechnische Probleme in einfache und übersichtliche Module zerlegen und dazu passende Algorithmen und Datenstrukturen entwickeln, sowie diese mit Hilfe einer Programmiersprache in ein ausführbares Programm umsetzen.

Inhalt

Vorlesung Informationstechnik I:

Grundlagenvorlesung Informationstechnik. Schwerpunkte der Veranstaltung sind:

- Programmiersprachen, Programmerstellung und Programmstrukturen
- Objektorientierung
- · Rechnerarchitekturen und eingebettete Systeme
- · Datenstrukturen und Datenbanken
- · Projektmanagement
- · Betriebssysteme und Prozesse

Übung Informationstechnik I:

Begleitend zur Vorlesung werden in der Übung die Grundlagen der Programmiersprache C++ vermittelt. Hierzu werden Übungsaufgaben mit Bezug zum Vorlesungsstoff gestellt, sowie die Lösungen dazu detailliert erläutert. Schwerpunkte sind dabei der Aufbau und die Analyse von Programmen sowie deren Erstellung.

Praktikum Informationstechnik:

Bei der Umsetzung in einen strukturierten und lauffähigen Quellcode, unter Einhaltung von vorgegebenen Qualitätskriterien, wird das Schreiben komplexer C/C++-Codeabschnitte und der Umgang mit einer integrierten Entwicklungsumgebung trainiert. Die Implementierung erfolgt auf einem Microcontrollerboard, welches bereits aus anderen Lehrveranstaltungen bekannt ist.

Die Bearbeitung des Projektes erfolgt in kleinen Teams, die das Gesamtprojekt in individuelle Aufgaben zerlegen und selbstständig bearbeiten. Hierbei werden Inhalte aus Vorlesung und Übung wieder aufgegriffen und auf konkrete Problemstellungen angewendet. Am Ende des Praktikums soll jedes Projektteam den erfolgreichen Abschluss seiner Arbeit auf der "TivSeg Plattform" demonstrieren.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung. Das erfolgreiche Ablegen des Praktikums ist Voraussetzung für das Bestehen des Moduls.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

- 1. Präsenzzeit in 14 Vorlesungen und 7 Übungen (32 Stunden)
- 2. Vor-/Nachbereitung von Vorlesung und Übung (42 Stunden)
- 3. Klausurvorbereitung und Präsenz in selbiger (46 Stunden)
- 4. Praktikum Informationstechnik 5 Termine (7,5 Stunden)
- 5. Vor-/Nachbereitung des Praktikums (52,5 Stunden) Summe: 180 h = 6 LP

Empfehlungen

- Kenntnisse in den Grundlagen der Programmierung sind empfohlen (Besuch des MINT-Kurs C++).
- · Die Inhalte des Moduls Digitaltechnik sind hilfreich.

4.67 Modul: Informationstechnik II und Automatisierungstechnik [M-ETIT-104547]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	2

Pflichtbestandteile				
T-ETIT-109319	Informationstechnik II und Automatisierungstechnik	4 LP	Sax	

Erfolgskontrolle(n)

Schriftliche Prüfung im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung und Übung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden lernen aktuelle Problemstellungen der Informationstechnik und die Werkzeuge für deren Lösung kennen, beginnend bei einfachen Algorithmen bis hin zu selbstlernenden Systemen.

Die Studierenden können

- die Merkmale, Eigenschaften und Klassen von Algorithmen benennen und einordnen, sowie die Laufzeitkomplexität bestimmen.
- · bekannte Sortier-, Such- und Optimierungsalgorithmen gegenüberstellen und demonstrieren.
- · die Merkmale, Eigenschaften und Komponenten von selbstlernenden Systemen benennen und abgrenzen.
- Methoden des maschinellen Lernens einordnen, beschreiben und bewerten.
- Die Charakteristika sowie die Notwendigkeit und Vorgehensweise zur Analyse großer Datenbestände beschreiben.
- Ansätze zur Verwaltung und Analyse großer Datenbestände hinsichtlich ihrer Anwendbarkeit und Wirksamkeit einschätzen.
- · Methoden zur Anomalieerkennung wiedergeben.
- Begriffe der IT-Sicherheit angeben und typische Schutzmechanismen einordnen.
- die grundlegenden Komponenten, Funktionen und Aufgaben der Automatisierungstechnik in verschiedenen Einsatzbereichen gegenüberstellen und anhand ihres Automatisierungsgrades einordnen.

Inhalt

Vorlesung Informationstechnik II und Automatisierungstechnik:

Grundlagenvorlesung Informationstechnik. Schwerpunkte der Veranstaltung sind:

- Grundlagen und Eigenschaften verschiedener Klassen von Algorithmen
- Selbstlernende Systeme und maschinelles Lernen, beispielsweise Clusteringverfahren und Neuronale Netze
- Grundlagen und Verfahren zur Analyse großer Datenbestände
- Verfahren zur Anomalieerkennung als Anwendungsfeld von selbstlernenden Systemen auf große Datenmengen
- · Grundlagenbegriffe und Prozesse zur Entwicklung sicherer Software
- Bedeutung, grundlegende Begriffe und Komponenten der Automatisierungstechnik sowie deren informationstechnische Realisierung

Übung Informationstechnik II und Automatisierungstechnik:

Begleitend zur Vorlesung werden in der Übung die Grundlagen der in der Vorlesung vorgestellten Methoden erläutert und deren Anwendung aufgezeigt. Hierzu werden Übungsaufgaben mit Bezug zum Vorlesungsstoff gestellt sowie die Lösungen dazu detailliert erläutert

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

- 1. Präsenzzeit in 14 Vorlesungen und 7 Übungen (32 Stunden)
- 2. Vor-/Nachbereitung von Vorlesung und Übung (42 Stunden)
- 3. Klausurvorbereitung und Präsenz in selbiger (46 Stunden) Summe: 120 h = 4 LP

Empfehlungen

Grundlagen der Programmierung (MINT-Kurs) und die Inhalte des Moduls Informationstechnik I sind hilfreich.

4.68 Modul: Kognitive Systeme [M-INFO-100819]

Verantwortung: Prof. Dr. Gerhard Neumann

Prof. Dr. Alexander Waibel

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)

Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

| Pflichtbestandteile | T-INFO-101356 | Kognitive Systeme | 6 LP | Neumann, Waibel

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Studierende beherrschen

- Die relevanten Elemente eines technischen kognitiven Systems und deren Aufgaben.
- Die Problemstellungen dieser verschiedenen Bereiche können erkannt und bearbeitet werden.
- Weiterführende Verfahren können selbständig erschlossen und erfolgreich bearbeitet werden.
- Variationen der Problemstellung können erfolgreich gelöst werden.
- Die Lernziele sollen mit dem Besuch der zugehörigen Übung erreicht sein.

Die Studierenden beherrschen insbesondere die grundlegenden Methoden der Künstlichen Intelligenz, die nötig sind, um verschiedene Aspekte eines Kognitiven Systems verstehen zu können. Dies beinhaltet Suchverfahren, und Markov Decision Processe, welche den Entscheidungsfindungsprozess eines kognitiven Systems modellieren können. Des Weiteren werden verschiedene grundlegende Methoden für das Erlernen von Verhalten mit künstlichen Agenten verstanden und auch in den Übugen umgesetzt, wie zum Beispiel das Lernen von Demonstrationen und das Reinforcement Learning. Den Studierenden wird auch Basiswissen der Bildverarbeitung vermittelt, inklusive Kameramodelle, Bildrepresentationen und Faltungen. Dannach werden auch neue Methoden des Maschinellen Lernens in der Bildverarbeitung basierend auf Convolutional Neural Networks vermittelt und von den Studierenden in den Übungen umgesetzt. Die Studierenden werden ebenso mit Grundbegriffen der Robotik vertraut gemacht und können diese auf einfache Beispiele anwenden.

Die Studierenden beherrschen die grundlegenden Methoden zur automatischen Signalvorverarbeitung und können deren Vor- und Nachteile benennen. Für ein gegebenes Problem sollen sie die geeigneten Vorverarbeitungsschritte auswählen können. Die Studierenden sollen mit der Taxonomie der Klassifikationssysteme arbeiten können und Verfahren in das Schema einordnen können. Studierende sollen zu jeder Klasse Beispielverfahren benennen können. Studierende sollen in der Lage sein, einfache Bayesklassifikatoren bauen und hinsichtlich der Fehlerwahrscheinlichkeit analysieren können. Studierende sollen die Grundbegriffe des maschinellen Lernens anwenden können, sowie vertraut sein mit Grundlegenden Verfahren des maschinellen Lernens. Die Studierenden sind vertraut mit den Grundzügen eines Multilayer-Perzeptrons und sie beherrschen die Grundzüge des Backpropagation Trainings. Ferner sollen sie weitere Typen von neuronalen Netzen benennen und beschreiben können. Die Studierenden können den grundlegenden Aufbau eines statistischen Spracherkennungssystems für Sprache mit großem Vokabular beschreiben. Sie sollen einfache Modelle für die Spracherkennung entwerfen und berechnen können, sowie eine einfache Vorverarbeitung durchführen können. Ferner sollen die Studierenden grundlegende Fehlermaße für Spracherkennungssysteme beherrschen und berechnen können.

Inhalt

Kognitive Systeme handeln aus der Erkenntnis heraus. Nach der Reizaufnahme durch Perzeptoren werden die Signale verarbeitet und aufgrund on erlernten Wissens gehandelt. In der Vorlesung werden die einzelnen Module eines kognitiven Systems vorgestellt. Hierzu gehören neben der Aufnahme und Verarbeitung von Umweltinformationen (z. B. Bilder, Sprache), die Zuordnung einzelner Merkmale mit Hilfe von Klassifikatoren, sowie die Entscheidungsfindung eines Kognitiven Systems mittels Lern- und Planungsmethoden und deren Umsetzung auf ein physikalisches kognitives System (einen Roboter). In den Übungen werden die vorgestellten Methoden durch Aufgaben (Programmierung sowie theoretische Rechenaufgaben) vertieft.

Arbeitsaufwand

180h, aufgeteilt in:

- ca 30h Vorlesungsbesuchca 9h Übungsbesuch
- ca 90h Nachbearbeitung und Bearbeitung der Übungsblätter
 ca 50 + 1h Prüfungsvorbereitung

Empfehlungen Siehe Teilleistung.

4.69 Modul: Kombinatorik [M-MATH-102950]

Verantwortung: Prof. Dr. Maria Aksenovich **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	siehe Anmerkungen	1 Semester	Englisch	4	1

Pflichtbestandteile			
T-MATH-105916	Kombinatorik	9 LP	Aksenovich

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Um einen Bonus zu bekommen, muss man jeweils 50% der Punkte für die Lösungen der Übungsblätter 1-6 sowie der Übungsblätter 7-12 erwerben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können grundlegende Begriffe und Techniken der Kombinatorik

nennen, erörtern und anwenden. Sie können kombinatorische Probleme analysieren, strukturieren und formal beschreiben. Die Studierenden können Resultate und Methoden, wie das Inklusions-Exklusions- Prinzip, Erzeugendenfunktionen oder Young Tableaux, sowie die in den Beweisen entwickelten Ideen, auf kombinatorische Probleme anwenden. Insbesondere sind sie in der Lage, die Anzahl der geordneten und ungeordneten Arrangements gegebener Größe zu bestimmen oder die Existenz solcher Arrangements zu beweisen oder zu widerlegen. Die Studierenden sind fähig, Methoden aus dem Bereich der Kombinatorik zu verstehen und kritisch zu beurteilen. Desweiteren können die Studierenden in englischer Fachsprache kommunizieren.

Inhalt

Die Vorlesung bietet eine Einführung in die Kombinatorik. Angefangen mit Problemen des Abzählens und Bijektionen, werden die klassischen Methoden des Inklusion- Exklusions-Prinzip und der erzeugenden Funktionen behandelt. Weitere Themengebiete beinhalten Catalan-Familien, Permutationen, Partitionen, Young Tableaux, partielle Ordnungen und kombinatorische Designs.

Zusammensetzung der Modulnote

Die Modulnote ist Note der schriftlichen Prüfung.

Anmerkungen

- · Turnus: jedes zweite Jahr im Sommersemester
- · Unterrichtssprache: Englisch

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden

Präsenzzeit: 90 Stunden

Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Kenntnisse aus den Vorlesungen Lineare Algebra 1 und 2 sowie Analysis 1 und 2 sind empfohlen.

4.70 Modul: Kommunikation und Datenhaltung [M-INFO-101178]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm

Prof. Dr. Martina Zitterbart

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Praktische Informatik

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
8	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-INFO-101497	Datenbanksysteme	4 LP	Böhm	
T-INFO-102015	Einführung in Rechnernetze	4 LP	Zitterbart	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende

- kennt die Grundlagen der Datenübertragung sowie den Aufbau von Kommunikationssystemen,
- ist mit der Zusammensetzung von Protokollen aus einzelnen Protokollmechanismen vertraut und konzipiert einfache Protokolle eigenständig,
- kennt und versteht das Zusammenspiel einzelner Kommunikationsschichten und Anwendungen,
- stellt den Nutzen von Datenbank-Technologie dar,
- deiniert die Modelle und Methoden bei der Entwicklung von funktionalen Datenbank-Anwendungen, legt selbstständig einfache Datenbanken an und tätigt Zugriffe auf diese.
- kennt und versteht die entsprechenden Begrifflichkeiten und die Grundlagen der zugrundeliegenden Theorie.

Inhalt

Verteilte Informationssysteme sind nichts anderes als zu jeder Zeit von jedem Ort durch jedermann zugängliche, weltweite Informationsbestände. Den räumlich verteilten Zugang regelt die Telekommunikation, die Bestandsführung über beliebige Zeiträume und das koordinierte Zusammenführen besorgt die Datenhaltung. Wer global ablaufende Prozesse verstehen will, muss also sowohl die Datenübertragungsechnik als auch die Datenbanktechnik beherrschen, und dies sowohl einzeln als auch in ihrem Zusammenspiel.

Anmerkungen

Zur Lehrveranstaltung Datenbanksysteme [24516] ist es möglich als weitergehende Übung im Wahlfach das Modul Weitergehende Übung Datenbanksysteme [IN3INWDS] (dieses Modul wird zurzeit nicht angeboten) zu belegen.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 240 Stunden (8 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfungszeit und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen

Kenntnisse aus der Volesung Softwaretechnik I werden empfohlen.

4.71 Modul: Kurven im CAD [M-INFO-101248]

Verantwortung: Prof. Dr. Hartmut Prautzsch **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

LeistungspunkteNotenskala
5Turnus
UnregelmäßigDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-INFO-102067	Kurven im CAD	5 LP	Prautzsch

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Die Hörer und Hörerinnen der Vorlesung beherschen wichtige Grundlagen und Techniken. Sie sind in der Lage, aufbauenden, weiterführenden und speziellen Vorlesungen wie den Vorlesungen "Kurven und Flächen im CAD II und III", "Rationale Splines" oder "Unterteilungsalgorithmen" zu folgen, sowie generell in der Lage, sich in dem Gebiet weiter zu vertiefen.

Inhalt

Bézier- und B-Spline-Techniken, Polarformen, Algorithmen von de Casteljau, de Boor und Boehm, Oslo-Algorithmus, Stärks Anschlusskonstruktion, Unterteilung, Übergang zu anderen Darstellungen, Algorithmen zum Erzeugen und Schneiden von Kurven, Interpolationssplines, sowie etwas zu Tensorproduktflächen (=Kurven mit Kontrollkurven.)

Arbeitsaufwand

150h davon etwa:

30h für den Vorlesungsbesuch

30h für die Nachbearbeitung

15h für den Besuch der Übungen

45h für das Lösen der Aufgaben

30h für die Prüfungsvorbereitung

4.72 Modul: Labor für angewandte Machine Learning Algorithmen [M-ETIT-104823]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Prof. Dr.-Ing. Eric Sax Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile			
T-ETIT-109839	Labor für angewandte Machine Learning Algorithmen	6 LP	Becker, Sax, Stork

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Prüfungsleistungen anderer Art.

- · Protokolle (Labordokumentation) und kontinuierliche Bewertung der Teamarbeit während der Präsenzzeit
- · Vortrag in Form einer Präsentation

Abfrage nach Ende der Veranstaltung zu den Inhalten des Labors.

Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden sind in der Lage aktuelle komplexe Probleme des modernen Elektro- und Informationstechnik-Ingenieurs zu analysieren und die Notwendigkeit für Verfahren des maschinellen Lernens zu beurteilen.
- Die Studierenden können verschiedene moderne Verfahren des maschinellen Lernens nennen und deren Funktionsweise erklären.
- Die Studierenden sind in der Lage diese hinsichtlich ihrer Anforderungen (u.a. Trainingszeit, Datenverfügbarkeit, Effizienz, Performance) auszuwählen und erfolgreich mit aktuellen Programmiersprachen und typischen Software-Frameworks umzusetzen.
- Die Studierenden sind in der Lage passende Implementierungsalternativen (HW/SW-Codesign) im gesamten Prozess zu wählen und umzusetzen.
- Die Studierenden sind in der Lage für eine gegebene Problemstellung systematisch ein geeignetes praxistaugliches Konzept basierend auf Verfahren des maschinellen Lernens zu entwickeln oder gegebene Konzepte zu evaluieren, vergleichen und zu beurteilen.
- Die Studierenden beherrschen die Analyse und Lösung entsprechender Problemstellungen im Team.

Die Studierenden können ihre Konzepte und Ergebnisse evaluieren und dokumentieren.

Inhalt

In diesem Kurs wird der praktische Umgang mit gängigen Algorithmen und Methoden des maschinellen Lernens projektbezogen und praxisnah vermittelt. Die Studierenden lernen, gängige Algorithmen und Strukturen (z.B. Clusteringverfahren, Neuronale Netze, Deep Learning) selbständig zu implementieren. Das Labor bietet die Möglichkeit, die Anwendung des Maschinellen Lernens auf realitätsnahen Problemstellungen sowie die Limitierungen der Verfahren kennenzulernen. Anwendungsfelder können zum Beispiel autonomes Fahren oder intelligente Stromnetze sein. Im Mittelpunkt stehen die heute in Industrie und Wissenschaft gebräuchlichen Methoden, Prozesse und Werkzeuge, wie beispielsweise Tensorflow oder NVidia CUDA. Dabei wird nicht nur auf die Algorithmen, sondern auch auf den kompletten Prozess der Datenanalyse eingegangen. Darunter fallen die Problemstellungen des überwachten und unüberwachten Lernens sowie die Herausforderung der Vorverarbeitung und der Visualisierung der Daten. Für die systematische Entwicklung und Evaluierung dieser Problemstellungen werden aktuelle Frameworks ausgewählt und appliziert. Damit verbunden sind die problemspezifische Auswahl und der Einsatz geeigneter Plattformen und Hardware (zum Beispiel: CPU, GPU, FPGA).

Ein Teil der Versuche ist in Ablauf und Struktur vorgegeben. In einem freien Teil des Labors werden die Studierenden mit ihren bereits gewonnenen Erfahrungen kreativ und selbstständig den Lösungsraum einer realen Problemstellung explorieren.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der Protokolle, die kontinuierliche Bewertung der Teamarbeit, der Vortrag und die Abfrage zu den Inhalten des Labors ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Anmerkungen

Das Labor ist aus Kapazitätsgründen auf eine Teilnehmerzahl von 30 Studierenden begrenzt. Sofern erforderlich wird ein Auswahlverfahren durchgeführt dessen Details in der ersten Veranstaltung und auf der Homepage der Veranstaltung bekanntgegeben werden. Während sämtlicher Labortermine einschließlich der Einführungsveranstaltung herrscht Anwesenheitspflicht.

Arbeitsaufwand

- 1. Teilnahme an den Laborterminen: 52h 13 Termine á 4h
- 2. Vor- und Nachbereitung, Anfertigung von Berichten: 84h
- 3. Vorbereitung des Vortrags: 16h
- 4. Vorbereitung und Teilnahme an der mündlichen Abfrage: 28h

Empfehlungen

Vorausgesetzt werden Kenntnisse in den Grundlagen der Informationstechnik (z.B. M-ETIT-102098), Signal- und Systemtheorie (z.B. M-ETIT-102123) sowie Wahrscheinlichkeitstheorie (z.B. M-ETIT-102104)

Außerdem: Programmierkenntnisse (z.B. C++ oder Python) sind zwingend erforderlich.

4.73 Modul: Labor Schaltungsdesign [M-ETIT-100518]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile				
T-ETIT-100788	Labor Schaltungsdesign	6 LP	Becker, Sander	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung, sowie einer mündlichen Gesamtprüfung (30 Minuten) über die ausgewählten Lehrveranstaltungen. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

Das Praktikum vermittelt die notwendigen Kenntnisse und Fähigkeiten für den Entwurf elektronischer Schaltungen, wie sie z.B. als Bindeglied zwischen Mikrokontrollern/FPGAs und Sensoren/Aktuatoren benötigt werden. Am Ende der Veranstaltung sind die Teilnehmer in der Lage, für ein vorgegebenes Problem benötigte Bauteile anhand relevanter Kriterien auszuwählen, zu elementaren Baugruppen zu verschalten und schließlich daraus ein funktionierendes Gesamtsystem zu bilden. Neben dem Schaltungsdesign werden grundlegende Methoden und Fertigkeiten für die Erstellung von Layouts vermittelt. Außerdem werden die Teilnehmer in die Lage versetzt die entworfenen Schaltungen real aufzubauen und zu testen.

Inhalt

Bei der Lehrveranstaltung handelt es sich um ein dreiwöchiges Blockpraktikum. Ziel des Praktikums ist die Entwicklung und der Aufbau der gesamten Elektronik zum Betrieb eines selbstbalancierenden einachsigen Beförderungsmittels.

Im ersten Teil des Praktikums werden im Stil einer interaktiven Vorlesung häufig benötigte Grundschaltungen besprochen. Dazu gehören u.a. Schaltungen zur Spannungsversorgung, Taktgenerierung, Aufbereitung von Sensorwerten sowie Leistungstreiber und die Ansteuerung von Displays. Neben der Vorstellung der einzelnen Schaltungen wird auch eine Übersicht über Bauteile gegeben, welche häufig im entsprechenden Bereich verwendet werden. Dabei wird Wert darauf gelegt, reale Bauelemente auf Basis ihrer Datenblätter zu betrachten. Zur Festigung des erworbenen Wissens werden immer wieder kleine praktische Übungen durchgeführt, in denen die Teilnehmer die besprochenen Schaltungen selbst ausprobieren können. Ziel dieses ersten Teils ist zum einen die Auffrischung des bereits in vorhergehenden Veranstaltungen erworbenen Wissens und zum anderen die Vermittlung des praktischen Umgangs mit immer wieder benötigten Basisschaltungen.

Nach der Vermittlung der Grundschaltungen folgt eine kurze Einführung in die Erstellung von Platinenlayouts. Dazu zählen neben der Einarbeitung in das im Praktikum verwendete Layoutprogramm vor allem Tipps zur Platzierung und Verdrahtung von Bauelementen auf der Platine. Dabei werden unter anderem Themen wie Minimierung von Rauschen und Übersprechen, Platzierung von Abblockkondensatoren und Masseverbindungen behandelt.

Im dritten und größten Teil des Praktikums erstellen die Teilnehmer in Teams schließlich nacheinander ein Konzept, einen Schaltplan und ein Layout eines Schaltungsteils zum Betrieb des Beförderungsmittels. Dabei werden lediglich die genauen Anforderungen an den Schaltungsteil und die Schnittstellen zu benachbarten Teilen vorgegeben. Alle weiteren Entwicklungsschritte sollen von den Studierenden, basierend auf dem in den ersten beiden Praktikumsteilen vermittelten Wissen, möglichst eigenverantwortlich durchgeführt werden.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der mündlichen Prüfung, den während des Praktikums gegebenen Präsentationen und Versuchen und der Mitarbeit während des Praktikums ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

- 1. Präsenzzeit im Labor: 15 Tage á 8h = 120h
- 2. Vor-/Nachbereitung desselbigen: 15 Tage á 2h = 30h
- 3. Prüfungsvorbereitung und Präsenz in selbiger: 15h

Empfehlungen

Grundlegende Kenntnisse von elektronischen Basisschaltungen (z.B. Lehrveranstaltungen LEN, Nr. 2305256, ES, Nr. 2312655 und EMS, Nr. 2306307)

4.74 Modul: Lego Mindstorms - Basispraktikum [M-INFO-102557]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

LeistungspunkteNotenskala
best./nicht best.Turnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile				
T-INFO-107502	Praktikum: Lego Mindstorms	4 LP	Asfour	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Die Teilnehmer sind in der Lage einen einfachen Roboter mit Motoren und Sensoren zu konzipieren und mit Lego Mindstorms zu konstruieren. Sie beherrschen die Programmierung der Lego EV3-Hardware mit der Programmiersprache Java. Im Einzelnen sind die Studierenden in der Lage Lösungen für autonome Navigation, Erkennung von Landmarken und Objekten sowie das Umfahren von Hindernissen. Die Praktikumsteilnehmer können in selbständiger Teamarbeit eine vorgegebene Aufgabe in einem festen Zeitrahmen lösen und ihr Vorgehehen und ihre Ergebnisse systematisch dokumentieren.

Inhalt

Im Rahmen des Praktikums werden in Dreiergruppen mobile Roboter auf Basis von Lego Mindstorms konstruiert und programmiert. Die Programmierung der Roboter erfolgt in der Programmiersprache Java mit Hilfe des Frameworks LeJOS. Durch einen Parcours werden unterschiedliche Aufgaben an die Roboter gestellt, wie zum Beispiel das Durchqueren eines Labyrinths, das Folgen einer Linie, das Überqueren einer Brücke oder das Umfahren von Hindernissen. Nach dem anfänglichen Aufbau der Roboter wird jede Woche ein neuer Teil des Parcours absolviert, worauf sich die Studenten mit gezielten Programmieraufgaben vorbereiten müssen. Am Ende des Semesters treten die Roboter in einem abschließenden Wettrennen durch den gesamten Parcours gegeneinander an.

Arbeitsaufwand

· Wöchentliche Anwesenheit: 12 x 4h

· Wöchentliche Vorbereitung: 12 x 5h

· Vorbereitung Abschlussrennen: 2 x 5h

Summe: **118h**

Empfehlungen

Grundlegende Kenntnisse in Java sind zur erfolgreichen Teilnahme erforderlich.

4.75 Modul: Lineare Algebra 1 und 2 [M-MATH-101309]

Verantwortung: Prof. Dr. Enrico Leuzinger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Mathematik (Wahlpflichtmodule 2)

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit
M-INFO-101721 - Modul Bachelorarbeit

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
18	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	1	2

Pflichtbestandteile					
T-MATH-106338	Lineare Algebra 1 - Klausur	9 LP	Hartnick, Herrlich, Leuzinger, Sauer, Tuschmann		
T-MATH-106339	Lineare Algebra 2 - Klausur	9 LP	Hartnick, Herrlich, Leuzinger, Sauer, Tuschmann		
T-MATH-102249	Lineare Algebra 1 - Übungsschein Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Hartnick, Herrlich, Leuzinger, Sauer, Tuschmann		
T-MATH-102259	Lineare Algebra 2 - Übungsschein Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Hartnick, Herrlich, Leuzinger, Sauer, Tuschmann		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von zwei schriftlichen Prüfungen von jeweils 120 Minuten Dauer sowie den beiden bestandenen Studienleistungen aus den Übungen.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden

- kennen grundlegende mathematische Beweisverfahren und sind in der Lage, eine mathematische Argumentation formal korrekt auszuführen,
- · kennen die algebraischen Strukturen Gruppe, Ring, Körper, Vektorraum und deren Beziehungen untereinander,
- · beherrschen Lösungstechniken für lineare Gleichungssysteme, insbesondere das Gauß'sche Eliminationsverfahren,
- sind in der Lage, lineare Abbildungen durch Matrizen darzustellen und zugeordnete Größen wie Determinanten oder Eigenwerte mithilfe des Matrizenkalküls zu berechnen,
- können geometrische Eigenschaften wie Orthogonalität, Abstände, Isometrien durch Konzepte der linearen Algebra (Skalarprodukte, Normen) beschreiben und bestimmen.

Inhalt

- · Grundbegriffe (Mengen, Abbildungen, Relationen, Gruppen, Ringe, Körper, Matrizen, Polynome)
- Lineare Gleichungssysteme (Gauß sches Eliminationsverfahren, Lösungstheorie)
- Vektorräume (Beispiele, Unterräume, Quotientenräume, Basis und Dimension)
- Lineare Abbildungen (Kern, Bild, Rang, Homomorphiesatz, Vektorräume von Abbildungen, Dualraum, Darstellungsmatrizen, Basiswechsel, Endomorphismenalgebra, Automorphismengruppe)
- Determinanten
- · Eigenwerttheorie (Eigenwerte, Eigenvektoren, charakteristisches Polynom, Normalformen)
- Vektorräume mit Skalarprodukt (bilineare Abbildungen, Skalarprodukt, Norm, Orthogonalität, adjungierte Abbildung, normale und selbstadjungierte Endomorphismen, Spektralsatz, Isometrien und Normalformen)
- · Grundlagen der multilinearen Algebra
- Euklidische Räume (Unterräume, Bewegungen, Klassifikation, Ähnlichkeitsabbildungen)
- · Optional: Affine Geometrie, Quadriken

Zusammensetzung der Modulnote

Die Modulnote ist die Durchschnittsnote der beiden Teilprüfungen.

Beide Teilprüfungen sind getrennt zu bestehen.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 540 StundenPräsenzzeit: 240 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 300 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

4.76 Modul: Lineare Algebra für die Fachrichtung Informatik [M-MATH-101307]

Verantwortung: PD Dr. Stefan Kühnlein
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik (Wahlpflichtmodule 2)
Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
14	Zehntelnoten	Jedes Wintersemester	2 Semester	1	1

Pflichtbestandteile					
T-MATH-103215	Lineare Algebra I für die Fachrichtung Informatik	9 LP	Grensing, Kühnlein, Link		
T-MATH-102241	Lineare Algebra II für die Fachrichtung Informatik	5 LP	Grensing, Kühnlein, Link		
Übungen (Wahl: mir	ndestens 1 Bestandteil)				
T-MATH-102238	Lineare Algebra I für die Fachrichtung Informatik - Übungsschein Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Grensing, Kühnlein, Link		
T-MATH-102240	Lineare Algebra II für die Fachrichtung Informatik - Übungsschein Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Grensing, Kühnlein, Link		

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von zwei schriftlichen Prüfungen von 120 Minuten (Lineare Algebra 1 für die Fachrichtung Informatik) beziehungsweise 90 Minuten (Lineare Algebra 2 für die Fachrichtung Informatik) Dauer sowie einem der beiden Leistungsnachweise aus den Übungen.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sollen am Ende des Moduls

- den Übergang von der Schule zur Universität bewältigt haben,
- mit logischem Denken und strengen Beweisen vertraut sei,
- die Methoden und grundlegenden Strukturen der Linearen Algebra beherrschen.

Inhalt

- Grundbegriffe (Mengen, Abbildungen, Relationen, Gruppen, Ringe, Körper, Matrizen, Polynome)
- Lineare Gleichungssysteme (Gauß sches Eliminationsverfahren, Lösungstheorie)
- Vektorräume (Beispiele, Unterräume, Quotientenräume, Basis und Dimension)
- Lineare Abbildungen (Kern, Bild, Rang, Homomorphiesatz, Vektorräume von Abbildungen, Dualraum, Darstellungsmatrizen, Basiswechsel)
- Determinanten
- Eigenwerttheorie (Eigenwerte, Eigenvektoren, charakteristisches Polynom, Normalformen
- Vektorräume mit Skalarprodukt (bilineare Abbildungen, Skalarprodukt, Norm, Orthogonalität, adjungierte Abbildung, selbstadjungierte Endomorphismen, Spektralsatz, Isometrien)

Zusammensetzung der Modulnote

Die Modulnote ist die nach Leistungspunkten gewichtete Durchschnittsnote der beiden Teilprüfungen. Beide Teilprüfungen sind getrennt zu bestehen.

Anmerkungen

Die Übungsscheine zu den Lehrveranstaltungen der Module *Lineare Algebra* [IN1MATHLA] und *Lineare Algebra und Analytische Geometrie* [IN1MATHLAAG] sind äquivalent. Eine Übertragung von einem auf das andere Modul ist möglich, hierzu ist ein Umbuchungsantrag notwendig.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 420 Stunden

Präsenzzeit: 180 Stunden

• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 240 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

4.77 Modul: Lineare Elektrische Netze [M-ETIT-101845]

Verantwortung: Prof. Dr. Olaf Dössel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Elektrotechnik)

LeistungspunkteNotenskala
7TurnusDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101917	Lineare Elektrische Netze	7 LP	Dössel

Erfolgskontrolle(n)

In einer schriftlichen Prufung im Umfang von 120 Minuten werden die Inhalte der Lehrveranstaltung Lineare Elektrische Netze (7 LP) gepruft. Bei bestandener Prufung können Studierende einen Notenbonus von bis zu 0,4 Notenpunkten erhalten, wenn zuvor semesterbegleitend zwei Projektaufgaben erfolgreich bearbeitet wurden. Die Bearbeitung der Projektaufgaben wird durch die Abgabe einer Dokumentation oder des Projektcodes nachgewiesen.

Voraussetzungen

keine

Qualifikationsziele

Im Modul Lineare Elektrische Netze erwirbt der Studierende Kompetenzen bei der Analyse und dem Design von elektrischen Schaltungen mit linearen Bauelementen mit Gleichstrom und Wechselstrom. Hierbei ist er in der Lage, die Themen zu erinnern und zu verstehen, zudem die behandelten Methoden anzuwenden, um hiermit die elektrischen Schaltungen mit linearen Bauelementen zu analysieren und deren Relevanz, korrekte Funktion und Eigenschaften zu beurteilen.

Inhalt

Methoden zur Analyse komplexer linearer elektrischer Schaltungen

Definitionen von U, I, R, L, C, unabhängige Quellen, abhängige Quellen

Kirchhoffsche Gleichungen, Knotenpunkt-Potential-Methode, Maschenstrom-Methode

Ersatz-Stromquelle, Ersatz-Spannungsquelle, Stern-Dreiecks-Transformation, Leistungsanpassung

Operationsverstärker, invertierender Verstärker, Addierer, Spannungsfolger, nicht-invertierender Verstärker, Differenzverstärker

Sinusförmige Ströme und Spannungen, Differentialgleichungen für L und C, komplexe Zahlen

Beschreibung von RLC-Schaltungen mit komplexen Zahlen, Impedanz, komplexe Leistung, Leistungsanpassung

Brückenschaltungen, Wheatstone-, Maxwell-Wien- und Wien-Brückenschaltungen

Serien- und Parallel-Schwingkreise

Vierpoltheorie, Z, Y und A-Matrix, Impedanztransformation, Ortskurven und Bodediagramm

Transformator, Gegeninduktivität, Transformator-Gleichungen, Ersatzschaltbilder des Transformators

Drehstrom, Leistungsübertragung und symmetrische Last.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der Teilleistung Lineare Elektrische Netze. Wie im Abschnitt "Erfolgskontrolle(n)" beschrieben, setzt diese sich aus der Note der schriftlichen Prufung Lineare Elektrische Netze und einem eventuell erhaltenen Notenbonus zusammen.

Anmerkungen

Achtung: Dieses Modul ist Bestandteil der Orientierungsprüfung nach SPO Bachelor Elektrotechnik und Informationstechnik.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht.

Unter den Arbeitsaufwand der LV Lineare Elektrische Netze fallen

- 1. Prasenzzeit in Vorlesungen, Ubungen
- 2. Vor-/Nachbereitung
- 3. Klausurvorbereitung und Prasenz in selbiger

Der Arbeitsaufwand für Punkt 1 entspricht etwa 60 Stunden, für die Punkte 2-3 etwa 115 -150 Stunden. Insgesamt beträgt der Arbeitsaufwand für die LV Lineare Elektrische Netze 175-210 Stunden. Dies entspricht 7 LP.

4.78 Modul: Management und Marketing [M-WIWI-105768]

Verantwortung: Prof. Dr. Martin Klarmann

Prof. Dr. Hagen Lindstädt Prof. Dr. Petra Nieken Prof. Dr. Orestis Terzidis

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Pflicht Betriebswirtschaftslehre)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile					
T-WIWI-111594	Management und Marketing		Klarmann, Lindstädt, Nieken, Terzidis		

Erfolgskontrolle(n)

Die Modulprüfung erfolgt schriftlich über die beiden Lehrveranstaltungen "Management" sowie "Marketing". Die Prüfung wird jeweils zu Beginn der vorlesungsfreien Zeit angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

Qualifikationsziele

Der/die Studierende

- besitzt grundlegende Kenntnisse in zentralen Fragestellungen der Betriebswirtschaftslehre,
- hat ein Verständnis für Probleme, Zusammenhänge und Lösungen des strategischen Managements,
- ist in der Lage zentrale Tätigkeitsbereiche, Funktionen und Entscheidungen in einer marktwirtschaftlich operierenden Unternehmung zu analysieren und zu bewerten,
- besitzt einen Überblick über wichtige marketingrelevante Fragestellungen und fundierte Ansätze zu deren Lösung.

Mit dem in den drei Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Inhalt

Es wird ein Verständnis für die grundlegenden Funktionen des Managements von Unternehmen geschaffen. Zudem werden die Grundlagen des Marketing vermittelt.

Arbeitsaufwand

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden

4.79 Modul: Markovsche Ketten [M-MATH-101323]

Verantwortung: Prof. Dr. Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	3	1

Pflichtbestandteile				
T-MATH-102258	Markovsche Ketten	6 LP	Bäuerle, Ebner, Fasen- Hartmann, Hug, Klar, Last, Trabs, Winter	

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Voraussetzungen

Das Modul Proseminar Mathematik [ProMath] muss geprüft werden.

Qualifikationsziele

Die Studierenden

- kennen ausgewählte Methoden der Konstruktion, der mathematischen Modellierung und der Analyse zeitdiskreter und zeitstetiger zufälliger Vorgänge und wenden diese an,
- · können einfache Berechnungen von Wahrscheinlichkeiten und Mittelwerten im Rahmen dieser Modelle durchführen,
- · kennen Prinzipien der Klassifikation Markovscher Ketten und können diese anwenden,
- können invariante Maße (stationäre Verteilungen) bestimmen und das Langzeitverhalten von Markov-Ketten analysieren,
- · können selbstorganisiert und reflexiv arbeiten.

Inhalt

- · Markov-Eigenschaft
- · Übergangswahrscheinlichkeiten
- Simulationsdarstellung
- Irreduzibilität und Aperiodizität
- Stationäre Verteilungen
- Ergodensätze
- Reversible Markovsche Ketten
- Warteschlangen
- Jackson-Netzwerke
- Irrfahrten
- · Markov Chain Monte Carlo
- Markovsche Ketten in stetiger Zeit
- · Übergangsintensitäten
- · Geburts-und Todesprozesse
- Poissonscher Prozess

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden

Präsenzzeit: 60 Stunden

· Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche

Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Folgende Module sollten bereits belegt worden sein:

Einführung in die Stochastik

4.80 Modul: MARS-Basispraktikum [M-INFO-101245]

Verantwortung: Prof. Dr. Hartmut Prautzsch **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

LeistungspunkteNotenskala
4Turnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
1

Pflichtbestandteile			
T-INFO-102053	MARS-Basispraktikum	4 LP	Prautzsch

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Nach erfolgreichem Besuch des MARS-Basispraktikum beherrschen die Studierenden grundlegende Algorithmen des CAGD, können sie in C++ implementieren und in kleineren Anwendungsaufgaben einsetzen. Sie haben gelernt, in kleinen Teams zusammenzuarbeiten und Aufgaben projektorientiert zu lösen.

Inhalt

Einführung in die Modellierung, Analyse, Rekonstruktion und Simulation geometrischer Daten (MARS-Geometrie:-) anhand kleiner praktischer Beispielprobleme mit klassischen Techniken des Kurven- und Flächenentwurfs, die in zahlreichen CAD-Systemen Anwendung finden. Im Rahmen des Praktikums wird mit einer C++-Klassenbibliothek gearbeitet, die um Methoden und Klassen erweitert zu erweitern ist.

Arbeitsaufwand

120 h

Empfehlungen

Siehe Teilleistung

4.81 Modul: Mechano-Informatik in der Robotik [M-INFO-100757]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
4	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch/Englisch	3	1	

Pflichtbestandteile			
T-INFO-101294	Mechano-Informatik in der Robotik	4 LP	Asfour

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Studierende verstehen die Grundlagen der synergetischen Integration von Methoden der Mechatronik, Informatik und künstlichen Intelligenz am Beispiel der humanoiden Robotik. Studierende sind vertraut mit den Grundbegriffen und Methoden des maschinellen Lernens, der Beschreibung von Roboterbewegungen und -aktionen sowie der künstlichen neuronalen Netze und deren Anwendung in der Robotik. Speziell sind sie in der Lage, grundlegende Methoden auf Problemstellungen anzuwenden und kennen relevante Werkzeuge. Anhand forschungsnaher Beispiele aus der humanoiden Robotik haben Studierende – auf eine interaktive Art und Weise – gelernt bei der Analyse, Formalisierung und Lösung von Aufgabenstellungen analytisch zu denken sowie strukturiert und zielgerichtet vorzugehen.

Inhalt

Die Vorlesung behandelt Themen an der Schnittstelle zwischen Robotik und künstlicher Intelligenz anhand aktueller Forschung auf dem Gebiet der humanoiden Robotik. Es werden grundlegende Algorithmen der Robotik und des maschinellen Lernens sowie Methoden zur Beschreibung dynamischer Systeme und zur Repräsentation von Bewegungen und Aktionen in der Robotik diskutiert. Dies umfasst eine Einführung in künstliche neuronale Netze, die Beschreibung linearer zeitinvarianter Systeme im Zustandsraum sowiedas Lernen von Bewegungsprimitiven. Die Inhalte werden anhand von praxisnahen Beispielen aus der humanoiden Robotik veranschaulicht.

Arbeitsaufwand

Vorlesung mit 2 SWS, 4 LP.

4 LP entspricht ca. 120 Stunden, davon

ca. 40 Std. Vorlesungsbesuch,

ca. 30 Std. Nachbereitung der Vorlesung

ca. 50 Std. Prüfungsvorbereitung

Empfehlungen

Der Besuch des Basispraktikums Mobile Roboter wird empfohlen.

4.82 Modul: Mensch-Maschine-Interaktion [M-INFO-100729]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)
Wahlbereich Informatik (Wahlmodule)

wantbereich informatik (wantinoutte)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-INFO-101266	Mensch-Maschine-Interaktion	6 LP	Beigl	
T-INFO-106257	Übungsschein Mensch-Maschine-Interaktion	0 LP	Beigl	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Oualifikationsziele

Lernziele: Nach Abschluss der Veranstaltung können die Studierenden

- grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
- grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
- · grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
- existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Inhalt

Themenbereiche sind:

- 1. Informationsverarbeitung des Menschen (Modelle, physiologische und psychologische Grundlagen, menschliche Sinne, Handlungsprozesse),
- 2. Designgrundlagen und Designmethoden, Ein- und Ausgabeeinheiten für Computer, eingebettete Systeme und mobile Geräte,
- 3. Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
- 4. Technische Grundlagen und Beispiele für den Entwurf von Benutzungsschnittstellen (Textdialoge und Formulare, Menüsysteme, graphische Schnittstellen, Schnittstellen im WWW, Audio-Dialogsysteme, haptische Interaktion, Gesten),
- 5. Methoden zur Modellierung von Benutzungsschnittstellen (abstrakte Beschreibung der Interaktion, Einbettung in die Anforderungsanalyse und den Softwareentwurfsprozess),
- 6. Evaluierung von Systemen zur Mensch-Maschine-Interaktion (Werkzeuge, Bewertungsmethoden, Leistungsmessung, Checklisten).
- 7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Präsenzzeit: Besuch der Vorlesung

15 x 90 min

22 h 30 min

Präsenzzeit: Besuch derÜbung

8x 90 min

12 h 00 min

Vor- / Nachbereitung der Vorlesung

15 x 150 min

37 h 30 min

Vor- / Nachbereitung derÜbung

8x 360min

48h 00min

Foliensatz/Skriptum 2x durchgehen

2 x 12 h

24 h 00 min

Prüfung vorbereiten

36 h 00 min

SUMME

180h 00 min

Arbeitsaufwand für die Lerneinheit "Mensch-Maschine-Interaktion"

Empfehlungen

Siehe Teilleistung

4.83 Modul: Methodische Grundlagen des OR [M-WIWI-101414]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** Ergänzungsfach / Operations Research

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
9	Zehntelnoten	Jedes Semester	1 Semester	3	10

Wahlpflichtangebot (Wahl: mindestens 1 Bestandteil sowie zwischen 4,5 und 9 LP)						
T-WIWI-102726	Globale Optimierung I	4,5 LP	Stein			
T-WIWI-103638	Globale Optimierung I und II	9 LP	Stein			
T-WIWI-102724	Nichtlineare Optimierung I	4,5 LP	Stein			
T-WIWI-103637	Nichtlineare Optimierung I und II	9 LP	Stein			
Ergänzungsangebot (Wahl:)						
T-WIWI-106546	Einführung in die Stochastische Optimierung	4,5 LP	Rebennack			
T-WIWI-102727	Globale Optimierung II	4,5 LP	Stein			
T-WIWI-102725	Nichtlineare Optimierung II	4,5 LP	Stein			
T-WIWI-102704	Standortplanung und strategisches Supply Chain Management	4,5 LP	Nickel			

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen(nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul "Einführung in das Operations Research"

Mindestens eine der Teilleistungen Nichtlineare Optimierung I und Globale Optimierung I muss absolviert werden.

Qualifikationsziele

Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren, insbesondere aus der nichtlinearen und aus der globalen Optimierung,
- · kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
- modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen.

Inhalt

Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren für Optimierungsprobleme mit kontinuierlichen Entscheidungsvariablen. Die Vorlesungen zur nichtlinearen Optimierung behandeln lokale Lösungskonzepte, die Vorlesungen zur globalen Optimierung die Möglichkeiten zur globalen Lösung.

Anmerkungen

Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu nachgelesen werden.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen

Kenntnisse aus den Vorlesungen "Einführung in das Operations Research I" sowie "Einführung in das Operations Research II" sind hilfreich.

4.84 Modul: Mikroprozessoren I [M-INFO-101183]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
3	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-INFO-101972	Mikroprozessoren I	3 LP	Karl

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden sollen detaillierte Kenntnisse über den Aufbau und die Organisation von Mikroprozessorsystemen in den verschiedenen Einsatzgebieten erwerben.
- Die Studierenden sollen die Fähigkeit erwerben, Mikroprozessoren für verschiedene Einsatzgebiete bewerten und auswählen zu können.
- · Die Studierenden sollen die Fähigkeit erwerben, systemnahe Funktionen programmieren zu können.
- Die Studierenden sollen Architekturmerkmale von Mikroprozessoren zur Beschleunigung von Anwendungen und Systemfunktionen ableiten, bewerten und entwerfen können.
- Die Studierenden sollen die Fähigkeiten erwerben, Mikroprozessorsysteme in strukturierter und systematischer Weise entwerfen zu können.

Inhalt

Das Modul befasst sich im ersten Teil mit Mikroprozessoren, die in Desktops und Ser vern eingesetzt werden. Ausgehend von den grundlegenden Eigenschaften dieser Rechner und dem Systemaufbau werden die Architekturmerkmale von Allzweckund Hochleistungs-Mikroprozessoren vermittelt. Insbesondere sollen die Techniken und Mechanismen zur Unterstützung von Betriebssystemfunktionen, zur Beschleunigung durch Ausnützen des Parallelismus auf Maschinenbefehlsebene und Aspekte der Speicherhierarchie vermittelt werden.

Der zweite Teil behandelt Mikroprozessoren, die in eingebetteten Systemen eingesetzt werden. Es werden die grundlegenden Eigenschaften von Mikroprozessoren, die auf spezielle Einsatzgebiete zugeschnitten sind, werden ausführlich behandelt.

Arbeitsaufwand

2 SWS + 1,5 x 2 SWS) x 15 + 15 h Vorbereitung auf mündliche Prüfung = 90 h = 3 ECTS

4.85 Modul: Mobile Computing und Internet der Dinge [M-INFO-101249]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-INFO-102061	Mobile Computing und Internet der Dinge	5 LP	Beigl

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

siehe Teilleistung

Qualifikationsziele

Mobile Computing und Internet der Dinge ermöglichen es im beruflichen und privaten Alltag ubiquitär auf Informationen und Dienste zuzugreifen. Diese Dienste reichen von Augmented-Reality Informationsdiensten über den Ad-Hoc Austausch von Daten zwischen benachbarten Smartphones bis hin zur Haussteuerung.

Ziel der Vorlesung ist es, Kenntnisse über Grundlagen, weitergehende Methoden und Techniken des Mobile Computing und des Internet der Dinge zu erwerben.

Nach Abschluss der Vorlesung können die Studierenden

- Techniken zur Gestaltung von Mobile Computing Software und Benutzerschnittstellen für Mobile Computing Anwendungen benennen, beschreiben und erklären und bewerten
- Software- und Kommunikationsschnittstellen für das Internet der Dinge und Basiskenntnisse zu Personal Area Networks (PAN) bennenen, beschreiben, vergleichen und bewerten
- selbständig Systeme für Mobile Computing und das Internet der Dinge entwerfen, Entwürfe analysieren und hewerten
- · eine adaptive Webseite entwerfen, implementieren und auf ihre Usability hin untersuchen
- eine eigene App konzipieren und implementieren, die über Bluetooth mit einem Gerät kommuniziert

Inhalt

Die Vorlesung bietet eine Einführung in Methoden und Techniken des mobile Computing und des Internet der Dinge (Internet of Things, IoT). Die Übung vertieft das in der Vorlesung erworbene Wissen in einem Praxisprojekt. Im praktischen Teil wird insbesondere die Erstellung von Benutzerschnittstellen für Anwendungen im Bereich Mobile Computing und dem Internet der Dinge sowie von Software-Apps erlernt. Die praktische Übung startet mit den Aspekten Benutzerschnittstellenentwurf und Software-Entwurf. Es begleitet dann mit kleinen Programmieraufgaben die technischen Teile der gesamte Vorlesung.

Die Vorlesung gliedert sich in folgende Themenbereiche:

Mobile Computing:

- Plattformen: SmartPhones, Tablets, Glasses
- Mensch-Maschine-Interaktion f
 ür Mobile Computing
- Software Engineering, -Projekte und Programmierung für mobile Plattformen (native Apps, HTML5)
- · Sensoren und deren Einsatz
- Plattformen und Software Engineering für das Internet der Dinge: Raspberry Pi und Arduino
- · Personal Area Networks: Bluetooth (4.0), ANT
- Home Networks: ZigBee/IEEE 802.15.4, CEBus, m-bus
- Technologien des Internet der Dinge, IoT: RFID, NFC, Auto-ID, EPC, Web of Things

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

Aktivität

Arbeitsaufwand

Präsenzzeit: Besuch der Vorlesung

15 x 90 min

22 h 30 min

Präsenzzeit: Besuch der Übung

15 x 45 min

11 h 15 min

Vor- / Nachbereitung der Vorlesung und Übung

15 x 60 min

15 h 00 min

Entwicklung einer adaptiven Webseite und einer mobilen App

41 h 15 min

Foliensatz 2x durchgehen

2 x 12 h

24 h 00 min

Prüfung vorbereiten

36 h 00 min

SUMME

150 h 00 min

Arbeitsaufwand für die Lerneinheit " Mobile Computing und Internet der Dinge"

4.86 Modul: Moderne Physik für Informatiker [M-PHYS-101340]

Verantwortung: Dr. Stefan Gieseke

Prof. Dr. Milada Margarete Mühlleitner

Einrichtung: KIT-Fakultät für Physik **Bestandteil von:** Ergänzungsfach / Physik

LeistungspunkteNotenskalaTurnusDauerLevelVersion9ZehntelnotenJedes Sommersemester1 Semester31

Pflichtbestandteile			
T-PHYS-102323	Moderne Physik für Informatiker	9 LP	Gieseke, Mühlleitner

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Klausur im Umfang von i.d.R. 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Dieses Modul muss zusammen mit dem Modul Grundlagen der Physik geprüft werden.

Oualifikationsziele

Probleme der Klassischen Physik und deren Lösung in der Modernen Physik/Konzepte der Modernen Physik. Die Studierenden sollen lernen physikalische Probleme im Rahmen der Lagrangemechanik, speziellen Relativitätstheorie und Quantenmechanik zu lösen.

Inhalt

Wiederholung Newton-Mechanik; Lagrangeformalismus; Variationsprinzipien in der Mechanik; Hamiltonformalismus;

Spezielle Relativitätstheorie (Michelson-Morley Experiment, Einstein Postulate, Lorentztransformation, Relativistische Mechanik):

Quantenmechanik (historische Experimente und Widersprüche, Schrödinger-Gleichung, eindimensionale Rechteckpotentiale, Grundpostulate der Quantenmechanik)

Empfehlungen

Grundkenntnisse Physik (Newton Mechanik, Elektrodynamik); Grundkenntnisse Analysis und Lineare Algebra

Literatur

Mechanik

- T. Fließbach, Lehrbuch zur Theoretischen Physik 1 Mechanik, Spektrum
- · W. Nolting, Grundkurs Theoretische Physik 1+2, Springer
- H. Goldstein, C. P. Poole, J. L. Safko, Klassische Mechanik, Wiley-VCH
- · L. D. Landau, E. M. Lifschitz, Lehrbuch der Theoretischen Physik I (Mechanik), Harri Deutsch

Spezielle Relativitätstheorie

- L.D. Landau, Ju.B. Rumer, Was ist die Relativitätstheorie, Teubner, Leipzig, 1985
- H. Melcher, Relativitätstheorie in elementarer Darstellung mit Aufgaben und Lösungen, Deutscher Verlag der Wissenschaften, Berlin 1984
- A. Einstein, Über spezielle und allgemeine Relativitätstheorie, Akademie Verlag, Berlin, 1969
- Walter Greiner, Spezielle Relativitätstheorie, Verlag Harri Deutsch, 1992
- E.F. Taylor, J.A. Wheeler, Spacetime Physics, W.H. Freeman & Co Ltd, 1992

Quantenmechanik

- C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantenmechanik, de Gruyter, 1999
- · A. Messiah, Quantenmechanik, de Gruyter, 1991
- J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, 1994
- F. Schwabl, Quantenmechanik, Springer, 2002
- L. Landau, E. Lifschitz, Theoretische Physik III, Verlag Harri Deutsch
- W. Nolting, Quantenmechanik I/II, Springer, 2001
- T. Fließbach, Quantenmechanik, Spektrum, Akad. Verl., 1995

4.87 Modul: Modul Bachelorarbeit [M-INFO-101721]

Verantwortung: Prof. Dr. Bernhard Beckert **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Bachelorarbeit

Leistungspunkte
15Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
3

Pflichtbestandteile				
T-INFO-103336	Bachelorarbeit	15 LP	Beckert	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

- Studierende können planvoll, zielgerichtet und selbständig ein Thema der Informatik wissenschaftlich bearbeiten. Dabei werden die Ziele i.d.R. vorgegeben.
- · Dabei sind sie in der Lage, für ihr Problem eine Literaturrecherche nach wissenschaftlichen Quellen durchzuführen.
- Studierende können dazu geeignete wissenschaftliche Verfahren und Methoden auswählen und sie systematisch anzuwenden. Wenn notwendig, passen sie sie an bzw. entwickeln sie weiter.
- Studierende können ihre Ergebnisse mit dem Stand der Forschung vergleichen und evaluieren.
- · Studierende kommunizieren ihre Ergebnisse klar und akademisch angemessen in schriftlicher und mündlicher Form.

Inhalt

- Die Bachelorarbeit ist eine schriftliche Arbeit, die zeigt, dass die Studierenden selbständig in der Lage sind, ein Problem aus ihrem Fach wissenschaftlich zu bearbeiten.
- Die Bachelorarbeit soll in höchstens 450 Stunden bearbeitet werden. Die empfohlene Bearbeitungsdauer beträgt 4 Monate, die maximale Bearbeitungsdauer, einschließlich einer Verlängerung, beträgt 5 Monate. Die Arbeit kann im Einvernehmen mit dem Betreuer auch auf Englisch geschrieben werden.
- Soll die Bachelorarbeit außerhalb der Fakultät angefertigt werden, bedarf dies der Zustimmung des Prüfungsausschusses.
- Die Bachelorarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsleistung zu bewertende Beitrag des einzelnen Studierenden deutlich unterscheidbar ist.
- Bei der Abgabe der Bachelorarbeit haben die Studierende schriftlich zu versichern, dass sieie Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittebenutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben.
- Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch den verantwortlichen Pr
 üfer und die/den Studierenden festzuhalten und dies beim Pr
 üfungsausschuss (Informatik Studiengangservice ISS) aktenkundig zu machen.

Arbeitsaufwand

Der Arbeitsaufwand für das Modul beträgt i.d.R. 450 Stunden.

4.88 Modul: Nachrichtentechnik I [M-ETIT-102103]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Informationstechnik)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
2

 Pflichtbestandteile

 T-ETIT-101936
 Nachrichtentechnik I
 6 LP | Schmalen

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 180 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studentinnen und Studenten können Probleme im Bereich der Nachrichtentechnik beschreiben und analysieren.

Durch Anwendung der erlernten Methoden können Studierende die Vorgänge in nachrichtentechnischen Systemen erfassen, beurteilen und verwendete Algorithmen und Techniken bzgl. ihrer Leistungsfähigkeit vergleichen.

Inhalt

Die Vorlesung stellt eine Einführung in die Nachrichtentechnik auf der Basis mathematischer und systemtheoretischer Grundkenntnisse dar. Das erste Kapitel behandelt Signale und Systeme im komplexen Basisband und zeigt, dass wesentliche Teile der Signalverarbeitung in der (rechentechnisch oft günstigen) äquivalenten Tiefpassdarstellung ausgeführt werden können. Im zweiten Kapitel werden die Grundbegriffe der Shannonschen Informationstheorie eingeführt, wobei besonderer Wert auf die Definitionen der Information und der Kanalkapazität gelegt wird. Im dritten Kapitel werden Übertragungskanäle der Funkkommunikation besprochen.

Das vierte Kapitel stellt die Aufgaben der Quellencodierung vor und beschreibt deren praktischen Einsatz am Beispiel der Fax-Übertragung. Die Kapitel fünf und sechs sind der Kanalcodierung gewidmet. Im ersten Teil werden, nach allgemeinen Aussagen über die Kanalcodierung, Blockcodes und im zweiten Teil Faltungscodes mit dem zu ihrer Decodierung benutzten Viterbi-Algorithmus behandelt.

Die gängigsten Modulationsverfahren werden im siebenten Kapitel besprochen, wobei ein Schwerpunkt auf die Darstellung der Phase Shift Keying (PSK-) Verfahren und des im Mobilfunk weit verbreiteten Minimum Shift Keying (MSK) gelegt wird. Der Abschnitt zur Mehrträgerübertragung wurde eingefügt, um der wachsenden Bedeutung dieser Verfahren, z.B. im Rundfunk und für drahtlose lokale Netzwerke gerecht zu werden. Kapitel acht diskutiert die Grundlagen der Entscheidungstheorie, wie sie z.B. zur Signalentdeckung mit Radar oder in der Kommunikationstechnik für Demodulatoren eingesetzt werden. Demodulatoren bilden dann auch den Inhalt des neunten Kapitels, wobei genauso wie in Kapitel sieben wieder besonders auf PSK und MSK eingegangen wird.

Kapitel zehn zeigt auf, welche Kompromisse der Entwickler eines Nachrichtenübertragungssystems eingehen muss, wenn er praktisch einsetzbare Lösungen zu erarbeiten hat. Eine besondere Rolle spielen dabei die Shannongrenze, bis zu der prinzipiell eine Übertragung mit beliebig kleiner Fehlerrate möglich ist, und die Bandbreiteneffizienz, bei den bekannten Lizenzkosten natürlich ein wichtiges Gütekriterium für eine Übertragung. Das Kapitel elf behandelt Multiple Input Multiple Output (MIMO). Die MIMO-Verfahren, die ein Mittel zur Kapazitätssteigerung in Mobilfunknetzen darstellen, sind seit einigen Jahren ein wichtiges Thema von Forschungsvorhaben. Sie befinden sich jetzt an der Schwelle zum praktischen Einsatz. Im zwölften Kapitel werden die grundsätzlichen Vielfachzugriffsverfahren in Frequenz, Zeit und Code (FDMA, TDMA und CDMA) diskutiert.

Die Kapitel 13 und 14 greifen die Problemkreise Synchronisation und Kanalentzerrung, die in fast jedem Empfänger benötigt werden, auf. Kapitel 15 gibt einen kurzen Einblick in die Welt der Netzwerke und behandelt insbesondere das Open Systems Interconnection (OSI-) Schichtenmodell der Übertragung. Die letzten drei Kapitel stellen nacheinander das Global System for Mobile Communications (GSM), das Universal Mobile Communication System (UMTS) und als Vertreter der digitalen Rundfunksysteme Digital Audio Broadcasting (DAB) vor.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

Ab WS20/21 erstmals im Wintersemester statt im Sommersemester.

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 3 h = 45 h
- 2. Vor-/Nachbereitung Vorlesung: 15 * 6 h = 90 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
- 5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt: 180 h = 6 LP

Empfehlungen

Inhalte der Höheren Mathematik I und II, Wahrscheinlichkeitstheorie und Signale und Systeme werden benötigt.

4.89 Modul: Nachrichtentechnik II [M-ETIT-100440]

Verantwortung: Dr.-Ing. Holger Jäkel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

LeistungspunkteNotenskala
4Turnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

 Pflichtbestandteile

 T-ETIT-100745
 Nachrichtentechnik II
 4 LP Jäkel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden sind in der Lage, auch komplexere Problemstellungen der Nachrichtentechnik zu analysieren. Sie können selbstständig Lösungsansätze erarbeiten und deren Gültigkeit überprüfen sowie Software zur Problemlösung einsetzen.

Die Übertragung der erlernten Methoden ermöglicht den Studierenden, auch andere Themenstellungen schnell zu erfassen und mit dem angeeigneten Methodenwissen zu bearbeiten.

Inhalt

Die Lehrveranstaltung erweitert die in der Vorlesung Nachrichtentechnik I behandelten Fragestellungen. Der Fokus liegt hierbei auf der detaillierten Analyse bekannter Algorithmen und der Einführung neuer Verfahren, die nicht in der Vorlesung Nachrichtentechnik I besprochen wurden, insbesondere aus den Bereichen System- und Kanal-Modellierung, Entzerrung und Synchronisation.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h

2. Vor-/Nachbereitung Vorlesung: 15 * 4 h = 60 h

3. Präsenzzeit Übung: 15 * 1 h = 15 h

4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h

5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt: 135 h = 4 LP

Empfehlungen

Vorheriger Besuch der Vorlesung "Nachrichtentechnik I" wird empfohlen.

4.90 Modul: Nachrichtentechnik II / Communications Engineering II [M-ETIT-105274]

Verantwortung: Dr.-Ing. Holger Jäkel

Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
Deutsch/EnglischLevel
3Version
1

Pflichtbestandteile			
T-ETIT-110697	Nachrichtentechnik II / Communications Engineering II	4 LP	Jäkel, Schmalen

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Competence Certificate

The assessment will be carried out in the form of a written exam of 120 minutes

Voraussetzungen

Kenntnis der grundlegenden Ingenieurmathematik inklusive Integraltransformationen und Wahrscheinlichkeitstheorie sowie Grundlagenwissen über die Nachrichtentechnik.

Prerequisites

Knowledge of basic engineering mathematics including integral transformations and probability theory as well as basic knowledge of communications engineering

Qualifikationsziele

Die Studierenden sind in der Lage, auch komplexere Problemstellungen der Nachrichtentechnik zu analysieren. Sie können selbstständig Lösungsansätze erarbeiten und deren Gültigkeit überprüfen sowie Software zur Problemlösung einsetzen. Die Übertragung der erlernten Methoden ermöglicht den Studierenden, auch andere Themenstellungen schnell zu erfassen und mit dem angeeigneten Methodenwissen zu bearbeiten.

Competence Goal

The students are able to analyze even more complex problems in communications engineering. You can independently develop and validate solutions and use problem-solving software. The transfer of the learned methods enables the students to quickly grasp other topics and to work on them with the appropriate methodological knowledge.

Inhalt

Die Lehrveranstaltung erweitert die in der Vorlesung Nachrichtentechnik I behandelten Fragestellungen. Der Fokus liegt hierbei auf der detaillierten Analyse bekannter Algorithmen und der Einführung neuer Verfahren, die nicht in der Vorlesung Nachrichtentechnik I besprochen wurden, insbesondere aus den Bereichen System- und Kanal-Modellierung, Entzerrung und Synchronisation.

Content

The course broadens the questions dealt with in the lecture Communication Engineering I. The focus here is on the detailed analysis of known algorithms and the introduction of new methods that were not discussed in the lecture Communications Engineering I, especially in the areas of system and channel modeling, equalization and synchronization

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Module grade calculation

The module grade is the grade of the written exam

Anmerkungen

Das Modul kann erstmalig im Sommersemester 2020 begonnen werden. Bitte beachten Sie: Die Lehrveranstaltung "Nachrichtentechnik II" findet jedes Sommersemester (ab Sommersemester 2020) statt und die englische Version "Communications Engineering II" findet jedes Wintersemester statt (ab Wintersemester 2020/2021)

Annotations

The module can be started for the first time in summer term2020. Please note: The German course "Nachrichtentechnik II" takes place every summer term(starting summer term 2020) and the English version "Communications Engineering II" takes place every winter term (starting winter term 2020/2021).

Arbeitsaufwand

- 1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
- 2. Vor-/Nachbereitung Vorlesung: 15 * 4 h = 60 h
- 3. Präsenzzeit Übung: 15 * 1 h = 15 h
- 4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
- 5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt: 135 h = 4 LP

Workload

- 1. Attendance Lecture: 15 * 2 h = 30 h
- 2. Preparation / Postprocessing Lecture: 15 * 4 h = 60 h
- 3. Presence Exercise: 15 * 1 h = 15 h
- 4. Preparation / follow-up Exercise: 15 * 2 h = 30 h
- 5. Exam preparation and presence in the same: charged in preparation / follow-up

Total: 135 h = 4 LP

Empfehlungen

Vorheriger Besuch der Vorlesung "Nachrichtentechnik I", "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" wird empfohlen.

Recommendation

Previous visit to the lecture "Communications Engineering I", "Probability Theory" and "Signals and Systems" is recommended

4.91 Modul: Optik und Festkörperelektronik [M-ETIT-105005]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Elektrotechnik)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile			
T-ETIT-110275	Optik und Festkörperelektronik	6 LP	Lemmer

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer 120-minütigen schriftlichen Prüfung zu den Inhalten der Vorlesung und Übung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden erlangen Kenntnisse über die Grundlagen der Quantenmechanik und entwickeln ein Verständnis der festkörperphysikalischen Vorgänge in elektronischen Bauelementen und Werkstoffen der Elektrotechnik und Informationstechnik.

Die Studierenden:

- verfügen über grundlegende Kenntnisse der Quantenmechanik (Schrödinger-Gleichung, Eigenzustände, Aufbau der Materie).
- besitzen grundlegende Kenntnisse der Halbleiterphysik (Bandstruktur, Transporteigenschaften, Halbleitergrundgleichungen).
- kennen die Grundlagen der Modellierung von Halbleiterbauelementen und können die erlernten mathematischen und physikalischen Methoden auf andere Bereiche übertragen.
- · haben ein Verständnis der Wirkungsweise verschiedener Halbleitermaterialien
- haben ein mikroskopisches Verständnis der Wirkungsweise einer pn-Diode.
- verstehen die Polarisierbarkeit und das Verhalten dielektrischer, piezoelektrischer und ferroelektrischer Materialien sowie ihre Bedeutung für Kondensatoren und Isolatoren.
- besitzen Grundkenntnisse zu Aufbau von und Transport in Ionenleitern und erlernen die grundlegende Modellierung und Analogien zu elektrischen Leitern.
- verstehen die grundlegenden Prozesse an Grenzflächen von Ionenleitern zu Halbleitern und Metallen und ihren Einsatz und ihre Wirkungsweise in (Doppelschicht-)Kondensatoren, Batterien und Brennstoffzellen

Inhalt

Im Rahmen der Vorlesung werden folgende Inhalte behandelt:

- · Grundlagen der Quantenmechanik
- · Elektronische Zustände
- Vom Wasserstoffatom zum Periodensystem der Elemente
- Elektronen in Kristallen
- Halbleiter
- Quantenstatistik für Ladungsträger
- Dotierte Halbleiter
- · Halbleiter im Nichtgleichgewicht
- · Der pn-Übergang
- Dielektrische, piezoelektrische und ferroelektrische Werkstoffe und deren Anwendung
- Ionenleiter
- · Elektrochemische Grenzflächen

Hinweis: Die Dozierenden behalten sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit Vorlesung/Übung/Tutorien: 70 h

Vor- und Nachbereitung, Prüfungsvorbereitung und -präsenz: 110 h

4.92 Modul: Optimierung unter Unsicherheit [M-WIWI-103278]

Verantwortung: Prof. Dr. Steffen Rebennack

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** Ergänzungsfach / Operations Research

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	1 Semester	Deutsch	3	4

Wahlpflichtangebot (Wahl: zwischen 1 und 2 Bestandteilen)					
T-WIWI-106546	Einführung in die Stochastische Optimierung	4,5 LP	Rebennack		
T-WIWI-106545 Optimierungsansätze unter Unsicherheit 4,5 LP Rebennack					
Ergänzungsangebot	(Wahl: höchstens 1 Bestandteil)				
T-WIWI-102724	Nichtlineare Optimierung I	4,5 LP	Stein		
T-WIWI-102714	Taktisches und operatives Supply Chain Management	4,5 LP	Nickel		

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Mindestens eine der beiden Teilleistungen "Optimierungsansätze unter Unsicherheit" und "Einführung in die Stochastische Optimierung" ist Pflicht.

Qualifikationsziele

Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren unter Unsicherheit, insbesondere aus der stochastischen Optimierung,
- · kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
- modelliert und klassifiziert Optimierungsprobleme unter Unsicherheit und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen, insbesondere von stochastischen Optimierungsproblemen.

Inhalt

Der Schwerpunkt des Moduls liegt auf der Modellierung und der Analyse von mathematischen Optimierungsproblemen, bei denen bestimmte Daten nicht vollständig vorhanden sind zum Zeitpunkt der Entscheidungsfindung. Die Vorlesungen zur Einführung in die stochastische Optimierung behandeln Methoden, um Verteilungsinformation in die mathematischen Modell zu integrieren. Die Vorlesungen zu den Optimierungsansätzen unter Unsicherheit bietet alternative Ansätze wie zum Beispiel robuste Optimierung.

Anmerkungen

Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://sop.ior.kit.edu/28.php nachgelesen werden.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 5 Credits ca. 150h und für Lehrveranstaltungen mit 4.5 Credits ca. 135h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen

Kenntnisse aus den Vorlesungen "Einführung in das Operations Research I" sowie "Einführung in das Operations Research II" sind hilfreich.

4.93 Modul: Optoelectronic Components [M-ETIT-100509]

Verantwortung: Prof. Dr. Wolfgang Freude

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
3Version
1

Pflichtbestandteile			
T-ETIT-101907	Optoelectronic Components	4 LP	Freude

Erfolgskontrolle(n)

Type of Examination: oral exam

Duration of Examination: approx. 30 minutes

Modality of Exam: Oral examination, usually one examination day per month during the Summer and Winter terms. An extra questions-and-answers session will be held if students wish so.

Voraussetzungen

none

Qualifikationsziele

Comprehending the physical layer of optical communication systems. Developing a basic understanding which enables a designer to read a device's data sheet, to make most of its properties, and to avoid hitting its limitations.

The students

- · understand the components of the physical layer of optical communication systems
- · acquire the knowledge of operation principles and impairments of optical waveguides
- know the basics of laser diodes, luminescence diodes and semiconductor optical amplifiers
- · understand pin-photodiodes
- · know the systems sesitivity limits, which are caused by optical and electrical noise

Inhalt

The course concentrates on the most basic optical communication components. Emphasis is on physical understanding, exploiting results from electromagnetic field theory, (light waveguides), solid-state physics (laser diodes, LED, and photodiodes), and communication theory (receivers, noise). The following components are discussed:

- Light waveguides: Wave propagation, slab waveguides, strip wave-guides, integrated optical waveguides, fibre waveguides
- Light sources and amplifiers: Luminescence and laser radiation, luminescent diodes, laser diodes, stationary and dynamic behavior, semiconductor optical amplifiers
- · Receivers: pin photodiodes, electronic amplifiers, noise

Zusammensetzung der Modulnote

The module grade is the grade of the oral exam.

Anmerkungen

There are no prerequisites, but solution of the problems on the exercise sheet, which can be downloaded as homework each week, is highly recommended. Also, active participation in the problem classes and studying in learning groups are strongly advised.

Arbeitsaufwand

total 120 h, hereof 45 h contact hours (30 h lecture, 15 h problem class), and 75 h homework and self-studies

Empfehlungen

Minimal background required: Calculus, differential equations, Fourier transforms and p-n junction physics.

Literatur

Detailed textbook-style lecture notes as well as the presentation slides can be downloaded from the IPQ lecture pages.

Agrawal, G.P.: Lightwave technology. Hoboken: John Wiley & Sons 2004

Iizuka, K.: Elements of photonics. Vol. I, especially Vol. II. Hoboken: John Wiley & Sons 2002

Further textbooks in German (also in electronic form) can be named on request.

4.94 Modul: Photovoltaische Systemtechnik [M-ETIT-100411]

Verantwortung: Dipl.-Ing. Robin Grab

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Sommersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-ETIT-100724	Photovoltaische Systemtechnik	3 LP	Grab

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

keine

Qualifikationsziele

Die Studenten kennen die theoretischer Grundlagen der Photovoltaik-Systemtechnik.

Inhalt

Es werden die Grundlagen der Photovoltaik-Systemtechnik vermittelt.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzstudienzeit: 30 h Selbststudienzeit: 60 h Insgesamt 90 h = 3 LP

4.95 Modul: Physiologie und Anatomie I [M-ETIT-100390]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
3

Pflichtbestandteile			
T-ETIT-101932	Physiologie und Anatomie I	3 LP	Nahm

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Grundverständnis über die Funktionen des menschlichen Körpers und der dabei ablaufenden Prozesse.

Inhalt

Die Vorlesung vermittelt Basiswissen über die wesentlichen Organsysteme des Menschen und die medizinische Terminologie. Sie wendet sich an Studierende technischer Studiengänge, die an physiologischen Fragestellungen interessiert sind.

Themenblöcke des ersten Teils (Wintersemester)

- Einführung- Organisationsebenen im Körper
- Grundlagen der Biochemie im Körper
- Zellaufbau, Zellphysiologie, Gewebe
- Transportmechanismen im Körper
- Neurophysiologie I (Nervenzelle, Muskelzelle, das autonome Nervensystem)
- Herz und Kreislaufsystem mit Blut und Lymphe
- Atmung

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h

Selbststudium (3 h je 15 Termine) = 45 h

Vor-/Nachbereitung = 20 h

Gesamtaufwand ca. 95 Stunden = 3 LP

4.96 Modul: Praktikum Hard- und Software in leistungselektronischen Systemen [M-ETIT-103263]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
2

Pflichtbestandteile				
T-ETIT-106498	Praktikum Hard- und Software in leistungselektronischen Systemen	6 LP	Hiller	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung.

Voraussetzungen

Die Module "M-ETIT-100402 - Workshop Schaltungstechnik in der Leistungselektronik" und "M-ETIT-100404 - Workshop Mikrocontroller in der Leistungselektronik" wurden weder begonnen noch abgeschlossen.

Qualifikationsziele

Die Studierenden kennen die für den Entwurf, den Aufbau, die Regelung und die Inbetriebnahme einer leistungselektronischen Schaltung notwendigen Entwicklungsschritte. Sie sind in der Lage, eine einfache leistungselektronische Schaltung selbstständig zu entwickeln. Sie können die Software mit den notwendigen Funktionen für einen sicheren Betrieb einer einfachen leistungselektronischen Schaltung entwerfen. Sie sind in der Lage, die Funktion zu beurteilen und zu dokumentieren.

Inhalt

Die Teilnehmer sollen den Aufbau einer Schaltung vom Design über die Inbetriebnahme bis zur Regelung an einem praktischen Beispiel selbst durchführen. Ziel ist die schrittweise Entwicklung (Schaltplanentwurf, Simulation, Regelung, Parameterbestimmung und Aufbau) eines einfachen funktionsfähigen Geräts durch jeden Teilnehmer nach Vorgaben des Dozenten. An mehreren Nachmittagen werden die einzelnen Schritte bis zur Fertigstellung des Geräts unter Betreuung durchgeführt.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfungsleistung anderer Art.

Die Notenbildung ergibt sich aus der Versuchsdurchführung, -dokumentation und Abfrage zum Verständnis der Lernninhalte

Arbeitsaufwand

Präsenzzeit (14 x 4 h): 60 h

Häusliche Vorbereitungszeit: 42 h

Erstellen des Abschlussberichts: 55 h

Insgesamt: 157 h (entspricht 6 LP)

4.97 Modul: Praktische Mathematik [M-MATH-101308]

Verantwortung: Prof. Dr. Daniel Hug

Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik **Bestandteil von:** Mathematik (Pflichtbestandteil)

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version	
9	Zehntelnoten	Jedes Semester	2 Semester	2	1	

Pflichtbestandteile					
T-MATH-102244	Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik	4,5 LP	Bäuerle, Ebner, Fasen- Hartmann, Hug, Klar, Last, Trabs, Winter		
T-MATH-102242	Numerische Mathematik für die Fachrichtung Informatik	4,5 LP	Rieder, Weiß, Wieners		
T-MATH-102243	Numerische Mathematik für die Fachrichtung Informatik, Übungsschein Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.	0 LP	Rieder, Weiß, Wieners		

Erfolgskontrolle(n)

Die Erfolgskontrolle wird in den jeweiligen Lehrveranstaltungsbeschreibungen erläutert.

Voraussetzungen

keine

Qualifikationsziele

Die Lernziele werden in der Lehrveranstaltungsbeschreibung näher erläutert.

Inhalt

Die Inhalte werden in den Lehrveranstaltungsbeschreibungen erläutert.

Zusammensetzung der Modulnote

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Kommastelle abgeschnitten.

Arbeitsaufwand

Präsenzzeit: 3x15 + 3x14 = 87 h Selbststudium: 60 + 63 = 123 h Prüfungsvorbereitung: 30 + 30 = 60 h

Empfehlungen

Für die Teilnahme an der Klausur zu Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen sollte das Modul Höhere Mathematik [M-MATH-101305] bzw. Analysis 1 und 2 [M-MATH-101306] abgeschlossen sein.

4.98 Modul: Praktische Philosophie I [M-GEISTSOZ-104507]

Verantwortung: Prof. Dr. Michael Schefczyk

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: Ergänzungsfach / Philosophie (Auswahl)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
11	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	1

Pflichtbestandteile					
	Praktische Philosophie 1.1 (Einführung/Überblick zu entw. Ethik, Politische Philosophie oder Handlungstheorie)	0 LP	Schefczyk		
T-GEISTSOZ-101081	Praktische Philosophie 1.2	0 LP	Schefczyk		
T-GEISTSOZ-101171	Praktische Philosophie 1.3	0 LP	Schefczyk		
T-GEISTSOZ-109222	Modulprüfung Praktische Philosophie I	11 LP	Schefczyk		

Erfolgskontrolle(n)

Das Bestehen der Studienleistungen in den Veranstaltungen sowie das Bestehen der Modulprüfung.

Voraussetzungen

Die Module Ars Rationalis und Grundlagen der Geschichtswissenschaft müssen für die Anmeldung zur Modulprüfung bestanden sein.

Qualifikationsziele

Die Studierenden sind in der Lage, normative Argumente fundiert zu bewerten und eigenständig zu entwickeln. Sie kennen Konzepte ethischen Urteilens und Entscheidens und können sie zur Klärung konkreter moralischer Herausforderungen einsetzen. Sie zeigen in einer selbstständig verfassten Hausarbeit, dass sie die wissenschaftlichen Standards der zeitgenössischen Praktischen Philosophie, bezogen auf ein begrenztes Thema, kennen und philosophische Urteilsfähigkeit erworben haben und – wo nötig –relevantes interdisziplinäres Kontextwissen kritisch verarbeiten können.

Inhalt

In diesem Modul sollen die Studierenden Überblick über Theorien der Praktischen Philosophie in Geschichte und Gegenwart erlangen und sich in einer durch Pluralität und interdisziplinäres Kontextwissen gekennzeichneten Diskussionslage orientieren. Sie lernen Grundbegriffe der Ethik (wie Autonomie, Pflichten, Tugenden, Verantwortung, Werte), der Politischen Philosophie (wie Freiheit, Gerechtigkeit und Gleichheit, Toleranz, Demokratie, Fortschritt und Menschenrechte) beziehungsweise der Rechts- und Sozialphilosophie (wie Autorität, Macht und Gewalt, kollektives Handeln, Verantwortung, Solidarität). Die Studierenden lernen zudem Ansätze der Begründung von Normen und Werten kennen, unter anderem durch die Lektüre klassischer Texte auf Einführungsstufe.

Arbeitsaufwand

Insgesamt 330 h: Präsenz in den Veranstaltungen ca. 90 h, Vor- und Nachbereitung einschließlich selbstständiger Lektüre empfohlener Fachliteratur 80 h, Vorbereitung der Referate bzw. Hausaufgaben 60 h, Hausarbeit ca. 100 h.

Empfehlungen

Zur Entzerrung der Prüfungsbelastung wird empfohlen, mit den Vorbereitungen der Hausarbeit bereits nach Ende der Vorlesungszeit des Wintersemesters zu beginnen.

4.99 Modul: Praxis der Software-Entwicklung [M-INFO-101176]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Praktische Informatik

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion7ZehntelnotenJedes Semester1 SemesterDeutsch31

Pflichtbestandteile			
T-INFO-102031	Praxis der Software-Entwicklung	7 LP	Snelting

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Die Studierenden lernen, ein vollständiges Softwareprojekt nach dem Stand der Softwaretechnik in Teams von 4-6 Teilnehmern durchzuführen. Ziel ist es inbesondere, Verfahren des objektorientierten Software-Entwurfs und der Qualitätssicherung praktisch einzusetzen, Implementierungskompetenz umzusetzen, und arbeitsteilig im Team zu kooperieren. Die Teilnehmer erstellen ein Pflichtenheft von ca. 30 Seiten, ein Entwurfsmodell mit ca 75 Klassen, eine Entwurfsdokumentation von ca. 80 Seiten, eine validierte Implementierung mit ca. 10000 Zeilen Quelltext, eine Implementierungs-dokumentation von ca. 15 Seiten, und eine Qualitätssicherungsdokumentation von ca 25 Seiten. Die Teilnehmer stellen ihr Projekt in einer Abschlusspräsentation (ca 15 min) vor.

Dazu werden von den betreuenden Lehrstühlen Aufgabenstellungen vorbereitet, die einen ähnlichen Umfang und ein objektorientiertes Prozessmodell gemeinsam haben, jedoch inhaltlich die Forschungsinteressen des Lehrstuhls widerspiegeln ("forschungsorientiertes Lernen"). Erfolgreiche Teilnehmer beherrschen die Erstellung eines Pflichtenheftes incl. GUI-Beispielen und Use Cases (Testfallszenarien), sowie Unterscheidung nach Muss- und Wunschfunktionalität. Sie beherrschen objektorientierten Entwurf mit UML, insbesondere Klassendiagramm und Sequenzdiagramm; sowie die Darstellung der Systemarchitektur, der Methoden-spezifikationen und die Umsetzung der Testfallszenarien im Entwurfsdokument. Sie beherrschen Techniken der Modularisierung (Kohäsion, Kopplung, Lokalitätsprinzip etc) sowie den Ersatz von Fallunterscheidung durch dynamische Bindung. Sie können Techniken der informellen und evtl. formalen Spezifikation anwenden und beurteilen, und Entwurf/Klassendiagramm anhand softwaretechnischer Kriterien begründen.

Erfolgreiche Teilnehmer beherrschen die arbeitsteilige Implementierung des Entwurfs durch profunde Kenntnis einer objektorientierten Sprache (vgl. Veranstaltung "Programmieren"), der dazugehörigen (aufgabenspezifischen) Werkzeuge und Bibliotheken, und durch integrierte Techniken zur Qualitätssicherung. Sie können ihr System mittels Komponententest (zB Junit), Überdeckungstests (zB JCov), Integrationstests und evtl. formalen Verifikation kritischer Komponenten validieren. Sie können Systemanforderungen bewerten und ggf. den Entwurf nachträglich anpassen. Sie kennen ggf. agile Techniken zur (zB Pair und Implementierung Programming). Sie stellen Änderungen an Pflichtenheft Entwurf Implementierungsdokument dar, und bewerten die Systemqualität anhand von Statistiken (u.a. Testfall-Überdeckungsmaße) und Analysen gefundener Fehler im Qualitätssicherungsdokument.

Die Teilnehmer präsentieren zum Schluss ihr Projekt so, dass sowohl ein einprägsamer Gesamteindruck des erstellten Systems entsteht, als auch softwaretechnische Details nebst Erfahrungen der Teamarbeit sichtbar werden.

Inhalt

Erstellung des Pflichtenheftes incl. Verwendungsszenarien - Objektorientierter Entwurf nebst Feinspezifikation - Implementierung in einer objektorierten Sprache - Funktionale Tests und Überdeckungstests - Einsatz vonWerkzeugen (z.B. Eclipse, UML, Java, Junit, Jcov) - Präsentation des fertigen Systems

Arbeitsaufwand

6 SWS entspricht ca 180 Arbeitsstunden pro Teilnehmer, davon:

ca 25 Std Erstellung des Pflichtenheftes

ca 50 Std Erstellung des Entwurfsdokument

ca 50 Std Implementierung

ca 50 Std integrierte Qualitätssicherung

ca 5 Std Erstellung/ Vorbereitung der Abschlusspräsentation.

Der gesamte Projektaufwand ist incl. TSE für ein 5-er Team also ca. 1200 Arbeitsstunden

Empfehlungen

Siehe Teilleistung.

Lehr- und Lernformen

Das Praktikum gliedert sich in die Phasen Pflichtenheft, Entwurf und Feinspezifikation, Implementierung, Qualitätssicherung, Abschlusspräsentation. Alle Phasen werden nach dem Stand der Softwaretechnik objektorientiert und werkzeugunterstützt durchgeführt. Zu jeder Phase muss das entsprechende Artefakt (Pflichtenheft, UML-Diagramme mit Erläuterungen, vollständiger Java-Quellcode, Testprotokolle, laufendes System) in einem Kolloquium präsentiert werden. Das vollständige System wird von den Betreuern auf Funktionalität, Bedienbarkeit und Robustheit geprüft.

4.100 Modul: Produktion, Logistik und Wirtschaftsinformatik [M-WIWI-105770]

Verantwortung: Prof. Dr. Wolf Fichtner

Prof. Dr. Andreas Geyer-Schulz Prof. Dr. Alexander Mädche Prof. Dr. Stefan Nickel Prof. Dr. Frank Schultmann Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Pflicht Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile					
T-WIWI-111602	Produktion, Logistik und Wirtschaftsinformatik		Fichtner, Geyer- Schulz, Mädche, Nickel, Schultmann, Weinhardt		

Erfolgskontrolle(n)

Die Modulprüfung erfolgt schriftlich über die beiden Lehrveranstaltungen "Wirtschaftsinformatik" sowie "Produktion und Logistik". Die Prüfung wird jeweils zu Beginn der vorlesungsfreien Zeit angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

Oualifikationsziele

Der/die Studierende

- besitzt grundlegende Kenntnisse des Zusammenspiels von Informationstechnologien, Menschen und Organisationsstrukturen,
- ist vertraut mit den Strukturen von Informationssystemen,
- · beherrscht die wesentlichen Konzepte, Theorien und Methoden der Produktionswirtschaft,
- · hat ein Verständnis für Probleme, Zusammenhänge und Lösungen der Logistikprozesse von Unternehmen.

Mit dem in den drei Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Inhalt

Es werden die Grundlagen der Wirtschaftsinformatik vermittelt. Zudem wird in den Bereich Produktionswirtschaft und Logistik eingeführt.

Arbeitsaufwand

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden

4.101 Modul: Programmieren [M-INFO-101174]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner

Einrichtung: KIT-Fakultät für Informatik **Bestandteil von:** Praktische Informatik

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

T-INFO-102031 - Praxis der Software-Entwicklung

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version	
5	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch	1	1	

Pflichtbestandteile					
T-INFO-101967	Programmieren Übungsschein	0 LP	Koziolek, Reussner		
T-INFO-101531	Programmieren	5 LP	Koziolek, Reussner		

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Studierende

- beherrschen grundlegende Strukturen und Details der Programmiersprache Java, insbesondere Kontrollstrukturen, einfache Datenstrukturen, Umgang mit Objekten;
- beherrschen die Implementierung nichttrivialer Algorithmen sowie grundlegende Programmiermethodik und elementare Softwaretechnik;
- haben die Fähigkeit zur eigenständigen Erstellung mittelgroßer, lauffähiger Java-Programme, die einer automatisierten Qualitätssicherung (automatisches Testen anhand einer Sammlung geheimer Testfälle, Einhaltung der Java Code Conventions, Plagiatsprüfung) standhalten.

Studierende beherrschen den Umgang mit Typen und Variablen, Konstruktoren und Methoden, Objekten und Klassen, Interfaces, Kontrollstrukturen, Arrays, Rekursion, Datenkapselung, Sichtbarkeit und Gültigkeitsbereichen, Konvertierungen, Containern und abstrakten Datentypen, Vererbung und Generics, Exceptions. Sie verstehen den Zweck dieser Konstrukte und können beurteilen, wann sie eingesetzt werden sollen. Sie kennen erste Hintergründe, wieso diese Konstrukte so in der Java-Syntax realisiert sind.

Studierende können Programme von ca 500 – 1000 Zeilen nach komplexen, präzisen Spezifikationen entwickeln; dabei können sie nichttriviale Algorithmen und Programmiermuster anwenden und (nicht-grafische) Benutzerinteraktionen realisieren. Studierende können Java-Programme analysieren und beurteilen, auch nach methodische Kriterien.

Studierende beherrschen grundlegende Kompetenzen zur Arbeitsstrukturierung und Lösungsplanung von Programmieraufgaben.

Inhalt

- · Objekte und Klassen
- Typen, Werte und Variablen
- Methoden
- Kontrollstrukturen
- Rekursion
- Referenzen, Listen
- · Vererbung
- Ein/-Ausgabe
- Exceptions
- Programmiermethodik
- · Implementierung elementarer Algorithmen (z.B. Sortierverfahren) in Java

Anmerkungen

Siehe Teilleistung.

Arbeitsaufwand

Vorlesung mit 2 SWS und Übung 2 SWS, plus zwei Abschlussaufgaben, 5 LP.

- 5 LP entspricht ca. 150 Arbeitsstunden, davon
- ca. 30 Std. Vorlesungsbesuch,
- ca. 30 Std. Übungsbesuch,
- ca. 30 Std. Bearbeitung der Übungsaufgaben,
- ca. 30 Std für jede der beiden Abschlussaufgaben.

4.102 Modul: Programmierparadigmen [M-INFO-101179]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Praktische Informatik

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile				
T-INFO-101530	Programmierparadigmen	6 LP	Snelting	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Studierende beherrschen

- Grundlagen und Anwendung von funktionaler Programmierung, Logischer Programmierung, Parallelprogrammierung;
- · elementare Grundlagen des Übersetzerbaus.

Insbesondere beherrschen die Studierenden das Entwickeln kleiner bis mittelgroßer Haskell-Programme (incl. Funktionen höherer Ordnung, Kombinatoren, Polymorphismus, unendlichen Listen, Monaden), ebenso das Entwickeln kleiner bis mittelgroßer Prolog-Programme (insbesondere einfache regelbasierte Systeme sowie kombinatorische Suchaufgaben).

Studierende können die Grundlagen des Lambda-Kalküls erläutern und anwenden (insbesondere Reduktionsregeln, Church-Zahlen, Fixpunktkombinator, Turing-Mächtigkeit, Lazy Evaluation).

Studierende verstehen Unifikation und das Resolutionsprinzip, und können den Robinson- Unifikationsalgorithmus anwenden.

Studierende verstehen die polymorphe Typinferenz nach Milner (incl. Typisierungsregeln, Typabstraktion nebst Implementierung in Prolog) und können einfache funktionale Programme mit den Typinferenzregeln analysieren.

In der Parallelprogrammierung beherrschen Studierende verschiedene Konzepte wie Fäden (Threads), Nachrichtenaustausch (Message-Passing), um Algorithmen selbstständig zu parallelisieren und zu implementieren. Studierende verstehen Konzepte der Synchronität und Asynchronität und deren Umsetzung in verschiedenen Sprachen und Standards.

Studierende können, aufbauend auf Java-Kenntnissen C-Programme lesen und verstehen, und beherrschen Zeiger-Arithmetik und C-Typdeklarationen.

Studierende lernen Verträge gemäß "Design-by-contract" für Methoden zu spezifizieren und verstehen die Vorteile und Grenzen dieses Entwurfsprinzips.

Studierende verstehen den Aufbau eines Compilers, und verstehen die Grundlagen der lexikalischen Analyse sowie der LL(1) Syntaxanalyse. Sie können zu einfachen kontextfreien Grammatiken einen Parser mit rekursivem Abstieg nebst Aufbau des abstrakten Syntaxbaums entwickeln. Studierende können Java Bytecode analysieren, und Zwischencodeerzeugung nach

Ershov auf kleine Java-Beispiele anwenden.

Studierende können die Relevanz der verschiedenen vorgestellten Programmiersprachen und -techniken beurteilen.

Inhalt

Die Teilnehmer sollen nichtimperative Programmierung und ihre Anwendungsgebiete kennenlernen. Im einzelnen werden behandelt:

- 1. Funktionale Programmierung rekursive Funktionen und Datentypen, Funktionen höherer Ordnung, Kombinatoren, lazy Evaluation, lambda-Kalkül, Typsysteme, Anwendungsbeispiele.
- 2. Logische Programmierung Terme, Hornklauseln, Unifikation, Resolution, regelbasierte Programmierung, constraint logic programming, Anwendungen.
- 3. Parallelprogrammierung message passing, verteilte Software, Aktorkonzept, Anwendungsbeispiele.
- 4. Design-by-Contract: Konzept, Anwendung und Grenzen
- 5. Elementare Grundlagen des Compilerbaus.

Es werden folgende Programmiersprachen (teils nur kurz) vorgestellt: Haskell, Scala, Prolog, CLP, C++, X10, Java Byte Code

Arbeitsaufwand

Vorlesung 3 SWS und Übung 1 SWS, plus Nachbereitung/Prüfungsvorbereitung, 6 LP. 6 LP entspricht ca. 180 Arbeitsstunden, davon

- ca. 45 Std. Vorlesungsbesuch
- ca. 15 Std. Nachbearbeitung
- ca. 15 Std. Übungsbesuch
- ca. 15 Std. Tutoriumsbesuch
- ca. 45 Std. Bearbeitung Übungsaufgaben
- ca. 2 Std. schriftliche Prüfung (120 Minuten)
- ca. 43 Std. Prüfungsvorbereitung

Empfehlungen

Siehe Teilleistung.

4.103 Modul: Proseminar [M-INFO-101181]

Verantwortung: Prof. Dr. Bernhard Beckert **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Pflichtbestandteil)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Semester1 SemesterDeutsch21

Pflichtbestandteile			
T-INFO-101971	Proseminar	3 LP	Beckert

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

- Studierende können grundlegende Themen der Informatik (in einem speziellen Fachgebiet) wissenschaftlich behandeln.
- Dabei können Studierende die Schritte von der einfache Literaturrecherche bis auf die Aufbereitung der Ergebnisse in schriftlicher und mündlicher Form anwenden.
- Studierende sind in der Lage Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Zusammenhänge in kurzer Form zu kommunizieren.
- · Studierende können wissenschaftliche Ergebnisse schriftlich und mu ndlich wiedergeben.

Inhalt

Das Proseminarmodul behandelt in den angebotenen Proseminaren spezifische Themen, die teilweise in entsprechenden Vorlesungen angesprochen wurden und vertieft diese.

Das Proseminar bereitet für die Bachelorarbeit vor.

Arbeitsaufwand

Der Arbeitsaufwand beträgt i.d.R. 90 Stunden. Davon sind ca. 30 Stunden zur Vor- und Nachbereitung der Präsenzveranstatlungen, ca. 20 Stunden für die schriftliche Ausarbeitung, ca. 20 Stunden für die Literaturrecherche und ca. 20 Stunden für den eigenen Vortrag.

Empfehlungen

Siehe Teilleistung.

4.104 Modul: Proseminar Mathematik [M-MATH-101313]

Verantwortung: PD Dr. Stefan Kühnlein **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
3	Zehntelnoten	Jedes Semester	1 Semester	3	1

Pflichtbestandteile			
T-MATH-103404	Proseminar Mathematik	3 LP	Kühnlein

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt unbenotet als Erfolgskontrolle anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen

Das Modul Proseminar Mathematik [IN3MATHPS] muss im Ergänzungsfach Mathematik geprüft werden.

Qualifikationsziele

- Die Studierenden erhalten eine erste Einführung in das wissenschaftliche Arbeiten auf einem speziellen Fachgebiet.
- Die Bearbeitung der Proseminar-/Seminararbeit bereitet zudem auf die Abfassung der Bachelorarbeit vor.
- Mit dem Besuch der Proseminar-/Seminarveranstaltungen werden neben Techniken des wissenschaftlichen Arbeitens auch Schlüsselqualifikationen integrativ vermittelt.

Inhalt

Das Modul behandelt in den angebotenen Proseminaren/Seminaren spezifische Themen, die teilweise in entsprechenden Vorlesungen angesprochen wurden und vertieft diese.

Arbeitsaufwand

Arbeitsaufwand insgesamt: 90 h Präsenzstudium: 30 h Eigenstudium: 60 h

4.105 Modul: Radiation Protection [M-ETIT-100562]

Verantwortung: Prof. Dr. Olaf Dössel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
EnglischLevel
3Version
3

Pflichtbestandteile			
T-ETIT-100825	Radiation Protection	3 LP	Dössel

Erfolgskontrolle(n)

Success control is carried out as part of an overall written examination (2 h).

Voraussetzungen

none

Oualifikationsziele

Basic understanding of radiation and radiation effects and the basic principles of radiation protection with ionizing radiation.

Inhalt

Introduction to radiation protection The lecture deals with the basics of radiation protection (for ionizing radiation) and gives an overview of the field. The topics covered are:

- · Radiation and radiation applications,
- · Interaction of radiation with matter.
- Measurement of radiation principles and detectors,
- Biological effects of radiation, Dosimetry (external and internal exposures),
- · Legal aspects (legal regulations, ethics) and
- · Radiation protection principles and applications

Zusammensetzung der Modulnote

The module grade is the grade of the written exam.

Arbeitsaufwand

Each credit point corresponds to approximately 25-30 hours of work (of the student). This is based on the average student who achieves an average performance. The workload includes:

Attendance time in lectures (2 h 15 appointments each) = 30 h

Self-study (3 h 15 appointments each) = 45 h

Preparation / post-processing = 20 h

Total effort approx. 95 hours = 3 LP

4.106 Modul: Real Estate Management [M-WIWI-101466]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	2 Semester	Deutsch	3	2

Pflichtbestandteile				
T-WIWI-102744 Real Estate Management I 4,5 LP Lützkendorf				
T-WIWI-102745	Real Estate Management II	4,5 LP	Lützkendorf	

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Qualifikationsziele

Der/die Studierende

- besitzt einen Überblick über die verschiedenen Facetten und Zusammenhänge innerhalb der Immobilienwirtschaft, über die wesentlichen Entscheidungen im Lebenszyklus von Immobilien und über die Sichten und Interessen der am Bau Beteiligten,
- kann die im bisherigen Studium erlernten Verfahren und Methoden der Betriebswirtschaftslehre auf Problemstellungen aus dem Bereich der Immobilienwirtschaft übertragen und anwenden.

Inhalt

Die Bau-, Wohnungs- und Immobilienwirtschaft bietet den Absolventen des Studiengangs interessante Aufgaben sowie gute Arbeits- und Aufstiegschancen. Das Lehrangebot gibt einen Einblick in die volkswirtschaftliche Bedeutung der Branche, erörtert betriebswirtschaftliche Fragestellungen im Immobilien- und Wohnungsunternehmen und vermittelt die Grundlagen für das Treffen von Entscheidungen im Lebenszyklus von Gebäuden sowie beim Management von Gebäudebeständen. Innovative Betreiber- und Finanzierungsmodelle werden ebenso dargestellt wie aktuelle Entwicklungen bei der Betrachtung von Immobilien als Asset-Klasse. Das Lehrangebot eignet sich insbesondere auch für Studierende, die volkswirtschaftliche, betriebswirtschaftliche oder finanzierungstechnische Fragestellungen in der Bau- und Immobilienbranche bearbeiten möchten.

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Empfehlungen

Es wird eine Kombination mit dem Modul*Bauökologie*empfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- · Finanzwirtschaft und Banken
- Versicherungen
- Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion, Facility Management)

4.107 Modul: Rechnerstrukturen [M-INFO-100818]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)

Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-INFO-101355	Rechnerstrukturen	6 LP	Karl

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende ist in der Lage,

- grundlegendes Verständnis über den Aufbau, die Organisation und das Operationsprinzip von Rechnersystemen zu erwerben.
- aus dem Verständnis über die Wechselwirkungen von Technologie, Rechnerkonzepten und Anwendungen die grundlegenden Prinzipien des Entwurfs nachvollziehen und anwenden zu können,
- · Verfahren und Methoden zur Bewertung und Vergleich von Rechensystemen anwenden zu können,
- grundlegendes Verständnis über die verschiedenen Formen der Parallelverarbeitung in Rechnerstrukturen zu erwerben.

Insbesondere soll die Lehrveranstaltung die Voraussetzung liefern, vertiefende Veranstaltungen über eingebettete Systeme, moderne Mikroprozessorarchitekturen, Parallelrechner, Fehlertoleranz und Leistungsbewertung zu besuchen und aktuelle Forschungsthemen zu verstehen.

Inhalt

Der Inhalt umfasst:

- · Einführung in die Rechnerarchitektur
- Grundprinzipien des Rechnerentwurfs: Kompromissfindung zwischen Zielsetzungen, Randbedingungen, Gestaltungsgrundsätzen und Anforderungen
- · Leistungsbewertung von Rechensystemen
- Parallelismus auf Maschinenbefehlsebene: Superskalartechnik, spekulative Ausführung, Sprungvorhersage, VLIW-Prinzip, mehrfädige Befehlsausführung
- Parallelrechnerkonzepte, speichergekoppelte Parallelrechner (symmetrische Multiprozessoren, Multiprozessoren mit verteiltem gemeinsamem Speicher), nachrichtenorientierte Parallelrechner, Multicore-Architekturen, parallele Programmiermodelle
- Verbindungsnetze (Topologien, Routing)
- Grundlagen der Vektorverarbeitung, SIMD, Multimedia-Verarbeitung
- · Energie-effizienter Entwurf
- · Grundlagen der Fehlertoleranz, Zuverlässigkeit, Verfügbarkeit, Sicherheit

Arbeitsaufwand

((4 + 1,5*4)*15 + 15) / 30 = 165 / 30 = 5,5 = 6 ECTS

Empfehlungen

Siehe Teilleistung

4.108 Modul: Risk and Insurance Management [M-WIWI-101436]

Verantwortung: Prof. Dr. Ute Werner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
9	Zehntelnoten	Jedes Semester	2 Semester	3	1

Pflichtbestandteile				
T-WIWI-102603 Principles of Insurance Management 4,5 LP Werner				
T-WIWI-102608	Enterprise Risk Management	4,5 LP	Werner	

Erfolgskontrolle(n)

Das Modul kann ab 01.10.2017 (Wintersemester 2017/2018) nicht mehr neu begonnen werden.

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls. Die Lehrveranstaltungen werden durch Vorträge und entsprechende Ausarbeitungen im Rahmen der Vorlesungen geprüft. Zudem findet eine abschließende mündliche Prüfung statt.

Die Note der jeweiligen Teilprüfung setzt sich je zu 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und zu 50% aus der mündlichen Prüfung zusammen. Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Nur in Kombination mit dem Modul Grundlagen der BWL prüfbar.

Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWL [IN3WWBWL] prüfbar.

Qualifikationsziele

Der/die Studierende

- kann unternehmerische Risiken identifizieren, analysieren und bewerten.
- ist in der Lage, geeignete Strategien und Maßnahmenbündel für das operationale Risikomanagement zu entwerfen
- kann die Funktion von Versicherungsschutz als risikopolitisches Mittel auf einzel- und gesamtwirtschaftlicher Ebene einschätzen,
- kennt und versteht die rechtlichen Rahmenbedingungen und Techniken der Produktion von Versicherungsschutz sowie weiterer Leistungen von Versicherungsunternehmen (Risikoberatung, Schadenmanagement).

Inhalt

Das Modul führt in die verschiedenen Funktionen von Versicherungsschutz auf einzel- und gesamtwirtschaftlicher Ebene ein, sowie in die rechtlichen Rahmenbedingungen und die Technik der Produktion von Versicherungsschutz. Ferner werden Kenntnisse vermittelt, die der Identifikation, Analyse und Bewertung unternehmerischer Risiken dienen. Darauf aufbauend diskutieren wir Strategien und Maßnahmen zur Optimierung des unternehmensweiten Chancen- und Gefahrenpotentials, unter Berücksichtigung bereichsspezifischer Ziele zur Optimierung der Risikotragfähigkeit und –akzeptanz.

Anmerkungen

Bitte beachten Sie:

- Die Prüfung T-WIWI-102603 Principles of Insurance Management wird für Erstschreiber letztmalig im Sommersemester 2017 angeboten.
- Die Prüfung T-WIWI-102608 Enterprise Risk Management wird für Erstschreiber letztmalig im Wintersemester 2017/2018 angeboten.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.109 Modul: Robotik I - Einführung in die Robotik [M-INFO-100893]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)

Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
3

Pflichtbestandteile				
T-INFO-108014	Robotik I - Einführung in die Robotik	6 LP	Asfour	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Studierende sind in der Lage die vorgestellten Konzepte auf einfache und realistische Aufgaben aus der Robotik anzuwenden. Dazu zählt die Beherrschung und Herleitung der für die Robotermodellierung relevanten mathematischen Konzepte. Weiterhin beherrschen Studierende die kinematische und dynamische Modellierung von Robotersystemen, sowie die Modellierung und den Entwurf einfacher Regler.

Die Studierenden kennen die algorithmischen Grundlagen der Bewegungs- und Greifplanung und können diese Algorithmen auf Problemstellungen der Robotik anwenden. Sie kennen Algorithmen aus dem Bereich der Bildverarbeitung und sind in der Lage, diese auf Problemstellungen der Robotik anzuwenden. Sie können Aufgabenstellungen als symbolisches Planungsproblem modellieren und lösen. Die Studierenden besitzen Kenntnisse über intuitive Programmierverfahren für Roboter und kennen Verfahren zum Programmieren und Lernen durch Vormachen.

Inhalt

Die Vorlesung vermittelt einen Überblick über die Grundlagen der Robotik am Beispiel von Industrierobotern, Service-Robotern und autonomen humanoiden Robotern. Dabei wird ein Einblick in alle relevanten Themenbereiche gegeben. Dies umfasst Methoden und Algorithmen zur Modellierung von Robotern, Regelung und Bewegungsplanung, Bildverarbeitung und Roboterprogrammierung. Zunächst werden mathematische Grundlagen und Methoden zur kinematischen und dynamischen Robotermodellierung, Trajektorienplanung und Regelung sowie Algorithmen der kollisionsfreien Bewegungsplanung und Greifplanung behandelt. Anschließend werden Grundlagen der Bildverarbeitung, der intuitiven Roboterprogrammierung insbesondere durch Vormachen und der symbolischen Planung vorgestellt.

In der Übung werden die theoretischen Inhalte der Vorlesung anhand von Beispielen weiter veranschaulicht. Studierende vertiefen ihr Wissen über die Methoden und Algorithmen durch eigenständige Bearbeitung von Problemstellungen und deren Diskussion in der Übung. Insbesondere können die Studierenden praktische Programmiererfahrung mit in der Robotik üblichen Werkzeugen und Software-Bibliotheken sammeln.

Anmerkungen

Dieses Modul darf nicht gerprüft werden, wenn im Bacherlor-Studiengang Informatik SPO 2008 die Lehrveranstaltung **Robotik I** mit **3 LP** im Rahmen des Moduls **Grundlagen der Robotik** geprüft wurde.

Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung.

6 LP entspricht ca. 180 Stunden

ca. 45 Std. Vorlesungsbesuch,

ca. 15 Std. Übungsbesuch,

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

Empfehlungen

Siehe Teilleistung.

4.110 Modul: Schlüsselqualifikationen [M-INFO-101723]

Verantwortung: Prof. Dr. Bernhard Beckert

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Überfachliche Qualifikationen

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	best./nicht best.	Jedes Semester	1 Semester	Deutsch	2	5

SQ- Bachelor (Wahl: mind. 4 LP)						
T-INFO-102068	Teamarbeit im Bereich Web-Anwendungen	2 LP	Abeck			
T-INFO-104385	Teamarbeit im Bereich Serviceorientierte Architekturen	2 LP	Abeck			
T-INFO-101976	Projektmanagement aus der Praxis	1,5 LP	Böhm			
T-INFO-101975	Praxis der Unternehmensberatung	1,5 LP	Böhm			
T-INFO-101977	Praxis des Lösungsvertriebs	1,5 LP	Böhm			
T-INFO-109862	Eine Einführung zum Informatikstudium am KIT (eezi)	1 LP	Beckert, Glaubitz, Koziolek, Reussner, Worsch			
T-INFO-110998	Projektmanagement im Zeitalter der Digitalisierung	3 LP	Asfour, Kaiser			
T-INFO-111474	Selbstverbuchung-HOC-SPZ-ZAK-benotet	1 LP				
T-INFO-111475	Selbstverbuchung-HOC-SPZ-ZAK-benotet	2 LP				
T-INFO-111476	Selbstverbuchung-HOC-SPZ-ZAK-benotet	3 LP				
T-INFO-111477	Selbstverbuchung-HOC-SPZ-ZAK-unbenotet	1 LP				
T-INFO-111478	Selbstverbuchung-HOC-SPZ-ZAK-unbenotet	2 LP				
T-INFO-111479	Selbstverbuchung-HOC-SPZ-ZAK-unbenotet	3 LP				

Erfolgskontrolle(n)

Siehe Teilleistungen

Voraussetzungen

Siehe Teilleistungen

Qualifikationsziele

Lernziele lassen sich in in drei Hauptkategorien einteilen, die sich wechselseitig ergänzen:

1. Orientierungswissen

- Die Studierenden werden sich der kulturellen Prägung ihrer Position bewusst und sind in der Lage, die Sichtweisen und Interessen anderer (über Fach-, Kultur- und Sprachgrenzen hinweg) zu berücksichtigen.
- Sie erweitern ihre Fähigkeiten, sich an wissenschaftlichen oder öffentlichen Diskussionen sachgerecht und angemessen zu beteiligen.

2. Praxisorientierung

- Studierende erhalten Einsicht in die Routinen professionellen Handelns.
- Sie entwickeln ihre Lernfähigkeit weiter.
- Sie erweitern durch Ausbau ihrer Fremdsprachenkenntnisse ihre Handlungsfähigkeit.
- · Sie können grundlegende betriebswirtschaftliche und rechtliche Sacherverhalte mit ihrem Erfahrungsfeld verbinden.

3. Basiskompetenzen

- Die Studierenden können geplant und zielgerichtet sowie methodisch fundiert selbständig neues Wissen erwerben und dieses bei der Lösung von Aufgaben und Problemen einsetzen.
- · Sie können die eigene Arbeit auswerten.
- Sie verfügen über effiziente Arbeitstechniken, können Prioritäten setzen, Entscheidungen treffen und Verantwortung übernehmen.

Inhalt

Das House of Competence (HoC) ist die zentrale, forschungsbasierte Einrichtung im Bereich fachübergreifender Kompetenzentwicklung am KIT und bietet Studierenden aller Fachrichtungen ein breites Lernportfolio. Das HoC-Seminarprogramm ist in Schwerpunkte gegliedert, die auf die Entwicklung fachübergreifender Kompetenzen für Studium und Beruf abzielen. Die Schwerpunkte werden maßgeblich von den drei HoC-Laboren verantwortet: dem MethodenLABOR, LernLABOR und SchreibLABOR.

Die Lehrveranstaltungen des HoC-Programms können in den Bereichen "Schlüsselqualifikationen" (SQ), "Berufsfeldorientierte Zusatzqualifikationen" (BOZ) sowie im "Modul Personale Kompetenz" für Lehramtsstudierende (MPK) angerechnet werden. Die Anforderungen für die jeweiligen Studiengänge sind in den gültigen Prüfungs- und Studienordnungen nachzulesen. Das aktuelle Seminarprogramm, welches zu jedem Semester neu erscheint, ist auf der HoC-Homepage unter www.hoc.kit.edu zu finden.

Anmerkungen

Deutschkurse und/oder Sprachkurse in der Muttersprache werden nicht als Schlüsselqualifikationen anerkannt.

Es können nur solche Prüfungs- und Studienleistungen angerechnet werden, die nicht in den Informatik- oder Ergänzungsfächer belegt werden können. Teilnahmebescheinigungen werden nicht akzeptiert.

Arbeitsaufwand

Jeder Leistungspunkt (Credit) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

- 1. Präsenzzeit in Vorlesungen, Übungen
- 2. Vor-/Nachbereitung derselbigen
- 3. Klausurvorbereitung und Präsenz in selbiger.

4.111 Modul: Seminar Batterien I [M-ETIT-105319]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Semester1 SemesterDeutsch/Englisch31

Pflichtbestandteile			
T-ETIT-110800	Seminar Batterien I	3 LP	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von einer schriftlichen Ausarbeitung und einem Seminarvortrag. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Qualifikationsziele

Nach Abschluss des Seminars sind die Studierenden in der Lage sich selbstständig in eine ingenieurswissenschaftliche Fragestellung im Themengebiet Batterien einzuarbeiten, die zugehörige Literatur zu analysieren und diese in Form einer schriftlichen Ausarbeitung sowie einer Präsentation vorzustellen.

Inhalt

Das Seminar "Batterien I" richtet sich in erster Linie an Studierende im Bachelorstudiengang, die planen, eine Bachelorarbeit im Forschungsgebiet Batterien durchzuführen.

In diesem Seminar werden von den Teilnehmern wissenschaftliche Fragestellungen im Themengebiet Batterien bearbeitet. Dies umfasst in der Regel eine Literaturrecherche, die Zusammenstellung der in den Veröffentlichungen beschriebenen Methoden, Verfahren und Ergebnisse sowie eine kritische Bewertung derselben. Im Einzelfall können neben einer Literaturrecherche auch andere, praxisnahe Themen bearbeitet werden.

Die Ergebnisse werden in einer Seminararbeit zusammengefasst und im Rahmen des Seminars in einem Vortrag präsentiert. In die Benotung der Arbeit fließt die schriftliche Ausarbeitung sowie ein Vortrag, der im Rahmen der Veranstaltung zu halten ist. ein.

Zusammensetzung der Modulnote

In die Modulnote gehen die Beurteilung der schriftlichen Ausarbeitung und des Seminarvortrags ein. Nähere Angaben erfolgen zu Beginn der Veranstaltung.

Arbeitsaufwand

- 1. Präsenszeit Seminar: 15 * 2 h = 30 h
- 2. Erstellung Seminararbeit: 30 h
- 3. Erstellung Seminarvortrag: 30 h

Insgesamt: 90 h = 3 LP

4.112 Modul: Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung [M-ETIT-100397]

Verantwortung: Dr.-Ing. Klaus-Peter Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

KIT-Fakultät für Informatik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	3	1

Pflichtbestandteile				
T-ETIT-100714	Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung	4 LP	Becker	

Erfolgskontrolle(n)

Endvortrag, ca. 20-30 min mit anschließender Fragerunde.

Bewertet werden:

Folienqualität (Form und Inhalt) Vortrag (Aufbau, Stil, Inhalt) Verhalten bei der Fragerunde

Voraussetzungen

keine

Qualifikationsziele

Die Teilnehmer sind in der Lage, den aktuellen Stand der Technik des Fachgebiets "Leistungselektronik in Systemen der regenerativen Energieerzeugung" durch selbständige Literatursuche und Literaturstudium zu erschließen.

Sie erarbeiten eine komprimierte Darstellung der wesentlichen Fakten und Zusammenhänge. Sie beherrschen die persönlichen und technischen Aspekte der Präsentationstechnik. Sie sind in der Lage, die Ergebnisse in einem öffentlichen Fachvortrag darzustellen und Fragen des Publikums zu beantworten.

Inhalt

Die Teilnehmer des Seminars sollen eigenständig Recherchen zu aktuellen Themen der Wissenschaft und Forschung durchführen. Neben der Recherche ist die Auswahl der relevanten Ergebnisse und deren Präsentation vor Fachpublikum Hauptbestandteil des Seminars.

Der Schwerpunkte liegt auf Leistungselektronik in Systemen der regenerativen Energieerzeugung.

Das genaue Thema wird in jedem Semester neu definiert. Vergangene Seminare hatten beispielsweise folgende Themen:

- Off-Shore-Windparks: Projekte, Technik, Netzanbindung
- Gewinnung elektrischer Energie aus dem Meer
- Solaranlagen
- Windkraftanlagen: Moderne Ausfuhrungen und Netzanbindung
- "Private" Energiewende (Mögliche Maßnahmen zuhause)

Der Dozent behält sich vor, im Rahmen der aktuellen Vorlesung ohne

besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Zusammensetzung der Modulnote

Die Modulnote setzt sich aus der Vortragsbewertung (mit den oben genannten Kriterien) zusammen.

Sieht man den Prüfling zwischen zwei Notenwerten gibt die Mitarbeit in den vorbereitenden Treffen den Ausschlag.

Anmerkungen

Teilnahme an insgesamt 7 vorbereitenden Treffen (ca. alle 14 Tage mit durchschnittlich 3 h Dauer) mit den Themen:

Infoveranstaltung

Besprechung und Verteilung der Themen

Vortrags- und Präsentationstechniken

Präsentation der Materialsammlungen

Vorstellung von Struktur und Aufbau der Vorträge

Vorstellung der fertigen Folienpräsentation

Probevorträge

Arbeitsaufwand

Anwesenheit an vorbereitenden Treffen: = 21 h 4x Vorbereitung à 20 h = 80 h

Insgesamt ca: 101 h (entspricht 4 LP)

4.113 Modul: Seminar über ausgewählte Kapitel der Biomedizinischen Technik [M-ETIT-100383]

Verantwortung: Dr.-Ing. Axel Loewe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion3ZehntelnotenJedes Wintersemester1 SemesterDeutsch31

Pflichtbestandteile			
T-ETIT-100710	Seminar über ausgewählte Kapitel der Biomedizinischen Technik	3 LP	Loewe

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages mit nachfolgender Diskussion.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage, ein wissenschaftliches Thema aus der biomedizinische Technik zu recherchieren, Wesentliches herauszuarbeiten, den Inhalt aufzuarbeiten, einen Vortrag auszuarbeiten und schließlich zu präsentieren.

Inhalt

Das Seminar hat das Ziel, dass Studenten selbstständig ein wissenschaftliches Thema im Bereich der Biomedizinischen Technik aufarbeiten und dieses präsentieren, um ihre Präsentationsfertigkeiten zu verbessern. Zuerst wird eine Einführung in Präsentationstechniken und in Feedback-Regeln gegeben. Dann erfolgt eine Testpräsentation, um die erlernten Techniken auszuprobieren. Schließlich wählen die Studenten ein Thema der biomedizinischen Technik für ihre Präsentation aus und bereiten einen Fachvortrag über dieses Thema vor.

Zusammensetzung der Modulnote

Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages mit nachfolgender Diskussion.

Arbeitsaufwand

Präsenzzeit: 15 Wochen * 2SWS = 30h

Erarbeitung des Themas, Austausch mit Betreuer, Vorbereitung des Vortrags: 60h

4.114 Modul: Seminar: Advanced Topics in High Performance Computing, Data Management and Analytics [M-INFO-105888]

Verantwortung: Prof. Dr. Achim Streit **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
4	Zehntelnoten	Jedes Wintersemester	1 Semester	Deutsch/Englisch	3	1

Pflichtbestandteile				
T-INFO-111837	Seminar: Advanced Topics in High Performance Computing, Data Management and Analytics	4 LP	Streit	

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Dieses Modul soll Studierenden die praktischen Herausforderungen, welche im Umfeld von Hochleistungsrechnen, Datenmanagements und Datenanalyse entstehen, und die zugehörigen effiziente Methoden und Werkzeuge vermitteln, in dem Studierende diese Themen erarbeiten, ausprobieren, sich gegenseitig vorstellen und miteinander diskutieren.

Inhalt

Künstliche Intelligenz, Big Data, Supercomputing, High Performance Data Analytics, Machine Learning, Exabytes, GPUs, Exaflops, Daten-intensives Rechnen, FAIR-Data, Quantencomputing – all das sind moderne Begriffe und Themen in den Bereichen High Performance Computing (HPC), Data Management und Data Analytics.

Mit HPC-Rechensystemen können digitale Zwillinge natürlicher und von Menschenhand geschaffener Dinge, Vorgänge und Phänomene hocheffizient simuliert werden. Künstliche Intelligenz und Machine Learning ist erst durch die unglaubliche Rechenleistung moderner Hochleistungsrechner und GPUs (und zukünftiger Quantencomputer) effizient möglich geworden. Das explosionsartige Wachstum großer Datenmengen stellt einerseits eine enorme Herausforderung für den performanten und nachhaltigen Umgang dar, bietet gleichzeitig aber auch die Möglichkeit mit rechenhungrigen Analysetechniken Daten in neues Wissen und Handeln zu transformieren.

Im Seminar werden ausgewählte Themenfeldern des Hochleistungsrechnens, des Datenmanagements und der Datenanalyse behandelt. Stichworte sind z.B. MPI, OpenMP, CUDA, OpenCL, OpenACC, Werkzeuge zur Analyse von Effizienz und Skalierbarkeit, parallele und verteilte Dateisysteme, on-demand Dateisysteme, Hochgeschwindigkeits-Übertragungstechnologien, Scheduling, Metadaten, Datenrepositorien, PyTorch, Zeitreihenanalyse, Analyse von Big-Data-Streams, Optimierung des Trainings neuronaler Netzwerke, Uncertainty Quantification oder Graphen-basierte Neuronale Netzwerke.

Arbeitsaufwand

120 h

- 2 h Einführungsveranstaltung
- · 45 h Befassung und Evaluation der Methoden und Technologien
- 10 h Betreuungsbesprechungen
- 40 h Erstellung der Ausarbeitung
- 13 h Erstellung der Präsentation
- · 10 h Abschluss-Blockseminar an 2 Tagen

Empfehlungen

Grundkenntnisse in den Bereichen Datenbanken, Datenmanagement, Datenanalyse, Parallelrechner oder Parallelprogrammierung sind hilfreich.

4.115 Modul: Seminarmodul Recht [M-INFO-101218]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Recht

Leistungspunkte
3Notenskala
ZehntelnotenTurnus
Jedes SemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile				
T-INFO-101997	Seminar aus Rechtswissenschaften I	3 LP	Dreier	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende

- setzt sich mit einem abgegrenzten Problem im Bereich der Rechtswissenschaften auseinander,
- analysiert und diskutiert Problemstellungen im Rahmen der Veranstaltungen und in den abschließenden Seminararbeiten,
- erörtert, präsentiert und verteidigt fachspezifische Argumente innerhalb einer vorgegebenen Aufgabenstellung,
- · organisiert die Erarbeitung der abschließenden Seminararbeiten weitestgehend selbstständig.

Die im Rahmen des Seminarmoduls erworben Kompetenzen dienen im Besonderen der Vorbereitung auf die Bachelorarbeit. Begleitet durch die entsprechenden Prüfer übt sich der Studierende beim Verfassen der abschließenden Seminararbeiten und bei der Präsentation derselben im selbstständigen wissenschaftlichen Arbeiten.

Inhalt

Das Modul besteht aus einem Seminar, das thematisch den Rechtswissenschaften zuzuordnen ist. Eine Liste der zugelassenen Lehrveranstaltungen wird im Internet bekannt gegeben.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits) für Präsenzzeit, Vor- und Nachbearbeitung sowie die Prüfungsleistung der Veranstaltung.

Der konkrete Arbeitsaufwand variiert je nach dem konkret gewählten Seminar und wird bei der einzelnen Veranstaltung beschrieben.

4.116 Modul: Seminarmodul Wirtschaftswissenschaften [M-WIWI-101826]

Verantwortung: Studiendekan des KIT-Studienganges **Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Sprache	Level	Version
3	Zehntelnoten	Deutsch	3	1

Wahlpflichtangebot (Wahl: 1 Bestandteil)				
T-WIWI-103486	Seminar Betriebswirtschaftslehre (Bachelor)	3 LP	Professorenschaft des Fachbereichs Betriebswirtschaftslehre	
T-WIWI-103488	Seminar Operations Research (Bachelor)	3 LP	Nickel, Rebennack, Stein	
T-WIWI-103489	Seminar Statistik (Bachelor)	3 LP	Grothe, Schienle	
T-WIWI-103487	Seminar Volkswirtschaftslehre (Bachelor)	3 LP	Professorenschaft des Fachbereichs Volkswirtschaftslehre	

Erfolgskontrolle(n)

Die Modulprüfung erfolgt durch den Nachweis von einem Seminar mit min. 3 LP.

Die einzelnen Erfolgskontrollen (nach §4(2), 3 SPO) werden bei jeder Veranstaltung dieses Moduls beschrieben.

Voraussetzungen

Keine.

Qualifikationsziele

- Die Studierenden können sich weitgehend selbständig mit einem abgegrenzten Problem in einem speziellen Fachgebiet nach wissenschaftlichen Kriterien auseinandersetzen.
- Sie sind in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen.
- Die Probleme können sie strukturiert und unter Einbeziehung ihres interdisziplinären Wissens lösen.
- Die daraus abgeleiteten Ergebnisse wissen sie zu validieren.
- Anschließend können sie diese unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren. Dabei können sie fachlich argumentieren und die Ergebnisse in der Diskussion verteidigen.

Inhalt

Das Modul besteht aus einem Seminar, das thematisch den Wirtschaftswissenschaften zuzuordnen ist. Eine Liste der zugelassenen Lehrveranstaltungen wird im Internet bekannt gegeben.

Anmerkungen

Die im Modulhandbuch aufgeführten Seminartitel sind als Platzhalter zu verstehen. Die für jedes Semester aktuell angebotenen Seminare werden jeweils im Vorlesungsverzeichnis und auf den Internetseiten der Institute bekannt gegeben. In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erorderlich ist.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits) für Präsenzzeit, Vor- und Nachbearbeitung sowie die Prüfungsleistung der Veranstaltung.

Der konkrete Arbeitsaufwand variiert je nach dem konkret gewählten Seminar und wird bei der einzelnen Veranstaltung beschrieben.

4.117 Modul: Sicherheit [M-INFO-100834]

Verantwortung: Prof. Dr. Jörn Müller-Quade **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)

Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes SommersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-INFO-101371	Sicherheit	6 LP	Hofheinz, Müller- Quade

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der /die Studierende

- kennt die theoretischen Grundlagen sowie grundlegende Sicherheitsmechanismen aus der Computersicherheit und der Kryptographie,
- versteht die Mechanismen der Computersicherheit und kann sie erklären,
- · liest und versteht aktuelle wissenschaftliche Artikel,
- · beurteilt die Sicherheit gegebener Verfahren und erkennt Gefahren,
- · wendet Mechanismen der Computersicherheit in neuem Umfeld an.

Inhalt

- · Theoretische und praktische Aspekte der Computersicherheit
- Erarbeitung von Schutzzielen und Klassifikation von Bedrohungen
- Vorstellung und Vergleich verschiedener formaler Access-Control-Modelle
- Formale Beschreibung von Authentifikationssystemen, Vorstellung und Vergleich verschiedener Authentifikationsmethoden (Kennworte, Biometrie, Challenge-Response-Protokolle)
- Analyse typischer Schwachstellen in Programmen und Web-Applikationen sowie Erarbeitung geeigneter Schutzmassnahmen/Vermeidungsstrategien
- Einführung in Schlüsselmanagement und Public-Key-Infrastrukturen
- · Vorstellung und Vergleich gängiger Sicherheitszertifizierungen
- Blockchiffren, Hashfunktionen, elektronische Signatur, Public-Key-Verschlüsselung bzw. digitale Signatur (RSA,ElGamal) sowie verschiedene Methoden des Schlüsselaustauschs (z.B. Diffie-Hellman)
- Einführung in beweisbare Sicherheit mit einer Vorstellung der grundlegenden Sicherheitsbegriffe (wie IND-CCA)
- Darstellung von Kombinationen kryptographischer Bausteine anhand aktuell eingesetzter Protokolle wie Secure Shell (SSH) und Transport Layer Security (TLS)

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Präsenzzeit in der Vorlesung: 36 h

Präsenzzeit in der Übung: 12 h

Vor-/Nachbereitung der Vorlesung, Bearbeiten der Übungsblätter: 44 h Prüfungsvorbereitung und Präsenz in selbiger: 68 h

4.118 Modul: Signale und Systeme [M-ETIT-102123]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Informationstechnik)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
2Version
1

Pflichtbestandteile			
T-ETIT-101922	Signale und Systeme	6 LP	Heizmann

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Signale und Systeme.

Voraussetzungen

keine

Qualifikationsziele

Die Studenten sind nach Abschluss des Moduls vertraut mit der Darstellung von Signalen und beherrschen die Grundlagen der Systemtheorie.

Durch Anwendung von Transformationen auf Signale und Systeme sind Sie in der Lage Lösungsansätze für zeitkontinuierliche sowie zeitdiskrete Problemstellungen der Signalverarbeitung zu beschreiben und zu bewerten. Die erlernten mathematischen Methoden können auf Fragestellungen aus anderen Bereichen des Studiums übertragen werden.

Inhalt

Das Modul stellt eine Grundlagenvorlesung zur Signalverarbeitung dar. Schwerpunkte der Vorlesung sind die Betrachtung und Beschreibung von Signalen (zeitlicher Verlauf einer beobachteten Größe) und Systemen. Für den zeitkontinuierlichen und den zeitdiskreten Fall werden die unterschiedlichen Eigenschaften und Beschreibungsformen hergeleitet und analysiert.

Zusammensetzung der Modulnote

Notenbildung ergibt sich aus der schriftlichen Prüfung.

Arbeitsaufwand

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (2 h) der wöchentlichen Vorlesung und der 14-täglich stattfinden Übung sowie die Vorbereitung (50-60 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von 150-160 h

Empfehlungen

Höhere Mathematik I + II

4.119 Modul: Softwaretechnik I [M-INFO-101175]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner Prof. Dr. Walter Tichy KIT-Fakultät für Informatik

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Praktische Informatik

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

T-INFO-102031 - Praxis der Software-Entwicklung

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	Deutsch	1	1

Pflichtbestandteile				
T-INFO-101968	Softwaretechnik I	6 LP	Koziolek, Reussner, Tichy	
T-INFO-101995	Softwaretechnik I Übungsschein	0 LP	Tichy	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende definiert und vergleicht die in der Vorlesung besprochenen Konzepte und Methoden und wendet diese erfolgreich an.

Inhalt

Ziel dieser Vorlesung ist es, das Grundwissen über Methoden und Werkzeuge zur Entwicklung und Wartung umfangreicher Software-Systeme zu vermitteln. Inhaltliche Themen: Projektplanung, Systemanalyse, Kostenschätzung, Entwurf, Implementierung, Qualitätssicherung, Prozessmodelle, Software-Wartung, Software-Werkzeuge, Konfigurations-Management.

Anmerkungen

Alle Studierende, die bereits im WS 2014/15 immatrikuliert waren, dürfen zwischen den Modulen **Technische Informatik** und **Softwaretechnik** wählen. Diejenigen, die bereits einen Versuch in **Technische Informatik** abgelegt haben, müssen dieses Modul abschließen.

Ab Sommersemester 2015 ist im Studiengang Bachelor Informationswirtschaft / Wirtschaftsinformatik das Modul **Softwaretechnik I** im Pflichtbereich zu prüfen.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Vor- und Nachbereitungszeiten 1,5 h / 1 SWS

Gesamtaufwand:

(4 SWS + 1,5 x 4 SWS) x 15 + 30 h Klausurvorbereitung = 180 h = 6 ECTS

4.120 Modul: Softwaretechnik II [M-INFO-100833]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner Prof. Dr. Walter Tichy

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)

Wahlbereich Informatik (Wahlmodule)

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion6ZehntelnotenJedes Wintersemester1 SemesterDeutsch31

Pflichtbestandteile				
T-INFO-101370	Softwaretechnik II	6 LP	Koziolek, Reussner,	
			Tichy	

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Softwareprozesse: Die Studierenden verstehen die evolutionäre und inkrementelle Entwicklung und können die Vorteile gegenüber dem sequentiellen Vorgehen beschreiben. Sie können die Phasen und Disziplinen des Unified Process beschreiben.

Requirements Engineering: Die Studierenden können die Begriffe des Requirements Engineering beschreiben und Aktivitäten im Requirements Engineering Prozess nennen. Sie können Anforderungen nach den Facetten Art und Repräsentation klassifizieren und beurteilen. Sie können grundlegende Richtlinien zum Spezifizieren natürlichsprachlicher Anforderungen anwenden und Priorisierungsverfahren für Anforderungen beschreiben. Sie können den Zweck und die Elemente von Anwendungsfall-Modellen beschreiben. Sie können Anwendungsfälle anhand ihrer Granularität und ihrer Ziele einordnen. Sie können Anwendungsfalldiagramme und Anwendungsfälle erstellen. Sie können aus Anwendungsfällen Systemsequenzdiagramme und Operationsverträge ableiten und können deren Rolle im Software-Entwicklungsprozess beschreiben.

Software-Architektur: Die Studierenden können die Definition von Software-Architektur und Software-Komponenten wiedergeben und erläutern. Sie können den Unterschied zwischen Software-Architektur und Software-Architektur-Dokumentation erläutern. Sie können die Vorteile expliziter Architektur und die Einflussfaktoren auf Architekturentscheidungen beschreiben. Sie können Entwurfsentscheidungen und -elemente den Schichten einer Architektur zuordnen. Sie können beschreiben, was Komponentenmodelle definieren. Sie können die Bestandteile des Palladio Komponentenmodells beschreiben und einige der getroffenen Entwurfsentscheidungen erörtern.

Enterprise Software Patterns: Die Studierenden können Unternehmensanwendungen charakterisieren und für eine beschriebene Anwendung entscheiden, welche Eigenschaften sie erfüllt. Sie kennen Muster für die Strukturierung der Domänenlogik, architekturelle Muster für den Datenzugriff und objektrelationale Strukturmuster. Sie können für ein Entwurfsproblem ein geeignetes Muster auswählen und die Auswahl anhand der Vor- und Nachteile der Muster begründen.

Software-Entwurf: Die Studierenden können die Verantwortlichkeiten, die sich aus Systemoperationen ergeben, den Klassen bzw. Objekten im objektorientierten Entwurf anhand der GRASP-Muster zuweisen und damit objektorientierte Software entwerfen.

Software-Qualität: Die Studierenden kennen die Prinzipien für gut lesbaren Programmcode, können Verletzungen dieser Prinzipien identifizieren und Vorschläge zur Lösung entwickeln.

Modellgetriebene Software-Entwicklung: Die Studierenden können die Ziele und die idealisierte Arbeitsteilung der modellgetriebenen Software-Entwicklung (MDSD) beschreiben und die Definitionen für Modell und Metamodell wiedergeben und erläutern. Sie können die Ziele der Modellierung diskutieren. Sie können die Model-driven Architecture beschreiben und Einschränkungen in der Object Constraint Language ausdrücken. Sie können einfache Transformationsfragmente von Modell-zu-Text-Transformationen in einer Template-Sprache ausdrücken. Sie können die Vor- und Nachteile von MDSD abwägen.

Eingebettete Systeme: Die Studierenden können das Prinzip eines Realzeitsystems und warum diese für gewöhnlich als parallele Prozesse implementiert sind erläutern. Sie können einen groben Entwurfsprozess für Realzeitsysteme beschreiben. Sie können die Rolle eines Realzeitbetriebssystems beschreiben. Sie können verschiedene Klassen von Realzeitsystemen unterscheiden.

Verlässlichkeit: Die Studierenden können die verschiedenen Dimensionen von Verlässlichkeit beschreiben und eine gegebene Anforderung einordnen. Sie können verdeutlichen, dass Unit Tests nicht ausreichen, um Software-Zuverlässigkeit zu bewerten, und können beschreiben, wie Nutzungsprofil und realistische Fehlerdaten einen Einfluss haben.

Domänen-getriebener Entwurf (DDD): Die Studierenden kennen die Entwurfsmetapher der allgegenwärtigen Sprache, der Abgeschlossenen Kontexte, und des Strategischen Entwurfs. Sie können eine Domäne anhand der DDD Konzepte, Entität, Wertobjekte, Dienste beschreiben, und das resultierende Domänenmodell durch die Muster der Aggregate, Fabriken, und Depots verbessern. Sie kennen die unterschiedlichen Arten der Interaktionen zwischen Abgeschlossenen Kontexten und können diese anwenden.

Sicherheit (i.S.v. Security): Die Studierenden können die Grundideen und Herausforderungen der Sicherheitsbewertung beschreiben. Sie können häufige Sicherheitsprobleme erkennen und Lösungsvorschläge machen.

Inhalt

Die Studierenden erlernen Vorgehensweisen und Techniken für systematische Softwareentwicklung, indem fortgeschrittene Themen der Softwaretechnik behandelt werden.

Themen sind Requirements Engineering, Softwareprozesse, Software-Qualität, Software-Architekturen, MDD, Enterprise Software Patterns, Software-Entwurf, Software-Wartbarkeit, Sicherheit, Verlässlichkeit (Dependability), eingebettete Software, Middleware, und Domänen-getriebener Entwurf.

Anmerkungen

Das Modul Softwaretechnik II ist ein Stammmodul.

Arbeitsaufwand

Vor- und Nachbereitungszeiten 1,5 h / 1 SWS Gesamtaufwand: (4 SWS + 1,5 x 4 SWS) x 15 + 30 h Klausurvorbereitung = 180 h = 6 ECTS **Empfehlungen** Siehe Teilleistung

4.121 Modul: Strategie und Organisation [M-WIWI-101425]

Verantwortung: Prof. Dr. Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	2 Semester	Deutsch	3	4

Strategie und Organisation (Wahl: mind. 9 LP)				
T-WIWI-102630	Organisationsmanagement	3,5 LP	Lindstädt	
T-WIWI-102871	Problemlösung, Kommunikation und Leadership	2 LP	Lindstädt	
T-WIWI-102629	Unternehmensführung und Strategisches Management	3,5 LP	Lindstädt	

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von schriftlichen Teilprüfungen (nach §4(2), 1 SPO) über die einzelnen Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestabforderung an LP erfüllt wird. Die Prüfungen werden jedes Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Note der einzelnen Teilprüfungen entspricht der jeweiligen Klausurnote.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWL [IN3WWBWL] prüfbar.

Qualifikationsziele

- Der/die Studierende beschreibt sowohl zentrale Konzepte des strategischen Managements als auch Konzepte und Modelle für die Gestaltung organisationaler Strukturen.
- Er/sie bewertet die Stärken und Schwächen existierender organisationaler Strukturen und Regelungen anhand systematischer Kriterien.
- Die Steuerung organisationaler Veränderungen diskutieren und überprüfen die Studierenden anhand von Fallbeispielen, inwieweit sich die Modelle in der Praxis einsetzen lassen und welche Bedingungen dafür gelten müssen.
- Zudem planen die Studierenden den Einsatz von IT zur Unterstützung der Unternehmensführung.

Inhalt

Das Modul ist praxisnah und handlungsorientiert aufgebaut und vermittelt dem Studierenden einen aktuellen Überblick grundlegender Konzepte und Modelle des strategischen Managements und ein realistisches Bild von Möglichkeiten und Grenzen rationaler Gestaltungsansätze der Organisation. Im Mittelpunkt stehen erstens interne und externe strategische Analyse, Konzept und Quellen von Wettbewerbsvorteilen, Formulierung von Wettbewerbs- und von Unternehmensstrategien sowie Strategiebewertung und -implementierung. Zweitens werden Stärken und Schwächen organisationaler Strukturen und Regelungen anhand systematischer Kriterien beurteilt. Dabei werden Konzepte für die Gestaltung organisationaler Strukturen, die Regulierung organisationaler Prozesse und die Steuerung organisationaler Veränderungen vorgestellt.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3,5 Leistungspunkten ca. 105 Stunden und für Lehrveranstaltungen mit 2 Leistungspunkten 60 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.122 Modul: Supply Chain Management [M-WIWI-101421]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	1 Semester	Deutsch/Englisch	3	9

Pflichtbestandteile				
T-WIWI-109936	Platform Economy	4,5 LP	Weinhardt	
Ergänzungsangebot (Wahl: 1 Bestandteil)				
T-WIWI-102704	Standortplanung und strategisches Supply Chain Management	4,5 LP	Nickel	
T-WIWI-102714	Taktisches und operatives Supply Chain Management	4,5 LP	Nickel	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Die Teilleistung T-WIWI-107506 "Plattformökonomie" ist Pflicht im Modul.

Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Qualifikationsziele

Die Studierenden

- verstehen und bewerten aus strategischer und operativer Sicht die Steuerung von unternehmensübergreifenden Lieferketten.
- analysieren die Koordinationsprobleme innerhalb der Lieferketten,
- identifizieren und integrieren geeignete Informationssystemlandschaften zur Unterstützung der Lieferketten,
- · wenden theoretische Methoden aus dem Operations Research und dem Informationsmanagement an,
- · erarbeiten Lösungen in Teams.

Inhalt

Das Modul Supply Chain Management" vermittelt einen Überblick über die gegenseitigen Abhängigkeiten von unternehmensübergreifenden Lieferketten und Informationssystemen. Aus den Spezifika der Lieferketten und deren Informationsbedarf ergeben sich besondere Anforderungen an das betriebliche Informationsmanagement. In der Kernveranstaltung "Plattformökonomie" wird insbesondere auf den Austausch zweier Handelspartner über einen Intermediär auf Internetplattformen eingegangen. Themen sind Netzwerkeffekte, Peer-To-Peer Märkte, Blockchains und Marktmechanismen. Über den englischsprachigen Vorlesungsteil hinaus vermittelt der Kurs das Wissen anhand einer Fallstudie, in der die Studierenden selbst eine Plattform analysieren sollen.

Das Teilmodul wird durch ein Wahlfach abgerundet, welches geeignete Optimierungsmethoden für das Supply Chain Management bzw. moderne Logistikansätze adressiert.

Anmerkungen

Das geplante Vorlesungsangebot in den nächsten Semestern finden Sie auf den Webseiten der einzelnen Institute IISM, IFL und IOR.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 6 Leistungspunkten ca. 180 Stunden, für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.123 Modul: Systemdynamik und Regelungstechnik [M-ETIT-102181]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
1Version
2

Pflichtbestandteile			
T-ETIT-101921	Systemdynamik und Regelungstechnik	6 LP	Hohmann

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

- Ziel ist die Vermittlung theoretischer Grundlagen der Regelungstechnik, daher können die Studierenden grundsätzliche regelungstechnische Problemstellungen erkennen und bearbeiten.
- Die Studierenden sind in der Lage, reale Prozesse formal zu beschreiben und Anforderungen an Regelungsstrukturen abzuleiten.
- Sie können die Dynamik von Systemen mit Hilfe graphischer und algebraischer Methoden analysieren.
- Die Studierenden können Reglerentwurfsverfahren für Eingrößensysteme benennen, anhand von Kriterien auswählen, sowie die Entwurfsschritte durchführen und die entworfene Regelung beurteilen, ferner können Sie Störungen durch geeignete Regelkreisstrukturen kompensieren.
- Die Studierenden kennen relevante Fachbegriffe der Regelungstechnik und können vorgeschlagene Lösungen beurteilen und zielorientiert diskutieren.
- Sie kennen computergestützte Hilfsmittel zur Bearbeitung systemtheoretischer Fragestellungen und können diese einsetzen.

Inhalt

Die Grundlagenvorlesung Systemdynamik und Regelungstechnik vermittelt den Studierenden Kenntnisse auf einem Kerngebiet der Ingenieurwissenschaften. Sie werden vertraut mit den Elementen sowie der Struktur und dem Verhalten dynamischer Systeme. Die Studenten lernen grundlegende Begriffe der Regelungstechnik kennen und gewinnen einen Einblick in die Aufgabenstellungen beim Reglerentwurf und in entsprechende Lösungsmethoden im Frequenz- und Zeitbereich. Dies versetzt sie in die Lage, mathematische Methoden zur Analyse und Synthese dynamischer Systeme systematisch anzuwenden

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen

wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht 30h Arbeitsaufwand (des Studierenden). Unter den Arbeitsaufwand fallen

- 1. Präsenzzeit in Vorlesung/Übung (2+2 SWS: 60h2 LP)
- 2. Vor-/Nachbereitung von Vorlesung/Übung/Tutorium(optional) (105h3.5 LP)
- 3. Vorbereitung/Präsenzzeit schriftliche Prüfung (15h0.5 LP)

4.124 Modul: Teamarbeit in der Softwareentwicklung [M-INFO-101225]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Überfachliche Qualifikationen

LeistungspunkteNotenskala
best./nicht best.Turnus
EinmaligDauer
1 SemesterSprache
DeutschLevel
2Version
2

Pflichtbestandteile			
T-INFO-102018	Teamarbeit und Präsentation in der Softwareentwicklung	2 LP	Snelting

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Die Teilnehmer beherrschen wichtige nicht-fachliche Kompetenzen zur Durchführung von Softwareprojekten im Team. Dazu gehören Sprachkompetenz und soziale Kompetenz, technisches Schreiben, Projektplanung, sowie Techniken der Teamarbeit und der Präsentation. Zu den fachlichen Lernzielen des Softwareprojektes vgl die Veranstaltung "Praxis der Softwareentwicklung", die mit "Teamarbeit in der Softwareentwicklung" zusammen belegt werden muss.

Insbesondere können die Teilnehmer Techniken und Werkzeuge zum Projektmanagement beurteilen und anwenden, u.a. Netzplantechnik, Verwendung eines Repository (zB svn), Erstellung von Arbeitsplänen und Dokumentstrukturen für die verschiedenen Projektphasen. Teilnehmer übernehmen Verantwortung als Phasenverantwortliche und organisieren Arbeit, Kommunikation, Dokumente und Präsentationen der Phasen Pflichtenheft, Entwurf und Feinspezifikation, Implementierung, Qualitätssicherung, Abschlusspräsentation.

Teilnehmer erwerben sprachliche, kommunikative und soziale Kompetenz zur Arbeit im Team. Sie können unter Anleitung ihres Betreuers mit typischen Problemen im Team umgehen, zB mit Diversität der Teammitglieder im Hinblick auf fachliche Kompetenz, Motivation, kulturellen/sprachlichen Hintergrund, sowie mit eventuellem Dominanzstreben, Minderleistung, oder anderem negativen Verhalten von Teammitgliedern. Sie kennen Präsentationstechniken für erfolgreiche Phasen- und Abschlusspräsentationen. Sie verstehen die Bedeutung ihres Softwareprojektes für ihre berufliche Qualifikation.

Inhalt

Auseinandersetzung mit der Arbeit im Team, Kommunikations-, Organisations- und Konfliktbehandungsstrategien; Erarbeitung von Präsentationen zu Pflichtenheft, Entwurf, Implementierung, Qualitätssicherung, Abschlusspräsentation; Projektplanungstechniken (z.B. Netzplantechnik, Phasenbeauftragte).

Anmerkungen

Dieses Modul ergänzt das Pflichtmodul Praxis der Software-Entwicklung. Es ist ein Pflichtmodul.

Arbeitsaufwand

2 SWS entsprechen ca 60 Arbeitsstunden, davon:

ca 15 Std Treffen mit den Betreuern

ca 5 Std Teilnahme an Phasenkolloquien

ca 15 Std Vorbereitung von Präsentationen/Dokumenten

ca 10 Std. für Implementierungs- und Testplanung/management

ca 15 Std. Kommunikation/Organisation im Team

Empfehlungen

Die Veranstaltung sollte erst belegt werden, wenn alle Module aus den ersten beiden Semestern abgeschlossen sind.

4.125 Modul: Technische Informatik [M-INFO-101180]

Verantwortung: Prof. Dr. Wolfgang Karl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Technische Informatik

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion12ZehntelnotenJährlich2 SemesterDeutsch31

Pflichtbestandteile			
T-INFO-101970	Technische Informatik	12 LP	Asfour

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Studierende sollen durch dieses Modul folgende Kompetenzen erwerben:

- · Verständnis der verschiedenen Darstellungsformen von Zahlen und Alphabeten in Rechnern,
- Fähigkeiten der formalen und programmiersprachlichen Schaltungsbeschreibung,
- Kenntnisse der technischen Realisierungsformen von Schaltungen,
- basierend auf dem Verständnis für Aufbau und Funktion aller wichtigen Grundschaltungen und Rechenwerke die Fähigkeit, unbekannte Schaltungen zu analysieren und zu verstehen, sowie eigene Schaltungen zu entwickeln,
- Kenntnisse der relevanten Speichertechnologien,
- Verständnis verschiedener Realisierungsformen komplexer Schaltungen,
- Verständnis über den Aufbau, die Organisation und das Operationsprinzip von Rechnersystemen,
- den Zusammenhang zwischen Hardware-Konzepten und den Auswirkungen auf die Software zu verstehen, um effiziente Programme erstellen zu können,
- aus dem Verständnis über die Wechselwirkungen von Technologie, Rechnerkonzepten und Anwendungen die grundlegenden Prinzipien des Entwurfs nachvollziehen und anwenden zu können,
- einen Rechner aus Grundkomponenten aufbauen zu können.

Inhalt

Das Modul vermittelt eine systematische Heranführung an die Technische Informatik. Sie beinhalten neben den Grundlagen der Mikroelektronik den Entwurf und den Aufbau von einfachen informationsverarbeitenden Systemen, logischen Schaltnetzen und Schaltwerken bis hin zum funktionellen Aufbau digitaler Rechenanlagen. Die Inhalte umfassen:

- Informationsdarstellung, Zahlensysteme, Binärdarstellungen negativer Zahlen, Gleitkomma-Zahlen, Alphabete, Codes
- Rechnertechnologie: MOS-Transistoren, CMOS-Schaltungen
- Formale Schaltungsbeschreibungen, boolesche Algebra, Normalformen, Schaltungsoptimierung
- Realisierungsformen von digitalen Schaltungen: Gatter, PLDs, FPGAs, ASICs
- Einfache Grundschaltungen: FlipFlop-Typen, Multiplexer, Halb/Voll-Addierer
- Rechenwerke: Addierer-Varianten, Multiplizier-Schaltungen Divisionsschaltungen
- Mikroprogramierung
- Grundlagen des Aufbaus und der Organisation von Rechnern
- Befehlssatzarchitektur, Diskussion RISC CISC
- · Pipelining des Maschinenbefehlszyklus, Pipeline-Hemmnisse, Methoden zur Auflösung von Pipeline-Konflikten
- · Speicherkomponenten, Speicherorganisation, Cache-Speicher
- Ein-/Ausgabe-System, Schnittstellen, Interrupt-Verarbeitung
- Bus-Systeme
- Unterstützung von Betriebssystemfunktionen: virtuelle Speicherverwaltung, Schutzfunktionen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Klausur.

Arbeitsaufwand

- 1. Präsenzzeit in Vorlesungen, Übungen: 240 h
- Vor-/Nachbereitung derselbigen: 60 h
 Klausurvorbereitung und Präsenz in selbiger: 60 h

Empfehlungen

Siehe Teilleistung.

4.126 Modul: Telematik [M-INFO-100801]

Verantwortung: Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)

Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
6Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-INFO-101338	Telematik	6 LP	Zitterbart

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Studierende

- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Wegewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- · sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- kennen Möglichkeiten zur Verwaltung und Administration von Netzen.

Studierende beherrschen die grundlegenden Protokollmechanismen zur Etablierung zuverlässiger Ende-zu-Ende-Kommunikation. Studierende besitzen detailliertes Wissen über die bei TCP verwendeten Mechanismen zur Stau- und Flusskontrolle und können die Problematik der Fairness bei mehreren parallelen Transportströmen erörtern. Studierende können die Leistung von Transportprotokollen analytisch bestimmen und kennen Verfahren zur Erfüllung besonderer Rahmenbedingungen mit TCP, wie z.B. hohe Datenraten und kurze Latenzen. Studierende sind mit aktuellen Themen, wie der Problematik von Middleboxen im Internet, dem Einsatz von TCP in Datacentern und Multipath-TCP, vertraut. Studierende können Transportprotokolle in der Praxis verwenden und kennen praktische Möglichkeiten zu Überwindung der Heterogenität bei der Entwicklung verteilter Anwendungen, z.B. mithilfe von ASN.1 und BER.

Studierende kennen die Funktionen von Routern im Internet und können gängige Routing-Algorithmen wiedergeben und anwenden. Studierende können die Architektur eines Routers wiedergeben und kennen verschiedene Ansätze zur Platzierung von Puffern sowie deren Vor- und Nachteile. Studierende verstehen die Aufteilung von Routing-Protokolle in Interior und Exterior Gateway Protokolle und besitzen detaillierte Kenntnisse über die Funktionalität und die Eigenschaften von gängigen Protokollen wie RIP, OSPF und BGP. Die Studierenden sind mit aktuellen Themen wie IPv6 und SDN vertraut.

Studierende kennen die Funktion von Medienzuteilung und können Medienzuteilungsverfahren klassifizieren und analytisch bewerten. Studierende besitzen vertiefte Kenntnisse zu Ethernet und kennen verschiedene Ethernet-Ausprägungen und deren Unterschiede, insbesondere auch aktuelle Entwicklungen wie Echtzeit-Ethernet und Datacenter-Ethernet. Studierende können das Spanning-Tree-Protocol wiedergeben und anwenden. Studierende kennen die grundlegende Funktionsweise der Hilfsprotokolle LLC und PPP.

Studierende kennen die physikalischen Grundlagen, die bei dem Entwurf und die Bewertung von digitalen Leitungscodes relevant sind. Studierende können verbreitete Kodierungen anwenden und kennen deren Eigenschaften.

Studierende kennen die Architektur von ISDN und können insbesondere die Besonderheiten beim Aufbau des ISDN-Teilnehmeranschlusses wiedergeben. Studierende besitzen grundlegende Kenntnisse über das weltweite Telefonnetz SS7. Studierende können die technischen Besonderheiten von DSL wiedergeben. Studierende sind mit dem Konzept des Label Switching vertraut und können existierende Ansätze wie ATM und MPLS miteinander vergleichen. Studierende sind mit den grundlegenden Herausforderungen bei dem Entwurf optischer Transportnetze vertraut und kennen die grundlegenden Techniken, die bei SDH und DWDM angewendet werden.

Inhalt

- Einführung
- Ende-zu-Ende Datentransport
- Routingprotokolle und -architekturen
- Medienzuteilung
- Brücken
- Datenübertragung
- ISDN
- Weitere ausgewählte Beispiele
- Netzmanagement

Arbeitsaufwand

Vorlesung mit 3 SWS plus Nachbereitung/Prüfungsvorbereitung, 6 LP. 6 LP entspricht ca. 180 Arbeitsstunden, davon

ca. 60 Std. Vorlesungsbesuch

ca. 60 Std. Vor-/Nachbereitung

ca. 60 Std. Prüfungsvorbereitung

Empfehlungen

Siehe Teilleistung

4.127 Modul: Theoretische Grundlagen der Informatik [M-INFO-101172]

Verantwortung: Dr. rer. nat. Torsten Ueckerdt

Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Theoretische Informatik

Voraussetzung für: M-INFO-101721 - Modul Bachelorarbeit

M-INFO-101721 - Modul Bachelorarbeit T-INFO-101530 - Programmierparadigmen

Leistungspunkte

6

Notenskala Zehntelnoten **Turnus** Jedes Wintersemester **Dauer** 1 Semester **Sprache** Deutsch

Level 3 **Version** 1

Pflichtbestandteile			
T-INFO-103235	Theoretische Grundlagen der Informatik	6 LP	Ueckerdt, Wagner

Erfolgskontrolle(n)

Siehe Teilleistung

Voraussetzungen

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende besitzt einen vertieften Einblick in die Grundlagen der Theoretischen Informatik und hat grundlegende Kenntnis in den Bereichen Berechenbarkeitstheorie, Komplexitätstheorie, formale Sprachen und Informationstheorie. Er/sie kann die Beziehungen dieser Gebiete erörtern und in einen Gesamtzusammenhang bringen. Außerdem kennt er/sie die fundamentalen Definitionen und Aussagen aus diesen Bereichen und ist in der Lage geführte Beweise zu verstehen sowie Wissen über erlangte Beweistechniken auf ähnliche Probleme anzuwenden.

Er/sie versteht die Grenzen und Möglichkeiten der Informatik in Bezug auf die Lösung von definierbaren aber nur bedingt berechenbare Probleme. Hierzu beherrscht er verschiedene Berechnungsmodelle, wie die der Turingmaschine, des Kellerautomaten und des endlichen

Automaten. Er/sie kann deterministische von nicht-deterministischen Modellen unterscheiden und deren Mächtigkeit gegeneinander abschätzen. Der/die Studierende kann die Äquivalenz aller hinreichend mächtigen Berechnungsmodelle (Churchsche These), Nichtberechenbarkeit wichtiger Funktionen (z.B. Halteproblem) und Gödels Unvollständigkeitssatz erläutern.

Er/sie besitzt einen Überblick über die wichtigsten Klassen der Komplexitätstheorie. Darüber hinaus kann er/sie ausgewählte Probleme mittels formaler Beweisführung in die ihm/ihr bekannten Komplexitätsklassen zuordnen. Insbesondere kennt er/sie die Komplexitätsklassen P und NP sowie das Konzept NP-vollständiger Probleme (polynomielle Reduktion). Er/sie kann erste grundlegende Techniken anwenden, um NP-schwere Probleme zu analysieren. Diese

Techniken umfassen unter anderem polynomielle Näherungsverfahren (Approximationsalgorithmen mit absoluter/relativer Güte, Approximationsschemata) als auch exakte Verfahren (Ganzzahlige Programme).

Im Bereich der formalen Sprachen ist es ihm/ihr möglich Sprachen als Grammatiken zu formulieren und diese in die Chomsky-Hierarchie einzuordnen. Zudem kann er/sie die ihm/ihr bekannten Berechnungsmodelle den

einzelnen Typen der Chomsky-Hierarchie zuordnen, sodass er/sie die Zusammenhänge zwischen formalen Sprachen und Berechnungstheorie identifizieren kann.

Der/die Studierende besitzt einen grundlegenden Überblick über die Informationstheorie und kennt damit Entropie, Kodierungsschemata sowie eine formale Definition für Information. Er/sie besitzt zudem die Fähigkeit dieses Wissen anzuwenden.

Inhalt

Es gibt wichtige Probleme, deren Lösung sich zwar klar definieren läßt aber die man niemals wird systematisch berechnen können. Andere Probleme lassen sich "vermutlich" nur durch systematisches Ausprobieren lösen. Die meisten Ergebnisse dieser Vorlesung werden rigoros bewiesen. Die dabei erlernten Beweistechniken sind wichtig für die Spezifikation von Systemen der Informatik und für den systematischen Entwurf von Programmen und Algorithmen.

Das Modul gibt einen vertieften Einblick in die Grundlagen und Methoden der Theoretischen Informatik. Insbesondere wird dabei eingegangen auf grundlegende Eigenschaften Formaler Sprachen als Grundlagen von Programmiersprachen und Kommunikationsprotokollen (regulär, kontextfrei, Chomsky-Hierarchie), Maschinenmodelle (endliche Automaten, Kellerautomaten, Turingmaschinen, Nichtdeterminismus, Bezug zu Familien formaler Sprachen), Äquivalenz aller hinreichend mächtigen Berechnungsmodelle (Churchsche These), Nichtberechenbarkeit wichtiger Funktionen (Halteproblem,...), Gödels Unvollständigkeitssatz und Einführung in die Komplexitätstheorie (NP-vollständige Probleme und polynomiale Reduktionen).

Anmerkungen

Siehe Teilleistung.

Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung.

6 LP entspricht ca. 180 Stunden

ca. 45 Std. Vorlesungsbesuch,

ca. 15 Std. Übungsbesuch,

ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter

ca. 30 Std. Prüfungsvorbereitung

4.128 Modul: Theoretische Philosophie I [M-GEISTSOZ-104509]

Verantwortung: Prof. Dr. Gregor Betz

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: Ergänzungsfach / Philosophie (Auswahl)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
11	Zehntelnoten	Jedes Wintersemester	2 Semester	Deutsch	3	1

Pflichtbestandteile				
T-GEISTSOZ-101176	Theoretische Philosophie 1.1 (Einführung in /Überblick über ein Teilgebiet der Theoretischen Philosophie)	0 LP	Betz	
T-GEISTSOZ-101177	Theoretische Philosophie 1.2	0 LP	Betz	
T-GEISTSOZ-101178	Theoretische Philosophie 1.3	0 LP	Betz	
T-GEISTSOZ-109224	Modulprüfung Theoretische Philosophie I	11 LP	Betz	

Erfolgskontrolle(n)

Das Bestehen der Studienleistungen sowie der Modulprüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind imstande, Grundprobleme der theoretischen Philosophie zu benennen, verschiedene Lösungsansätze wiederzugeben, kritisch zu hinterfragen, ihren historischen Kontext zu bestimmen und sie im Hinblick auf ihre systematischen Implikationen zu beurteilen.

Inhalt

Die Studierenden erwerben umfangreiche Kenntnisse moderner und aktueller Positionen der theoretischen Philosophie, insbesondere der Philosophie der Wissenschaften. Exemplarisch werden dafür zentrale Themen und Problemstellungen der theoretischen Philosophie eingeführt, wie zum Beispiel Probleme der Erkenntnis, der Rechtfertigung und Begründung; Fragen der Entwicklung, des Geltungsanspruchs und der kulturell-gesellschaftlichen Rolle der Wissenschaften; Probleme der Bedeutung, der Wahrheit und Objektivität; Fragen der Logik und Argumentation; das Leib-Seele-Problem und Fragen des Seins.

Arbeitsaufwand

Insgesamt 330 h: Präsenz in den Veranstaltungen ca. 90 h, Vor- und Nachbereitung einschließlich selbstständiger Lektüre empfohlener Fachliteratur 80 h, Vorbereitung der Referate bzw. Hausaufgaben 60 h, Hausarbeit ca. 100 h.

Empfehlungen

Weil die Modulprüfung u.U. Voraussetzung für nachfolgende Module ist, wird dringend empfohlen, die Hausarbeit bis zum Ende des zweiten Semesters des Moduls abgegeben zu haben.

4.129 Modul: Topics in Finance I [M-WIWI-101465]

Verantwortung: Prof. Dr. Martin Ruckes

Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre (ab 01.10.2021) (Wahl Betriebswirtschaftslehre)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	1 Semester	Deutsch/Englisch	3	8

Wahlpflichtangebot (Wahl: 9 LP)			
T-WIWI-102643	Derivate	4,5 LP	Uhrig-Homburg
T-WIWI-110797	eFinance: Informationssysteme für den Wertpapierhandel	4,5 LP	Weinhardt
T-WIWI-107505	Financial Accounting for Global Firms	4,5 LP	Luedecke
T-WIWI-102623	Finanzintermediation	4,5 LP	Ruckes
T-WIWI-102626	Geschäftspolitik der Kreditinstitute	3 LP	Müller
T-WIWI-108711	Grundlagen der Unternehmensbesteuerung	4,5 LP	Gutekunst, Wigger
T-WIWI-102646	Internationale Finanzierung	3 LP	Uhrig-Homburg
T-WIWI-110511	Strategic Finance and Technology Change	1,5 LP	Ruckes

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2) SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an LP erfüllt wird. Die Teilprüfungen werden zu Beginn der vorlesungsfreien Zeit des Semesters angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Nur in Verbindung mit dem Modul Grundlagen der BWL prüfbar.

Qualifikationsziele

Der/die Studierende

- besitzt weiterführende Kenntnisse in moderner Finanzwirtschaft
- wendet diese Kenntnisse in den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken in der beruflichen Praxis an.

Inhalt

Das Modul *Topics in Finance* I baut inhaltlich auf dem Modul *Essentials of Finance* auf. In den Veranstaltungen werden weiterführende Fragestellungen aus den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken aus theoretischer und praktischer Sicht behandelt.

Anmerkungen

Die Teilleistung T-WIWI-102790 "Spezielle Steuerlehre" wird ab Wintersemester 2018/2019 nicht mehr im Modul angeboten.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden, für Lehrveranstaltungen mit 3 Leistungspunkten ca. 90 Stunden und für Lehrveranstaltungen mit 1,5 Leistungspunkten 45 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.130 Modul: Verfassungs- und Verwaltungsrecht [M-INFO-101192]

Verantwortung: Prof. Dr. Nikolaus Marsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Recht

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion6ZehntelnotenJedes Semester2 SemesterDeutsch34

Pflichtbestandteile			
T-INFO-110300	T-INFO-110300 Öffentliches Recht I & II 6 LP Eichenhofer		Eichenhofer

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

Der/die Studierende

- ordnet Probleme im öffentlichen Recht ein und löst einfache Fälle mit Bezug zum öffentlichen Recht,
- bearbeitet einen aktuellen Fall aufbautechnisch.
- zieht Vergleiche zwischen verschiedenen Rechtsproblemen im Öffentlichen Recht,
- · kennt die methodischen Grundlagen des Öffentlichen Rechts,
- · kennt den Unterschied zwischen Privatrecht und dem öffentlichem Recht,
- · kennt die Rechtsschutzmöglichkeiten mit Blick auf das behördliche Handeln,
- kann mit verfassungsrechtlichen und spezialgesetzlichen Rechtsnormen umgehen.

Inhalt

Das Modul umfasst die Kernaspekte des Verfassungsrechts (Staatsorganisationsrecht und Grundrechte), des Verwaltungsrechts und des öffentlichen Wirtschaftsrechts. Die Vorlesungen vermitteln die Grundlagen des öffentlichen Rechts. Die Studierenden sollen die staatsorganisationsrechtlichen Grundlagen, die Grundrechte, die das staatliche Handeln und das gesamte Rechtssystem steuern, sowie die Handlungsmöglichkeiten und -formen (insb. Gesetz, Verwaltungsakt, Öff.rechtl. Vertrag) der öffentlichen Hand kennen lernen. Besonderer Wert wird dabei auf eine systematische Erarbeitung des Stoffs sowie eine Vernetzung der einzelnen Aspekte zu einem systemstringenten Ganzen gelegt. Studenten sollen daher auch methodisch sicher das öffentliche Recht bearbeiten lernen. Daher steht neben der Vermittlung materiell-rechtlicher Inhalte (wie z.B. Inhalte von Staatsprinzipien wie Demokratie- und Rechtsstaatsprinzip, Schutzgehalt der einzelnen Grundrechte, Bedingungen der Rechtmäßigkeit von Verwaltungsakten) immer wieder auch die Einübung von Aufbau, Auslegung, und allgemeiner Herangehensweise an Fälle im Öffentlichen Recht.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfungszeit und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.131 Modul: Wahrscheinlichkeitstheorie [M-MATH-101322]

Verantwortung: Prof. Dr. Nicole Bäuerle **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte	Notenskala	Turnus	Dauer	Level	Version
6	Zehntelnoten	Jedes Sommersemester	1 Semester	3	1

Pflichtbestandteile				
T-MATH-102257	Wahrscheinlichkeitstheorie	6 LP	Bäuerle, Ebner, Fasen- Hartmann, Hug, Klar, Last, Trabs, Winter	

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Voraussetzungen

Das Modul Proseminar Mathematik [ProMath] muss geprüft werden.

Qualifikationsziele

Absolventinnen und Absolventen können

- grundlegende wahrscheinlichkeitstheoretische Methoden nennen, erörtern und anwenden,
- einfache Vorgänge stochastisch modellieren,
- · selbstorganisiert und reflexiv arbeiten.

Inhalt

- Maß-Integral
- · Monotone und majorisierte Konvergenz
- · Lemma von Fatou
- · Nullmengen u. Maße mit Dichten
- · Satz von Radon-Nikodym
- Produkt-sigma-Algebra
- · Familien von unabhängigen Zufallsvariablen
- · Transformationssatz für Dichten
- · Schwache Konvergenz
- · Charakteristische Funktion
- · Zentraler Grenzwertsatz
- · Bedingte Erwartungswerte
- · Zeitdiskrete Martingale und Stoppzeiten

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 180 Stunden

Präsenzzeit: 60 Stunden

• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- · Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- · Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherch
- · Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen

Das Modul "Wahrscheinlichkeitstheorie" ist Grundlage aller weiterführenden Module in der Stochastik. Die Module "Analysis 3" und "Einführung in die Stochastik" sollten bereits absolviert sein.

4.132 Modul: Web-Anwendungen und Serviceorientierte Architekturen (I) [M-INFO-101636]

Verantwortung: Prof. Dr. Sebastian Abeck **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
4Notenskala
ZehntelnotenTurnus
Jedes WintersemesterDauer
1 SemesterSprache
DeutschLevel
3Version
1

Pflichtbestandteile			
T-INFO-103122	Web-Anwendungen und Serviceorientierte Architekturen (I)	4 LP	Abeck

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden können die Inhalte der wichtigsten Konzepte und Technologien, die zur Entwicklung von traditionellen Web-Anwendungen erforderlich sind, wiedergeben (Wissen und Verstehen).
- Die Studierenden können die Softwarearchitektur einer traditionellen Web-Anwendung modellieren (Anwenden).
- Die Studierenden können den Einsatz von Web-Technologien am Beispiel einer komplexeren Web-Anwendung nachvollziehen und bewerten (Verstehen, Anwenden, Analysieren).
- Die Studierenden können die Qualität gewisser Eigenschaften einer Web-Anwendung durch den Einsatz von Metriken bestimmen (Beurteilen).

Inhalt

Es werden die aktuellen Entwicklungs- und Architekturkonzepte (u.a. Domain-Driven Design, Behavior-Driven Development, Microservices, RESTful Webservices) sowie die zu deren Umsetzung bestehenden Standards und Technologien (u.a. HTML5, CSS3, JavaScript/TypeScript, Angular, Bootstrap, Java, Spring) behandelt, um fortgeschrittene, mobile Web-Anwendungen zu entwickeln. Als Entwicklungsmethode wird Scrum eingeführt, durch das ein Rahmenwerk für die agile Softwareentwicklung bereitgestellt wird. Die IT-Sicherheit wird als ein wesentlicher Aspekt der Web-Entwicklung betrachtet. Die vorgestellten Web-Anwendungen stammen aus verschiedenen Domänen (Connected-Car, Campus-Management, Projektorganisation). Da die in der Vorlesung vorgestellten Konzepte und Technologien nur im Zusammenhang mit deren praktische Anwendung verstanden werden können, wird die Vorlesung nur in Kombination mit einem parallel dazu angebotenen Praktikum angeboten.

Arbeitsaufwand

120h Präsenzzeit Vorlesung 22,5 (15 x 1,5) Vor- und Nachbereitung Vorlesung: 60 (15 x 4) Vorbereitung Prüfung: 37,5

4.133 Modul: Wirtschaftsprivatrecht [M-INFO-101191]

Verantwortung: Prof. Dr. Thomas Dreier

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Ergänzungsfach / Recht

LeistungspunkteNotenskalaTurnusDauerSpracheLevelVersion9ZehntelnotenJedes Semester3 SemesterDeutsch3

Pflichtbestandteile			
T-INFO-102013	Privatrechtliche Übung	9 LP	Dreier, Matz

Erfolgskontrolle(n)

Siehe Teilleistung.

Voraussetzungen

Erfolgreicher Abschluss des Moduls Einführung in das Privatrecht [IN1JURA1].

Qualifikationsziele

Der/die Studierende

- · besitzt vertiefte Kenntnisse des allgemeinen und des besonderen Schuldrechts sowie des Sachenrechts,
- vist in der Lage, das Zusammenwirken der gesetzlichen Regelungen im BGB (betreffend die verschiedenen Vertragstypen und die dazugehörigen Haftungsfragen, Leistungsabwicklung, Leistungsstörungen, verschiedene Übereignungsarten sowie die dinglichen Sicherungsrechte) und im Handels- und Gesellschaftsrecht (hier insbesondere betreffend die Besonderheiten der Handelsgeschäfte, die handelsrechtliche Stellvertretung und das Kaufmannsrecht sowie die Organisationsformen, die das deutsche Gesellschaftsrecht für unternehmerische Aktivität zur Verfügung stellt) zu durchschauen,
- erwirbt in der Privatrechtlichen Übung die Fähigkeit, juristische Problemfälle mit juristischen Mitteln methodisch sauber zu lösen.

Inhalt

Das Modul baut auf dem Modul "Einführung in das Privatrecht" auf. Der Studierende bekommt vertiefte Kenntnisse über besondere Vertragsarten des BGB sowie über komplexere gesellschaftsrechtliche Konstruktionen. Ferner wird den Studenten die Fähigkeit vermittelt, wie auch ein komplexerer juristischer Sachverhalt methodisch sauber zu lösen ist.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfungszeit und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

4.134 Modul: Wirtschaftstheorie [M-WIWI-101501]

Verantwortung: Prof. Dr. Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** Ergänzungsfach / Volkswirtschaftslehre

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
9	Zehntelnoten	Jedes Semester	2 Semester	Deutsch/Englisch	3	3

Wahlpflichtangebot (Wahl: 9 LP)				
T-WIWI-102609	2609 Advanced Topics in Economic Theory 4,5 LP Mitusch			
T-WIWI-102876	Auction & Mechanism Design	4,5 LP	Szech	
T-WIWI-102892	Economics and Behavior	4,5 LP	Szech	
T-WIWI-102850	Einführung in die Spieltheorie	4,5 LP	Puppe, Reiß	
T-WIWI-102844	Industrieökonomie	4,5 LP	Reiß	
T-WIWI-109121	Macroeconomic Theory	4,5 LP	Brumm	
T-WIWI-102610	Wohlfahrtstheorie	4,5 LP	Puppe	

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 o. 2 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderung an Leistungspunkten erfüllt ist. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Qualifikationsziele

Der/die Studierende

- beherrscht den Umgang mit fortgeschrittenen Konzepten der mikroökonomischen Theorie beispielsweise der allgemeinen Gleichgewichtstheorie oder der Preistheorie und kann diese auf reale Probleme, z. B. der Allokation auf Faktor- und Gütermärkten, anwenden. (Lehrveranstaltung "Fortgeschrittene Mikroökonomische Theorie"),
- versteht Konzepte und Methoden der Wohlfahrtstheorie und kann sie auf Probleme der Verteilungsgerechtigkeit, Chancengleichheit und gesellschaftliche Fairness anwenden, (Lehrveranstaltung "Wohlfahrtstheorie")
- erlangt fundierte Kenntnisse in der Theorie strategischer Entscheidungen. Ein Hörer der Vorlesung "Einführung in die Spieltheorie" soll in der Lage sein, allgemeine strategische Fragestellungen systematisch zu analysieren und gegebenenfalls Handlungsempfehlungen für konkrete volkswirtschaftliche Entscheidungssituationen (wie kooperatives vs. egoistisches Verhalten) zu geben. (Lehrveranstaltung "Einführung in die Spieltheorie").

Inhalt

Inhaltlicher Schwerpunkt der Vorlesung Einführung in die Spieltheorie sind die Grundlagen der nicht-kooperativen Spieltheorie. Modellannahmen, Lösungskonzepte und Anwendungen werden sowohl für simultane Spiele (Normalformspiele) als auch für sequenzielle Spiele (Extensivformspiele) detailliert besprochen. Klassische Gleichgewichtskonzepte wie das Nash-Gleichgewicht oder das teilspielperfekte Gleichgewicht, aber auch fortgeschrittene Konzepte werden ausführlich diskutiert. Es wird zudem gof ein kurzer Einblick in die kooperative

auch fortgeschrittene Konzepte werden ausführlich diskutiert. Es wird zudem ggf. ein kurzer Einblick in die kooperative Spieltheorie gegeben.

Die Veranstaltung Auction & Mechanism Design beginnt mit der grundlegenden Theorie des Gleichgewichtsverhaltens und des Ertragsmanagements in Einobjekt-Standardauktionen. Nachdem das Ertrags-Äquivalenz Theorem für Standardauktionen eingeführt wird, verschiebt sich der Schwerpunkt auf Mechanismusdesign und dessen Anwendungen für Einobjekt-Auktionen und bilateralen Austausch.

Die Veranstaltung Economics and Behavior führt inhaltlich und methodisch in grundlegende Themen der Verhaltensökonomie ein. Die Studierenden erhalten zudem Einblick in das Design ökonomischer Experimentalstudien. Die Studierenden werden darüber hinaus an das Lesen von und die kritische Auseinandersetzung mit aktuellen Forschungsarbeiten aus der Verhaltensökonomie herangeführt.

Anmerkungen

Bitte beachten Sie, dass die Teilleistung T-WIWI-102609 - Advanced Topics in Economic Theory derzeit nicht angeboten wird.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden. Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.

Empfehlungen

Keine

5 Teilleistungen

5.1 Teilleistung: Advanced Topics in Economic Theory [T-WIWI-102609]

Verantwortung: Prof. Dr. Kay Mitusch

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Unregelmäßig	1

Lehrveranstaltungen					
SS 2022	2520527	Advanced Topics in Economic Theory	2 SWS	Vorlesung (V) / 🗣	Mitusch, Brumm
SS 2022	2520528	Übung zu Advanced Topics in Economic Theory	1 SWS	Übung (Ü) / 🗣	Pegorari, Corbo

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Erfolgskontrolle erfolgt an zwei Terminen am Ende der Vorlesungszeit bzw. zu Beginn des Folgesemesters.

Voraussetzungen

Keine

Empfehlungen

This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

5.2 Teilleistung: Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte [T-MACH-106744]

Verantwortung: Hon.-Prof. Dr. Roland Kläger Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

Teilleistungsart
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungspunkte
A

Notenskala
Drittelnoten
Jedes Sommersemester
3

Lehrveranst	taltungen				
SS 2022		Agiles Produkt-Innovations- Management - MEHRWERT- getriebene Planung neuer Produkte	SWS	Vorlesung / Übung (VÜ) / 🗙	Kläger

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, 20 Min.

Voraussetzungen

Keine

5.3 Teilleistung: Algebra [T-MATH-102253]

Verantwortung: Prof. Dr. Frank Herrlich

PD Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-101315 - Algebra

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte

Notenskala Drittelnoten

Version 1

Lehrveranstaltungen						
WS 21/22	0102200	Algebra	4 SWS	Vorlesung (V) / 🗣	Herrlich	
WS 21/22	0102210	Übungen zu 0102200 (Algebra)	2 SWS	Übung (Ü) / 🗣	Herrlich, Kohlmüller	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (ca. 30 min).

Voraussetzungen

keine

5.4 Teilleistung: Algorithmen für planare Graphen [T-INFO-101986]

Verantwortung: Prof. Dr. Dorothea Wagner **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101220 - Algorithmen für planare Graphen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	24614	Algorithmen für planare Graphen (mit Übungen)	3 SWS	Vorlesung / Übung (VÜ) / ♀	Ueckerdt, Gottesbüren, Merker	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten gemäß § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse zu Grundlagen der Graphentheorie und Algorithmentechnik sind hilfreich.

5.5 Teilleistung: Algorithmen I [T-INFO-100001]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher

Einrichtung: KIT-Fakultät für Informatik **Bestandteil von:** M-INFO-100030 - Algorithmen I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	24500	Algorithmen I		Vorlesung / Übung (VÜ) / ♀	Bläsius, Wilhelm	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Abschlussprüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von 120 Minuten.

Der Dozent kann für gute Leistungen in der <u>Übung</u> zur Lehrveranstaltung Algorithmen I einen Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben.

Dieser Notenbonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.

5.6 Teilleistung: Algorithmen II [T-INFO-102020]

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101173 - Algorithmen II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 21/22	24079	Algorithmen II	4 SWS	Vorlesung (V) / 🗣	Sanders, Seemaier, Lehmann	

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Version

5.7 Teilleistung: Algorithmische Methoden für schwere Optimierungsprobleme [T-INFO-103334]

Verantwortung: Prof. Dr. Dorothea Wagner **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101237 - Algorithmische Methoden für schwere Optimierungsprobleme

TeilleistungsartLeistungspunkteNotenskalaTurnusPrüfungsleistung mündlich5DrittelnotenUnregelmäßig

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten gemäß § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse aus der Vorlesung Algorithmen II werden empfohlen.

5.8 Teilleistung: Analysis 1 - Klausur [T-MATH-106335]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger

Prof. Dr. Roland Schnaubelt KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich9DrittelnotenJedes Semester1

Lehrveranstaltungen					
WS 21/22	0100100	Analysis I	4 SWS	Vorlesung (V) / 🖥	Frey

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Voraussetzungen

Einrichtung:

Der Übungsschein aus Analysis 1 muss bestanden sein.

5.9 Teilleistung: Analysis 1 Übungsschein [T-MATH-102235]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm

Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2 **Voraussetzung für:** T-MATH-106335 - Analysis 1 - Klausur

TeilleistungsartLeistungspunkteNotenskalaVersionStudienleistung0best./nicht best.1

Lehrveranstaltungen						
WS 21/22	0100200	Übungen zu 0100100	2 SWS	Übung (Ü) / 🖥	Frey	
WS 21/22	0190010	Tutorium Analysis I	2 SWS	Tutorium (Tu) / 🗣	Frey	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Der Übungsschein wird auf der Grundlage erfolgreich bearbeiteter wöchentlicher Übungsblätter vergeben. Für den Erwerb des Übungsscheines ist es hinreichend 40% der maximal möglichen Punkte in den Übungsblättern 1-7 sowie 40% der maximal möglichen Punkte in den Übungsblättern 8-14 zu erreichen.

Voraussetzungen

keine

5.10 Teilleistung: Analysis 2 - Klausur [T-MATH-106336]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger

Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	9	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen					
SS 2022	0150100	Analysis 2	4 SWS	Vorlesung (V)	Frey

Voraussetzungen

Der Übungsschein aus Analysis 2 muss bestanden sein.

5.11 Teilleistung: Analysis 2 Übungsschein [T-MATH-102236]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger

Prof. Dr. Roland Schnaubelt KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2 **Voraussetzung für:** T-MATH-106336 - Analysis 2 - Klausur

TeilleistungsartLeistungspunkteNotenskala
best./nicht best.Version1

Lehrveranstaltungen					
SS 2022	0150200	Übungen zu 0150100	2 SWS	Übung (Ü)	Frey

Erfolgskontrolle(n)

Einrichtung:

Der Übungsschein wird auf der Grundlage erfolgreich bearbeiteter wöchentlicher Übungsblätter vergeben. Für den Erwerb des Übungsscheines ist es hinreichend 40% der maximal möglichen Punkte in den Übungsblättern 1-7 sowie 40% der maximal möglichen Punkte in den Übungsblättern 8-13 zu erreichen.

Voraussetzungen

keine

5.12 Teilleistung: Analysis 3 - Klausur [T-MATH-102245]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik **Bestandteil von:** M-MATH-101318 - Analysis 3

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich9DrittelnotenJedes Semester2

Lehrveranstaltungen					
WS 21/22	0100400	Analysis III	4 SWS	Vorlesung (V) / 🗣	Schnaubelt
WS 21/22	0100500	Übungen zu 0100400	2 SWS	Übung (Ü) / 🗣	Schnaubelt

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Voraussetzungen

keine

5.13 Teilleistung: Analysis 4 - Prüfung [T-MATH-106286]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103164 - Analysis 4

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version 1
Prüfungsleistung schriftlich	9	Drittelnoten	Jedes Semester	

Lehrveranstaltungen					
SS 2022	0163900	Analysis 4	4 SWS	Vorlesung (V)	Schnaubelt
SS 2022	0164000	Übungen zu 0163900	2 SWS	Übung (Ü)	Schnaubelt

Erfolgskontrolle(n)

Schriftliche Prüfung (120 min).

Voraussetzungen

Keine

5.14 Teilleistung: Analytisches CRM [T-WIWI-102596]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101460 - CRM und Servicemanagement

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte 4,5 **Notenskala** Drittelnoten **Turnus** Jedes Sommersemester **Version** 1

Erfolgskontrolle(n)

Die Prüfung wird für Erstschreiber letztmals im Sommersemester 2020 angeboten.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt fünf Punkte (maximal eine Notenstufe (0,3 oder 0,4)). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse über Datenmodelle und Modellierungssprachen (UML) aus dem Bereich der Informationssysteme werden vorausgesetzt.

5.15 Teilleistung: Antennen und Mehrantennensysteme [T-ETIT-106491]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-100565 - Antennen und Mehrantennensysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	3

Lehrveranstaltungen					
WS 21/22		Antennen und Mehrantennensysteme	2 SWS	Vorlesung (V) / 🗣	Zwick
WS 21/22	2308417	Workshop zu 2308416 Antennen und Mehrantennensysteme	2 SWS	Übung (Ü) / 🗯	Zwick, Kretschmann, Bekker

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (2 Stunden) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen

T-ETIT-100638 - Antennen und Mehrantennensysteme wurde weder begonnen, noch abgeschlossen.

Das Modul "Antennen und Antennensysteme" darf nichtbegonnen oder abgeschlossen sein.

Anmerkungen

Die Zahl der Vorlesungstermine hat sich in den letzten 2 Jahren zugunsten der Übungstermine soweit verschoben, dass mittlerweile 2+2 SWS korrekt ist. Das Modul besteht also aus 2 SWS Vorlesung und 2 SWS Rechnerübung. - Da die Vor-/Nachbereitungszeit bei der Rechnerübung deutlich geringer als für den eigentlichen Vorlesungsstoff ist, entspricht der studentische Gesamtaufwand 5 LP (ab WS20/21, zuvor 6 LP)

5.16 Teilleistung: Ars Rationalis I [T-GEISTSOZ-101174]

Verantwortung: Prof. Dr. Gregor Betz

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: M-GEISTSOZ-100614 - Ars Rationalis
Voraussetzung für: T-GEISTSOZ-101175 - Ars Rationalis II

T-GEISTSOZ-110370 - Modulteilprüfung 1 - Ars Rationalis (Klausur)

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 21/22	5012001	Ars Rationalis I	2 SWS	Kurs (Ku)	Dürr

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme am Kurs "Ars Rationalis I", d.h. im Bestehen der Studienleistungen, die in der Veranstaltung in Form von Hausaufgaben zu erbringen sind. Dabei kann es sich um kleinere, wöchentlich zu erbringende Aufgaben (z.B. Übungszettel) handeln oder auch um weniger häufig zu erbringende, umfangreichere Aufgaben (etwa Essays).

Voraussetzungen

keine

Empfehlungen

Besuch des Tutoriums

5.17 Teilleistung: Ars Rationalis II [T-GEISTSOZ-101175]

Verantwortung: Prof. Dr. Gregor Betz

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: M-GEISTSOZ-100614 - Ars Rationalis

Teilleistungsart
StudienleistungLeistungspunkte
0Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
2

Lehrveranstaltungen					
SS 2022	5012001	Ars Rationalis II	2 SWS	Kurs (Ku)	Dürr

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme am Kurs "Ars Rationalis II", d.h. im Bestehen der Studienleistungen, die in der Veranstaltung in Form von Hausaufgaben zu erbringen sind. Dabei kann es sich um kleinere, wöchentlich zu erbringende Aufgaben (z.B. Übungszettel) handeln oder auch um weniger häufig zu erbringende, umfangreichere Aufgaben (etwa Essays).

Voraussetzungen

Die Studienleistung "Ars Rationalis I"

Empfehlungen

Besuch des Tutoriums

5.18 Teilleistung: Auction & Mechanism Design [T-WIWI-102876]

Verantwortung: Prof. Dr. Nora Szech

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2560550	Auction and Mechanism Design	2 SWS	Vorlesung (V) / 🗣	Szech, Rosar
SS 2022	2560551	Übung zu Auction and Mechanism Design	1 SWS	Übung (Ü) / 🗣	Szech, Rau

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Die Note ist die Note der schriftlichen Prüfung.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Keine

Empfehlungen

Grundkenntnisse in Mikroökonomie und Statistik sind wünschenswert. Ein Hintergrund in Spieltheorie ist hilfreich, aber nicht zwingend notwendig.

Anmerkungen

Die Lehrveranstaltung wird in englischer Sprache gehalten.

5.19 Teilleistung: B2B Vertriebsmanagement [T-WIWI-111367]

Verantwortung: Prof. Dr. Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101424 - Grundlagen des Marketing

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4,5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2572187	B2B Vertriebsmanagement	2 SWS	Vorlesung (V) / 🗯	Klarmann
WS 21/22	2572188	Übung zu B2B Vertriebsmanagement (Bachelor)	1 SWS	Übung (Ü) / 🗣	Cordts, Pade

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch die Ausarbeitung und den Vortrag einer Verkaufspräsentation auf Basis einer Case Study (max. 30 Punkte) sowie einer schriftlichen Klausur mit zusätzlichen Hilfsmitteln im Sinne einer Open Book Klausur (max. 60 Punkte). Insgesamt können in der Veranstaltung maximal 90 Punkte erzielt werden.Im Wintersemester 2021/22 wird die schriftliche Klausur abhängig von der weiteren pandemischen Entwicklung entweder in Präsenz oder online stattfinden. Weitere Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.

Anmerkungen

Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing und Vertrieb (marketing.iism.kit.edu).

5.20 Teilleistung: Bachelorarbeit [T-INFO-103336]

Verantwortung: Prof. Dr. Bernhard Beckert **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101721 - Modul Bachelorarbeit

Teilleistungsart
AbschlussarbeitLeistungspunkte
15Notenskala
DrittelnotenTurnus
Jedes SemesterVersion
2

Erfolgskontrolle(n)

Die Bachelorarbeit ist in § 14 und § 20 der SPO15 geregelt.

Die Präsentation soll spätestens vier Wochen nach Abgabe der schriftlichen Ausarbeitung stattfinden.

Die schriftliche Ausarbeitung soll die Herangehensweise an das Thema dokumentieren.

Voraussetzungen

Voraussetzung für die Zulassung zur Bachelorarbeit ist, dass die/der Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat und nicht mehr als eine Modulprüfung aus den Pflichtfächern gemäß § 20 Abs. 2 Ziff. 1-4 der SPO noch nicht bestanden hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Wenn die Voraussetzungen erfüllt sind, ist einen Antrag auf Zulassung nicht notwendig.

Abschlussarbeit

Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

Bearbeitungszeit 4 Monate

Maximale Verlängerungsfrist 1 Monate

Korrekturfrist 6 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.

Anmerkungen

Die schriftliche Ausarbeitung soll die Herangehensweise an das Thema dokumentieren.

Die Bachelorarbeit wird zudem in §14 SPO geregelt. Die Bewertung der Bachelorarbeit erfolgt durch einen Betreuer (verantwortlicher Prüfer) und einen weiteren Prüfende. Das Gutachten nach §14(7) der SPO wird für das gesamte Modul erstellt.

5.21 Teilleistung: Basispraktikum Mobile Roboter [T-INFO-101992]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101184 - Basispraktikum Mobile Roboter

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	4	best./nicht best.	Jedes Sommersemester	2

Lehrverans	taltungen				
SS 2022	24624	Basispraktikum Mobile Roboter	4 SWS	Praktikum (P) / 🖥	Asfour

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO und besteht aus mehreren Teilaufgaben. Die Bewertung erfolgt mit den Noten "bestanden" / "nicht bestanden".

Voraussetzungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

Empfehlungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

5.22 Teilleistung: Basispraktikum Protocol Engineering [T-INFO-102066]

Verantwortung: Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101247 - Basispraktikum Protocol Engineering

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 21/22	2400107	Basispraktikum Protocol Engineering	4 SWS	Praktikum (P)	König, Zitterbart

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt benotet nach § 4 Abs. 2 Nr. 3 SPO als Prüfungsleistung anderer Art.

Voraussetzungen

Die Belegung dieses Moduls schließt die Belegung des Moduls Praktikum Praxis der Telematik aus.

Empfehlungen

Das Praktikum sollte semesterbegleitend zur LV Telematik [24128] belegt werden.

5.23 Teilleistung: Basispraktikum Technische Informatik: Hardwarenaher Systementwurf Übung [T-INFO-105983]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101219 - Basispraktikum TI: Hardwarenaher Systementwurf

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Wintersemester Version

Erfolgskontrolle(n)

Es muss außerdem einen Übungsschein in Form einer Studienleistung nach § 4 Abs. 3 SPO erbracht werden. Hierfür wird die Abgabe zweier Übungsblätter bewertet.

Voraussetzungen

Keine.

5.24 Teilleistung: Basispraktikum TI: Hardwarenaher Systementwurf [T-INFO-102011]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101219 - Basispraktikum TI: Hardwarenaher Systementwurf

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4	Drittelnoten	Jedes Wintersemester	1

Lehrverans	taltungen				
WS 21/22	2424309	Basispraktikum TI: Hardwarenaher Systementwurf (findet nicht statt aktuell)	4 SWS	Praktikum (P)	Karl
SS 2022	2424309	Basispraktikum TI: Hardwarenaher Systementwurf - findet nur noch im WS statt	4 SWS	Praktikum (P) /	Karl

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♣ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO. Es müssen eine schriftliche Ausarbeitung erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Voraussetzungen

Keine.

Empfehlungen

Besuch der Veranstaltungen:

- Rechnerorganisation
- und/oder
- -Digitaltechnik und Entwurfsverfahren

5.25 Teilleistung: Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) [T-INFO-103119]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101633 - Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I)

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	5	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 21/22	24312	Basispraktikum Web- Anwendungen und Serviceorientierte Architekturen (I)	2 SWS	Praktikum (P) /	Abeck, Schneider, Sänger

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Ergebnisdokumentation sowie der Präsentation derselbigen als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO

Voraussetzungen

Das Modul Web-Anwendungen und Service-Orientierte Architekturen (I) muss angefangen sein.

5.26 Teilleistung: Basispraktikum zum ICPC Programmierwettbewerb [T-INFO-101991]

Verantwortung: Prof. Dr. Dorothea Wagner **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101230 - Basispraktikum zum ICPC-Programmierwettbewerb

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	4	best./nicht best.	Jedes Sommersemester	2

Lehrverans	taltungen				
SS 2022		Basispraktikum zum ICPC Programmierwettbewerb	2 SWS	Praktikum (P) / 🗣	Jungeblut, Zeitz, Ueckerdt, Weyand

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Für den erfolgreichen Abschluss des Moduls ist das Bestehen einer Studienleistung anderer Art nach § 4 Abs. 3 SPO notwendig. Diese erfolgt kontinuierlich in Form von Programmieraufgaben sowie einem Abschlussvortrag im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine.

Empfehlungen

Programmierkenntnisse in C++ oder Java, algorithmische Grundkenntnisse sind wünschenswert.

5.27 Teilleistung: Basispraktikum: Arbeiten mit Datenbanksystemen [T-INFO-103552]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101865 - Basispraktikum Arbeiten mit Datenbanksystemen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	4	best./nicht best.	Jedes Wintersemester	2

Lehrverans	taltungen				
WS 21/22	24317	Arbeiten mit Datenbanksystemen	2 SWS	Praktikum (P) / 🗯	Böhm, Renftle

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO. Es müssen eine schriftliche Ausarbeitung über die praktische Arbeit erstellt und Präsentationen gehalten werden. Ein Rücktritt ist innerhalb von einer Woche nach Beginn der Veranstaltung möglich.

Voraussetzungen

Die Prüfung Datenbanksysteme muss erfolgreich abgeschlossen sein.

5.28 Teilleistung: Batteriemodellierung mit MATLAB [T-ETIT-106507]

Verantwortung: Dr.-Ing. Andre Weber

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103271 - Batteriemodellierung mit MATLAB

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2304228	Batteriemodellierung mit MATLAB	1 SWS	Vorlesung (V) / 🗣	Weber
WS 21/22		Übungen zu 2304228 Batteriemodellierung mit MATLAB	1 SWS	Übung (Ü) / 🗣	Weber

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen

keine

5.29 Teilleistung: Bauökologie I [T-WIWI-102742]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101467 - Bauökologie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2586404	Bauökologie I	2 SWS	Vorlesung (V) / 🖥	Lützkendorf
WS 21/22	2586405	Übung zu Bauökologie I	1 SWS	Übung (Ü) / 🖥	Rochlitzer

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Wintersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Empfehlungen

Eine Kombination mit dem Modul*Real Estate Management*und mit einem ingenieurwissenschaftlichem Modul aus den Bereichen Bauphysik oder Baukonstruktion wird empfohlen.

5.30 Teilleistung: Bauökologie II [T-WIWI-102743]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101467 - Bauökologie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	2585403	Übung zu Bauökologie II	1 SWS	Übung (Ü) / 🗯	Rochlitzer	
SS 2022	2585404	Bauökologie II	2 SWS	Vorlesung (V) / 😘	Lützkendorf, Rochlitzer	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als 60-minütige (reine Bearbeitungszeit) Upload-Klausur (Open Book Exam @ Home) (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine

Empfehlungen

Es wird eine Kombination mit dem Modul *Real Estate Management* und mit einem ingenieurwissenschaftlichem Modul aus den Bereichen Bauphysik oder Baukonstruktion empfohlen.

5.31 Teilleistung: Betriebssysteme [T-INFO-101969]

Verantwortung: Prof. Dr.-Ing. Frank Bellosa **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101177 - Betriebssysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrverans	Lehrveranstaltungen						
WS 21/22	24009	Betriebssysteme	4 SWS	Vorlesung (V) / 🗯	Bellosa, Rittinghaus		

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 180 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Anmerkungen

Studierende, die das Modul bis inkl. SS 2019 angefangen haben (bereits die Haupt- oder Scheinklasur angetreten haben) und noch nicht abgeschlossen haben, haben die Möglichkeit die zwei Prüfungen aus dem Modul im WS 2019 / 2020 erneut abzulegen oder auf die neue Version des Moduls mit der neuen Erfolgskontrolle umzusteigen. Dafür müssen Studierende eine E-Mail an beratung-informatik@informatik.kit.edu.

5.32 Teilleistung: BGB für Anfänger [T-INFO-103339]

Verantwortung: Dr. Yvonne Matz

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101190 - Einführung in das Privatrecht

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Wintersemester	3

Lehrver	ınstaltungen				
WS 21/2	2 24012	BGB für Anfänger	4 SWS	Vorlesung (V) / 🗣	Matz

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (i.d.R. 90min) nach § 4 Abs. 2 Nr. 1 SPO.

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine.

5.33 Teilleistung: Bildgebende Verfahren in der Medizin I [T-ETIT-101930]

Verantwortung: Prof. Dr. Olaf Dössel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100384 - Bildgebende Verfahren in der Medizin I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 21/22	2305261	Bildgebende Verfahren in der Medizin I	2 SWS	Vorlesung (V)	Dössel	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

5.34 Teilleistung: Bildverarbeitung [T-ETIT-105566]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102651 - Bildverarbeitung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen					
SS 2022	2302114	Bildverarbeitung	2 SWS	Vorlesung (V) / 🖥	Heizmann	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Die Kenntnis der Inhalte der Module "Systemtheorie" und "Messtechnik" wird dringend empfohlen. Die Kenntnis der Inhalte des Moduls "Methoden der Signalverarbeitung" ist von Vorteil.

5.35 Teilleistung: CAD-Praktikum NX [T-MACH-102187]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

Teilleistungsart
Studienleistung praktischLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes SemesterVersion

Lehrveranstaltungen					
WS 21/22	2123357	CAD-Praktikum NX	2 SWS	Praktikum (P) / 🗯	Ovtcharova, Mitarbeiter
SS 2022	2123357	CAD-Praktikum NX	2 SWS	Praktikum (P) / 🗯	Ovtcharova, Mitarbeiter

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Praktische Nachweis als Studienleistung durch Bearbeitung einer Konstruktionaufgabe am CAD Rechner, Dauer 60 min.

Voraussetzungen

Keine

Empfehlungen

Umgang mit technischen Zeichnungen wird vorausgesetzt.

Anmerkungen

Für das Praktikum besteht Anwesenheitspflicht.

5.36 Teilleistung: Computergrafik [T-INFO-101393]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100856 - Computergrafik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrverans	Lehrveranstaltungen					
WS 21/22	24081	Computergrafik	4 SWS	Vorlesung (V) / 🗣	Dachsbacher	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

5.37 Teilleistung: Consumer Behavior [T-WIWI-106569]

Verantwortung: Prof. Dr. Benjamin Scheibehenne

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101424 - Grundlagen des Marketing

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Einmalig	2

Lehrveranstaltungen					
SS 2022	2572174	Consumer Behavior	3 SWS	Vorlesung (V)	Scheibehenne
SS 2022	2572176	Übung zu Consumer Behavior	1 SWS	Übung (Ü) / 🗣	Liu, Scheibehenne

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Anmerkungen

Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing und Vertrieb (http://marketing.iism.kit.edu/).

5.38 Teilleistung: Customer Relationship Management [T-WIWI-102595]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101460 - CRM und Servicemanagement

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2540508	Customer Relationship Management	2 SWS	Vorlesung (V)	Geyer-Schulz
WS 21/22	2540509	Übung zu Customer Relationship Management	1 SWS	Übung (Ü)	Schweigert

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

5.39 Teilleistung: Datenbanksysteme [T-INFO-101497]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101178 - Kommunikation und Datenhaltung

Voraussetzung für: T-INFO-103201 - Datenbank-Praktikum

T-INFO-103552 - Basispraktikum: Arbeiten mit Datenbanksystemen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen						
SS 2022	24516	Datenbanksysteme	2 SWS	Vorlesung (V) / 🗣	Böhm, Mülle	
SS 2022	24522	Übungen zu Datenbanksysteme	1 SWS	Übung (Ü) / 🗣	Böhm, Mülle	

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Durch die erfolgreiche Teilnahme am Übungsbetrieb als Erfolgskontrolle anderer Art (§4(2), 3 SPO 2007) bzw. Studienleistung (§4(3) SPO 2015 kann ein Bonus erworben werden, wenn der Dozent diese Möglichkeit im jeweiligen Semester anbietet. In diesem Fall werden die genauen Kriterien für die Vergabe des Bonus zu Vorlesungsbeginn bekannt gegeben.

Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

Sofern die Vergabe des Bonus erteilt wurde, gilt dieser für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.

Empfehlungen

Der Besuch von Vorlesungen zu Rechnernetzen, Systemarchitektur und Softwaretechnik wird empfohlen, aber nicht vorausgesetzt.

5.40 Teilleistung: Derivate [T-WIWI-102643]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101402 - eFinance

M-WIWI-101465 - Topics in Finance I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2530550	Derivate	2 SWS	Vorlesung (V) / 🗣	Uhrig-Homburg, Thimme
SS 2022	2530551	Übung zu Derivate	1 SWS	Übung (Ü) / 🗣	Uhrig-Homburg, Eska

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art), oder als 60-minütige Klausur (schriftliche Prüfung) angeboten.

Bei erfolgreicher Teilnahme am Übungsbetrieb durch die Abgabe korrekter Lösungen zu mindestens 50% der gestellten Bonusübungsaufgaben kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

Empfehlungen

. Keine

5.41 Teilleistung: Digital Services: Foundations [T-WIWI-111307]

Verantwortung: Prof. Dr. Gerhard Satzger

Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101434 - eBusiness und Service Management

Teilleistungsart
Prüfungsleistung schriftlich
Prüfungsleistung schriftlich
Prüfungsleistung schriftlich
Prüfungsleistung schriftlich
Prüfungspunkte
A,5
Drittelnoten
Drittelnoten
Drittelnoten
Jedes Sommersemester

Lehrveranstaltungen					
SS 2022	2595466	Digital Services: Foundations	2 SWS	Vorlesung (V) / 🗣	Satzger, Weinhardt
SS 2022	2595467	Übungen zu Digital Services: Foundations	1 SWS	Übung (Ü) / 🗣	Kühl, Schöffer, Badewitz

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (§4(2), 1 SPOs).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben.

Voraussetzungen

siehe "Modellierte Voraussetzungen"

Voraussetzung für WINF angepasst (Wiesner, 20.09.2019)

Anmerkungen

Diese Teilleistung ersetzt T-WIWI-109938 "Digital Services" ab Sommersemester 2021.

5.42 Teilleistung: Dosimetrie ionisierender Strahlung [T-ETIT-104505]

Verantwortung: Prof. Dr. Olaf Dössel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-101847 - Dosimetrie ionisierender Strahlung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Wintersemester	2

Lehrveranst	taltungen				
WS 21/22	2305294	Dosimetrie ionisierender Strahlung	2 SWS	Vorlesung (V) / 🖥	Breustedt

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlicher Gesamtprüfung (2 h).

Voraussetzungen

keine

5.43 Teilleistung: Echtzeitsysteme [T-INFO-101340]

Verantwortung: Prof. Dr.-Ing. Thomas Längle **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100803 - Echtzeitsysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	24576	Echtzeitsysteme		Vorlesung / Übung (VÜ) / 🖥	Längle, Ledermann, Huck	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten gemaß § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

Empfehlungen

Der vorherige Abschluss der Module Grundbegriffe der Informatik und Programmieren wird empfohlen.

5.44 Teilleistung: Economics and Behavior [T-WIWI-102892]

Verantwortung: Prof. Dr. Nora Szech

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 21/22	2560137	Economics and Behavior	2 SWS	Vorlesung (V) / 🖥	Szech, Rau, Zhao	
WS 21/22	2560138	Übung zu Economics and Behavior	1 SWS	Übung (Ü) / 🖥	Szech, Zhao	

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Empfehlungen

Grundkenntnisse in Mikroökonomie und Statistik sind wünschenswert. Ein Hintergrund in Spieltheorie ist hilfreich, aber nicht zwingend notwendig.

Anmerkungen

Die Veranstaltung wird auf Englisch stattfinden.

5.45 Teilleistung: eFinance: Informationssysteme für den Wertpapierhandel [T-WIWI-110797]

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101402 - eFinance

M-WIWI-101434 - eBusiness und Service Management

M-WIWI-101465 - Topics in Finance I

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4,5DrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 21/22	2540454	eFinance: Informationssysteme für den Wertpapierhandel	2 SWS	Vorlesung (V) / 🖥	Weinhardt, Notheisen	
WS 21/22	2540455	Übungen zu eFinance: Informationssysteme für den Wertpapierhandel	1 SWS	Übung (Ü) / 😘	Jaquart	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch laufende Ausarbeitungen und Präsentationen von Aufgaben und eine Klausur (60 Minuten) am Ende der Vorlesungszeit. Das Punkteschema für die Gesamtbewertung wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Anmerkungen

Der Kurs "eFinance: Informationssysteme für den Wertpapierhandel" behandelt eingehend verschiedene Akteure und ihre Funktion in der Finanzindustrie und beleuchtet die wichtigsten Trends in modernen Finanzmärkten, wie z.B. Distributed Ledger Technology, Sustainable Finance und künstliche Intelligenz. Wertpapierpreise entwickeln sich durch eine große Anzahl bilateraler Geschäfte, die von Marktteilnehmern mit spezifischen, gut regulierten und institutionalisierten Rollen ausgeführt werden. Die Marktmikrostruktur ist das Teilgebiet der Finanzwirtschaft, das den Preisbildungsprozess untersucht. Dieser Prozess wird maßgeblich durch Regulierung beeinflusst und durch technologische Innovation vorangetrieben. Unter Verwendung von theoretischen ökonomischen Modellen werden in diesem Kurs Erkenntnisse über das strategische Handelsverhalten einzelner Marktteilnehmer überprüft, und die Modelle werden mit Marktdaten versehen. Analytische Werkzeuge und empirische Methoden der Marktmikrostruktur helfen, viele rätselhafte Phänomene auf Wertpapiermärkten zu verstehen.

5.46 Teilleistung: Eine Einführung zum Informatikstudium am KIT (eezi) [T-INFO-109862]

Verantwortung: Prof. Dr. Bernhard Beckert

Christine Glaubitz

Prof. Dr.-Ing. Anne Koziolek Prof. Dr. Ralf Reussner Thomas Worsch

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	1	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 21/22	2400037	Eine Einführung zum Informatikstudium am KIT (eezi)	SWS	Sonstige (sonst.) /	Glaubitz	
WS 21/22	2411809	Tutorien zu "Eine Einführung zum Informatikstudium am KIT (eezi)"	SWS	Tutorium (Tu) / 🗯	Glaubitz	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO.

- 3 Vorlesunger
- 5 Tutorien (Anwesenhaeit mind. 3 von 5)
- 5 Übungsblätter
- 1 Beratungstermin

Voraussetzungen

Keine.

Anmerkungen

Die Lehrveranstaltung eezi am KIT - Eine Einführung zum Informatikstudium am KIT (gesprochen "easy") wird für Erstsemester angeboten und empfohlen. Sie besteht aus einer Reihe von 3 Vorlesungen und 5 Tutorien, 5 Übungsblättern und 1 Beratungsgespräch, die den Einstieg in das Informatikstudium / Wirtschaftsinformatikstudium / Lehramt Fach Informatikstudium erleichtern sollen.

eezi ist ein Modul, welches die TeilnehmerInnen methodische Herangehensweisen an die Herausforderungen des Studiums lehrt, sowie konkrete Tipps für das erste Semester gibt.

Themen wie Zeit-, Selbst- und Studiumsmanagement, fachliche Lerntechniken und Klausurvorbereitung werden behandelt. Tipps zu Fragen wie: "Wie überlebe ich das erste Semester?" und "Was muss ich tun, um mein Studium zu bewältigen?" stehen im Fokus dieser Veranstaltung.

eezi bietet also einen Einstieg, das eigene Studium zu beobachten und zu reflektieren.

Dabei wird versucht, möglichst viel im Dialog mit den Erstsemestern zu stehen, um genau auf die persönlichen Probleme, Interessen oder Fragestellungen der StudienanfängerInnen einzugehen.

Nach dem Abschluss von eezi am KIT erhält man 1 ECTS als Schlüsselqualifikation.

Zielgruppe: Für Erstsemester-Studierende: Informatikstudium / Wirtschaftsinformatikstudium / Lehramt Fach Informatik

5.47 Teilleistung: Einführung in Algebra und Zahlentheorie [T-MATH-102251]

Verantwortung: Prof. Dr. Frank Herrlich

PD Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101314 - Einführung in die Algebra und Zahlentheorie

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich9Drittelnoten1

Lehrveranstaltungen						
SS 2022	0153100	Einführung in Algebra und Zahlentheorie	4 SWS	Vorlesung (V)	Kühnlein	
SS 2022	0153200	Übungen zu 0153100 (Einführung in Algebra und Zahlentheorie)	2 SWS	Übung (Ü)	Kühnlein	
SS 2022	0195310	Tutorium zu Einführung in Algebra und Zahlentheorie	2 SWS	Tutorium (Tu)	Kühnlein	

Erfolgskontrolle(n)

Schriftliche Prüfung (120 min).

Voraussetzungen

keine

5.48 Teilleistung: Einführung in das Operations Research I und II [T-WIWI-102758]

Verantwortung: Prof. Dr. Stefan Nickel

Prof. Dr. Steffen Rebennack

Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101418 - Einführung in das Operations Research

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	12	Drittelnoten	siehe Anmerkungen	1

Lehrverans	Lehrveranstaltungen						
WS 21/22	2530043	Einführung in das Operations Research II	2 SWS	Vorlesung (V) / 🗯	Nickel		
WS 21/22	2530044	Tutorien zu Einführung in das Operations Research II	SWS	Tutorium (Tu) / 🗯	Dunke		
SS 2022	2550040	Einführung in das Operations Research I	2 SWS	Vorlesung (V) / 🗣	Stein		

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtklausur (120 min.) (nach §4(2), 1 SPO).

Die Klausur wird in jedem Semester (in der Regel im März und Juli) angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Empfehlungen

Es werden die Kenntnisse aus Mathematik I und II, sowie Programmierkenntnisse für die Rechnerübungen vorausgesetzt.

Es wird dringend empfohlen, die Lehrveranstaltung Einführung in das Operations Research I [2550040] vor der Lehrveranstaltung Einführung in das Operations Research II [2530043] zu belegen.

Anmerkungen

Die Vorlesung "Einführung in das Operations Research I" wird iedes Sommersemester, die Vorlesung "Einführung in das Operations Research II" jedes Wintersemester angeboten.

5.49 Teilleistung: Einführung in die Energiewirtschaft [T-WIWI-102746]

Verantwortung: Prof. Dr. Wolf Fichtner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101464 - Energiewirtschaft

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5,5	Drittelnoten	Jedes Sommersemester	4

Lehrveranstaltungen					
SS 2022	2581010	Einführung in die Energiewirtschaft	2 SWS	Vorlesung (V) / 🗣	Fichtner
SS 2022	2581011	Übungen zu Einführung in die Energiewirtschaft	2 SWS	Übung (Ü) / 🗣	Lehmann, Sandmeier, Ardone, Fichtner

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen

Keine.

5.50 Teilleistung: Einführung in die Finanzwissenschaft [T-WIWI-102877]

Verantwortung: Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101403 - Finanzwissenschaft

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4,5DrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 21/22	2560131	Einführung in die Finanzwissenschaft	3 SWS	Vorlesung (V) / 🖥	Wigger	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine

5.51 Teilleistung: Einführung in die Philosophie 1 [T-GEISTSOZ-111610]

Verantwortung: Prof. Dr. Christian Seidel-Saul

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-103430 - Einführung in die Philosophie

M-GEISTSOZ-104500 - Einführung in die Philosophie (Euklid)

Voraussetzung für: T-GEISTSOZ-106828 - Modulprüfung Einführung in die Philosophie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	0	best./nicht best.	Jedes Wintersemester	1 Sem.	1

Lehrveranstaltungen							
WS 21/22	5012019	Tutorium II "Einführung in die Philosophie 1"	2 SWS	Tutorium (Tu)	Brambach		
WS 21/22	5012029	Tutorium I "Einführung in die Philosophie 1"	2 SWS	Tutorium (Tu)	Schmitz		
WS 21/22	5012055	Einführung in die Philosophie 1	SWS	Vorlesung (V) / 🗣	Seidel-Saul		

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Das Bestehen von den geforderten Studienleistungen in der Veranstaltung "Einführung in die Philosophie 1" in Form von kleineren Schreibaufgaben.

Voraussetzungen

keine

5.52 Teilleistung: Einführung in die Philosophie 2 [T-GEISTSOZ-111612]

Verantwortung: Prof. Dr. Christian Seidel-Saul

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-103430 - Einführung in die Philosophie

M-GEISTSOZ-104500 - Einführung in die Philosophie (Euklid)

Voraussetzung für: T-GEISTSOZ-106828 - Modulprüfung Einführung in die Philosophie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	0	best./nicht best.	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen						
SS 2022	5012017	Einführung in die Philosophie 2	2 SWS	Vorlesung (V)	Seidel-Saul	
SS 2022	5012057	Tutorium I Einführung in die Philosophie 2	2 SWS	Tutorium (Tu)		
SS 2022	5012062	Tutorium II Einführung in die Philosophie 2	SWS	Tutorium (Tu)		

Erfolgskontrolle(n)

Das Bestehen von den geforderten Studienleistungen in der Veranstaltung "Einführung in die Philosophie 2" in Form von kleineren Schreibaufgaben.

Voraussetzungen

5.53 Teilleistung: Einführung in die Philosophie 3 [T-GEISTSOZ-111608]

Verantwortung: Prof. Dr. Christian Seidel-Saul

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-103430 - Einführung in die Philosophie

M-GEISTSOZ-104500 - Einführung in die Philosophie (Euklid)

Voraussetzung für: T-GEISTSOZ-106828 - Modulprüfung Einführung in die Philosophie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	0	best./nicht best.	Jedes Wintersemester	1 Sem.	1

Lehrverans	taltungen				
WS 21/22	5012002	Einführung in die Philosophie 3 - Gruppe D	2 SWS	Proseminar (PS)	Link
WS 21/22	5012005	Einführung in die Philosophie 3 - Gruppe C	2 SWS	Proseminar (PS)	Link
WS 21/22	5012017	Einführung in die Philosophie 3 - Gruppe A	2 SWS	Proseminar (PS)	Link
WS 21/22	5012046	Einführung in die Philosophie 3 - Gruppe B	2 SWS	Proseminar (PS)	Link

Erfolgskontrolle(n)

Das Bestehen von den geforderten Studienleistungen in einer Veranstaltung "Einführung in die Philosophie 3" in Form von Übungsblättern.

Voraussetzungen

5.54 Teilleistung: Einführung in die Philosophie 4 [T-GEISTSOZ-111607]

Verantwortung: Prof. Dr. Christian Seidel-Saul

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-103430 - Einführung in die Philosophie

M-GEISTSOZ-104500 - Einführung in die Philosophie (Euklid)

Voraussetzung für: T-GEISTSOZ-106828 - Modulprüfung Einführung in die Philosophie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung	0	best./nicht best.	Jedes Sommersemester	1 Sem.	1

Lehrverar	ıstaltungen				
SS 2022	5012002	Einführung in die Philosophie 4 - Gruppe A	2 SWS	Proseminar (PS)	Seidel-Saul
SS 2022	5012007	Einführung in die Philosophie 4 - Gruppe B	2 SWS	Proseminar (PS)	Seidel-Saul
SS 2022	5012020	Einführung in die Philosophie 4 - Gruppe D	2 SWS	Proseminar (PS)	Bones
SS 2022	5012022	Einführung in die Philosophie 4 - Gruppe C	2 SWS	Proseminar (PS)	Bones

Erfolgskontrolle(n)

Das Bestehen von den geforderten Studienleistungen in einer Veranstaltung "Einführung in die Philosophie 4" in Form von Übungsblättern.

Voraussetzungen

5.55 Teilleistung: Einführung in die Philosophie 5 [T-GEISTSOZ-111606]

Verantwortung: Prof. Dr. Christian Seidel-Saul

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-103430 - Einführung in die Philosophie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Studienleistung schriftlich	0	best./nicht best.	Jedes Semester	1 Sem.	1

Lehrveranstaltungen					
WS 21/22	5012055	Einführung in die Philosophie 1	SWS	Vorlesung (V) / 🗣	Seidel-Saul
SS 2022	5012017	Einführung in die Philosophie 2	2 SWS	Vorlesung (V)	Seidel-Saul

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Studienleistung besteht in einem kumulativ angefertigten philosophischen Tagebuch, das neben Wahlpflichtaufgaben aus der Vorlesung (mehrere kurze Denkanstöße, Proto-Rekonstruktionen von Argumenten) auch freie Wahlaufgaben (Identifikation von philosophischen Fragestellungen und Argumenten in öffentlichen Debatten; Querverbindungen zwischen Themen und Argumenten aus verschiedenen Vorlesungen explizieren) enthält.

Das Tagebuch kann sowohl begleitend zur Vorlesung "Philo 1" wie auch zur Vorlesung "Philo 2" angefertigt werden. Es ist aber auch möglich und wird sogar empfohlen, das Tagebuch über beide Vorlesungen hinweg zu erstellen.

Voraussetzungen

Keine

5.56 Teilleistung: Einführung in die Spieltheorie [T-WIWI-102850]

Verantwortung: Prof. Dr. Clemens Puppe

Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Sommersemester	2

Lehrveranst	taltungen				
SS 2022	2520525	Einführung in die Spieltheorie	2 SWS	Vorlesung (V) / 🗣	Rosar
SS 2022	2520526	Übungen zu Einführung in die Spieltheorie	1 SWS	Übung (Ü) / 🗣	Rosar

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Volkswirtschaftslehre I: Mikroökonomie muss erfolgreich abgeschlossen sein.

Empfehlungen

Es werden Grundkenntnisse in Mathematik und Statistik vorausgesetzt.

5.57 Teilleistung: Einführung in die Stochastik [T-MATH-102256]

Verantwortung: Prof. Dr. Nicole Bäuerle

Dr. rer. nat. Bruno Ebner Prof. Dr. Vicky Fasen-Hartmann

Prof. Dr. Daniel Hug PD Dr. Bernhard Klar Prof. Dr. Günter Last Prof. Dr. Mathias Trabs PD Dr. Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101321 - Einführung in die Stochastik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6Drittelnoten1

Lehrveranstaltungen						
WS 21/22	0107100	Einführung in die Stochastik	3 SWS	Vorlesung (V) / 🗯	Hug	
WS 21/22	0107200	Übungen zu 0107100 (Einf. in die Stochastik)	1 SWS	Übung (Ü) / 🗯	Hug, Göll	
WS 21/22	0190710	Tutorium Einführung in die Stochastik	2 SWS	Tutorium (Tu)	Hug	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Voraussetzungen

5.58 Teilleistung: Einführung in die Stochastische Optimierung [T-WIWI-106546]

Verantwortung: Prof. Dr. Steffen Rebennack

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

M-WIWI-103278 - Optimierung unter Unsicherheit

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4,5	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen					
SS 2022	2550470	Einführung in die Stochastische Optimierung	2 SWS	Vorlesung (V) /	Rebennack
SS 2022	2550471	Übung zur Einführung in die Stochastische Optimierung	1 SWS	Übung (Ü) / 😘	Rebennack, Sinske
SS 2022	2550474	Rechnerübung zur Einführung in die Stochastische Optimierung	2 SWS	Übung (Ü)	Rebennack, Sinske

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art (Online-Prüfung im Open-Book-Format). Die Prüfung wird jedes Semester angeboten.

Voraussetzungen

Keine.

5.59 Teilleistung: Einführung in Rechnernetze [T-INFO-102015]

Verantwortung: Prof. Dr. Martina Zitterbart **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101178 - Kommunikation und Datenhaltung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2022	24519	Einführung in Rechnernetze	2 SWS	Vorlesung (V) /	Kopmann, Neumeister, Schneider, Zitterbart		
SS 2022	24521	Übung zu Einführung in Rechnernetze	1 SWS	Übung (Ü) / 🖥	Kopmann, Neumeister, Schneider, Zitterbart		

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Empfehlungen

Keine.

5.60 Teilleistung: Elektrische Maschinen und Stromrichter [T-ETIT-101954]

Verantwortung: Dr.-Ing. Klaus-Peter Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102124 - Elektrische Maschinen und Stromrichter

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22		Elektrische Maschinen und Stromrichter	2 SWS	Vorlesung (V) / 😂	Hiller
WS 21/22	2306389	Übung zu 2306387 Elektrische Maschinen und Stromrichter	2 SWS	Übung (Ü) / 🗯	Hiller

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine

5.61 Teilleistung: Elektroenergiesysteme [T-ETIT-101923]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102156 - Elektroenergiesysteme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2307391	Elektroenergiesysteme	2 SWS	Vorlesung (V) / 🖥	Leibfried
SS 2022	2307393	Übungen zu 2307391 Elektroenergiesysteme	1 SWS	Übung (Ü) / 🖥	Steinle

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

5.62 Teilleistung: Elektromagnetische Felder [T-ETIT-109078]

Verantwortung: Prof. Dr. Martin Doppelbauer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104428 - Elektromagnetische Felder

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2306004	Elektromagnetische Felder	2 SWS	Vorlesung (V) / 🗯	Doppelbauer
SS 2022	2306005	Übung zu 2306004 Elektromagnetische Felder	2 SWS	Übung (Ü) / 🖥	Menger, Kesten
SS 2022	2306006	Tutorium zu 2306004 Elektromagnetische Felder	SWS	Zusatzübung (ZÜ) /	Doppelbauer

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

5.63 Teilleistung: Elektromagnetische Wellen [T-ETIT-109245]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104515 - Elektromagnetische Wellen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2309475	Elektromagnetische Wellen	2 SWS	Vorlesung (V) / 🗣	Randel, Koos, Krimmer, Matalla
WS 21/22	2309477	Übung zu 2309475 Elektromagnetische Wellen	2 SWS	Übung (Ü) / 🗣	Randel, Koos, Krimmer, Matalla

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden dringend empfohlen.

5.64 Teilleistung: Elektronische Schaltungen [T-ETIT-109318]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104465 - Elektronische Schaltungen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1 Sem.	2

Lehrveranstaltungen						
SS 2022	2308655	Elektronische Schaltungen	3 SWS	Vorlesung (V) / 🖥	Ulusoy	
SS 2022	2308657	Übungen zu 2312655 Elektronische Schaltungen	1 SWS	Übung (Ü) / 🖥	Ulusoy	
SS 2022	2308658	Tutorien zu 2312655 Elektronische Schaltungen	SWS	Zusatzübung (ZÜ) /	Ulusoy	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Empfehlungen

Die Teilnahme an der Lehrveranstaltung "Lineare elektrische Netze" ist Voraussetzung, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.

5.65 Teilleistung: Elektronische Schaltungen - Workshop [T-ETIT-109138]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104465 - Elektronische Schaltungen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionStudienleistung1best./nicht best.Jedes Sommersemester1

Lehrveranstaltungen						
SS 2022	2308450	Elektronische Schaltungen - Workshop	1 SWS	Praktikum (P) / 🖥	Zwick	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, x Abgesagt

Voraussetzungen

5.66 Teilleistung: Elektrotechnisches Grundlagenpraktikum [T-ETIT-101943]

Verantwortung: Dr.-Ing. Armin Teltschik

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102113 - Elektrotechnisches Grundlagenpraktikum

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung mündlich	6	best./nicht best.	Jedes Sommersemester	3

Lehrveranstaltungen						
SS 2022	2301084	Elektrotechnisches Grundlagenpraktikum	4 SWS	Praktikum (P) / 🗣	Teltschik	

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines mündlichen Abschlusskolloquiums von 20min Dauer sowie während des Praktikums durch Überprüfung der absolvierten Versuchs-Aufgaben.

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Die Veranstaltung ist nicht benotet.

Voraussetzungen

Keine

Empfehlungen

Die LV "Digitaltechnik" (23615) und "Elektronische Schaltungen" (23655) müssen zuvor gehört worden sein bzw. anderweitig die Kenntnisse zum Inhalt der o.g. LV müssen erworben worden sein.

Anmerkungen

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschluskolloquium eine Prüfungseinheit.

Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

5.67 Teilleistung: Elementare Geometrie - Prüfung [T-MATH-103464]

Verantwortung: Dr. Sebastian Grensing

Prof. Dr. Tobias Hartnick Prof. Dr. Frank Herrlich PD Dr. Stefan Kühnlein Prof. Dr. Enrico Leuzinger

Dr. Gabriele Link Prof. Dr. Roman Sauer

Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103152 - Elementare Geometrie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	9	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen						
WS 21/22	0103000	Elementare Geometrie	4 SWS	Vorlesung (V) / 🗣	Llosa Isenrich	
WS 21/22	0103100	Übungen zu 0103000 (Elementare Geometrie)	2 SWS	Übung (Ü) / 🗣	Llosa Isenrich	
WS 21/22	0190300	Tutorium Elementare Geometrie	2 SWS	Tutorium (Tu)	Llosa Isenrich	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗴 Abgesagt

Voraussetzungen

Keine

5.68 Teilleistung: Energiepolitik [T-WIWI-102607]

Verantwortung: Prof. Dr. Martin Wietschel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101464 - Energiewirtschaft

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3,5	Drittelnoten	Jedes Sommersemester	3

Lehrverans	Lehrveranstaltungen					
SS 2022	2581959	Energiepolitik	2 SWS	Vorlesung (V) / 🗣	Wietschel	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen

Keine.

5.69 Teilleistung: Enterprise Risk Management [T-WIWI-102608]

Verantwortung: Prof. Dr. Ute Werner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101436 - Risk and Insurance Management

Teilleistungsart Prüfungsleistung mündlich Leistungspunkte 4,5 **Notenskala** Drittelnoten **Turnus** Jedes Wintersemester **Version** 1

Erfolgskontrolle(n)

Die Erfolgskontrolle setzt sich zusammen aus einer mündlichen Prüfung (nach §4(2), 2 SPO) und Vorträgen und Ausarbeitungen im Rahmen der Veranstaltung (nach §4(2), 3 SPO).

Die Note setzt sich zu je 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und der mündlichen Prüfung zusammen.

Die Prüfung wird für Erstschreiber letztmalig im Wintersemester 2017/2018 angeboten.

Voraussetzungen

Keine

Empfehlungen

Keine

5.70 Teilleistung: Entwicklungsmethoden technischer Systeme [T-MACH-111283]

Verantwortung: Dipl.-Ing. Thomas Maier

Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

TeilleistungsartLeistungspunkteNotenskalaTurnusDauerVersionPrüfungsleistung anderer Art4DrittelnotenJedes Semester1 Sem.1

Lehrveranstaltungen						
WS 21/22	2121002	Entwicklungsmethoden technischer Systeme	4 SWS	Projekt (PRO) / 🗯	Maier	
SS 2022	2121002	Entwicklungsmethoden technischer Systeme	4 SWS	Projekt (PRO) / 🗣	Ovtcharova, Maier	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Benotete Prüfungsleistung anderer Art gewichtet nach: 50% Projektdokumentation und 50% Kolloquium.

Voraussetzungen

Keine

Empfehlungen

Keine

5.71 Teilleistung: Erzeugung elektrischer Energie [T-ETIT-101924]

Verantwortung: Dr.-Ing. Bernd Hoferer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100407 - Erzeugung elektrischer Energie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung mündlich3DrittelnotenJedes Wintersemester2

Lehrveranstaltungen						
WS 21/22	2307356	Erzeugung elektrischer Energie	2 SWS	Vorlesung (V) / 🗣	Hoferer	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen

5.72 Teilleistung: Fertigungsmesstechnik [T-ETIT-106057]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103043 - Fertigungsmesstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen					
SS 2022	2302116	Fertigungsmesstechnik	2 SWS	Vorlesung (V) / 🖥	Heizmann	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten. Bei weniger als 20 Prüflingen kann alternativ eine mündliche Prüfung im Umfang von ca. 20 Minuten. Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung.

Voraussetzungen

keine

Empfehlungen

Kenntnisse der Stochastik und von Grundlagen der Messtechnik sind hilfreich.

5.73 Teilleistung: Financial Accounting for Global Firms [T-WIWI-107505]

Verantwortung: Dr. Torsten Luedecke

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101465 - Topics in Finance I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2530242	Financial Accounting for Global Firms	2 SWS	Vorlesung (V) / 🗣	Luedecke
WS 21/22	2530243	Übung zu Financial Accounting for Global Firms	1 SWS	Übung (Ü) / 🗣	Luedecke

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Die Note ist das Ergebnis der schriftlichen Prüfung.

Voraussetzungen

Keine

Empfehlungen

Grundkenntnisse in Finanzwirtschaft und Rechnungswesen.

Anmerkungen

Die Teilleistung wird zum Wintersemester 2017/18 neu angeboten.

5.74 Teilleistung: Financial Data Science [T-WIWI-111238]

Verantwortung: Prof. Dr. Maxim Ulrich

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-105610 - Financial Data Science

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte

Notenskala Drittelnoten

Turnus siehe Anmerkungen **Version**

Erfolgskontrolle(n)

Die Modulprüfung ist eine Prüfungsleistung anderer Art und besteht aus zwei Teilen in denen maximal 100 Punkte erreicht werden können:

Im ersten Teil der Prüfungsleistung anderer Art können maximal 30 Punkte erreicht werden, welche sich gleichgewichtet auf acht semesterbegleitend einzureichende Arbeitsblätter verteilen. Die Aufgabenblätter der ersten drei Wochen sind von Umfang und Schwierigkeitsgrad her repräsentativ für alle folgenden Aufgabenblätter. Mit Beginn der 4. Veranstaltungswoche gilt die Abgabe der Aufgabenblätter als Bestandteil der Prüfungsleistung anderer Art.

Im zweiten Teil der Prüfungsleistung anderer Art können maximal 70 Punkte erreicht werden. Dieser Teil der Prüfungsleistung anderer Art besteht aus einem schriftlichen 'Final Exam', das in der letzten Kalenderwoche der Vorlesungszeit stattfindet und 2 Stunden dauert.

Detaillierte Informationen zum Ablauf der Lehrveranstaltung und der Modulprüfung werden zum ersten Veranstaltungstermin bekannt gegeben.

Eine Wiederholungsmöglichkeit für Nichtbesteher der Modulprüfung findet am Ende der vierten September-Kalenderwoche des gleichen Jahres statt. Die Anmeldung zur Prüfungsleistung anderer Art muss spätestens 1 Tag vor Beginn der Prüfung erfolgen. Für die Abmeldung zur Prüfungsleistung anderer Art gilt folgendes: Eine Abmeldung kann online im Studierendenportal bis 1Tage vor Beginn der Prüfung erfolgen.

Voraussetzungen

Keine.

Anmerkungen

Bitte beachten Sie, dass die Veranstaltung nur jedes zweite Sommersemester (SS2021, SS2023) angeboten wird.

5.75 Teilleistung: Financial Management [T-WIWI-102605]

Verantwortung: Prof. Dr. Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101435 - Essentials of Finance

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2530216	Financial Management	2 SWS	Vorlesung (V)	Ruckes
SS 2022	2530217	Übung zu Financial Management	1 SWS	Übung (Ü)	Ruckes, Wiegratz

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse aus der Veranstaltung Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen [25026/25027] sind sehr hilfreich.

5.76 Teilleistung: Finanzierung und Rechnungswesen [T-WIWI-111595]

Verantwortung: Dr. Torsten Luedecke

Prof. Dr. Martin Ruckes Dr. Jan-Oliver Strych

Prof. Dr. Marliese Uhrig-Homburg

Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-105769 - Finanzierung und Rechnungswesen

Teilleistungsart Prüfungsleistung schriftlich

Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Sommersemester Version 1

Lehrveranstaltungen					
SS 2022	2500002	Jahresabschluss und Bewertung	SWS	Vorlesung (V)	Ruckes
SS 2022	2610026	Finanzierung und Rechnungswesen	2 SWS	Vorlesung (V) / 🗣	Ruckes, Wouters

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung über die beiden Lehrveranstaltungen "Finanzierung und Rechnungswesen" sowie "Jahresabschluss und Bewertung". Die Prüfung wird jeweils zu Beginn der vorlesungsfreien Zeit angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

5.77 Teilleistung: Finanzintermediation [T-WIWI-102623]

Verantwortung: Prof. Dr. Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101465 - Topics in Finance I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2530232	Finanzintermediation	2 SWS	Vorlesung (V) / 🖥	Ruckes
WS 21/22	2530233	Übung zu Finanzintermediation	1 SWS	Übung (Ü) / 🖥	Ruckes, Benz

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Empfehlungen

Keine

5.78 Teilleistung: Flächen im CAD [T-INFO-102073]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101254 - Flächen im CAD

TeilleistungsartPrüfungsleistung mündlich

Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Wintersemester **Version** 1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 - 30 Minuten und durch einen benoteten Übungsschein nach § 4 Abs. 2 Nr. 2 und 3 SPO.

Modulnote = 0.8 x Note der mündlichen Prüfung + 0.2 x Note des Übungsscheins, wobei nur die erste Nachkommastelle ohne Rundung berücksichtigt wird.

Voraussetzungen

Es wird empfohlen die Vorlesung Kurven im CAD vor Besuch der Vorlesung Flächen im CAD zu hören.

5.79 Teilleistung: Formale Systeme [T-INFO-101336]

Verantwortung: Prof. Dr. Bernhard Beckert **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100799 - Formale Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	24086	Formale Systeme	4 SWS	Vorlesung / Übung (VÜ)	Beckert, Ulbrich, Weigl

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 der SPO.

Zusätzlich werden Zwischentests und Praxisaufgaben angeboten, für die ein Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben werden. Der erlangte Notenbonus wird auf eine *bestandene* schriftliche Prüfung (Klausur) im gleichen Semester angerechnet. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.

Empfehlungen

Der erfolgreiche Abschluss des Moduls Theoretische Grundlagen der Informatik wird empfohlen.

5.80 Teilleistung: Fortgeschrittenes Algorithmisches Programmieren [T-INFO-111399]

Verantwortung: TT-Prof. Dr. Thomas Bläsius **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-105723 - Fortgeschrittenes Algorithmisches Programmieren

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 21/22	2400145	Fortgeschrittenes Algorithmisches Programmieren	2 SWS	Vorlesung (V) / 🖥	Bläsius, Weyand

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Bewertet werden regelmäßige Programmieraufgaben und eine computergestützte Prüfung von i.d.R. 300 Minuten am Ende des Semesters.

Ein Rücktritt ist innerhalb von zwei Wochen nach Beginnn der Veranstaltung möglich.

Voraussetzungen

Keine.

Empfehlungen

Grundkenntnisse über Algorithmen und Datenstrukturen (z.B. aus den Vorlesungen Algorithmen 1 + 2) und Programmierkenntnisse in C++ werden erwartet.

Erfolgreiche Teilnahme am Basispraktikum zum ICPC Programmierwettbewerb wird stark empfohlen.

5.81 Teilleistung: Foundations of Interactive Systems [T-WIWI-109816]

Verantwortung: Prof. Dr. Alexander Mädche

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101434 - eBusiness und Service Management

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4,5	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen						
SS 2022	2540560	Foundations of Interactive Systems	3 SWS	Vorlesung (V) / 🕃	Mädche, Toreini	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer einstündigen Klausur und der Durchführung eines Capstone Projektes.

Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

Empfehlungen

Keine

5.82 Teilleistung: Funktionalanalysis [T-MATH-102255]

Verantwortung: Prof. Dr. Dorothee Frey

PD Dr. Gerd Herzog Prof. Dr. Dirk Hundertmark Prof. Dr. Tobias Lamm Prof. Dr. Michael Plum Prof. Dr. Wolfgang Reichel Dr. Christoph Schmoeger

Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101320 - Funktionalanalysis

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	9	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 21/22	0104800	Funktionalanalysis	4 SWS	Vorlesung (V) / 🗣	Plum
WS 21/22		Übungen zu 0104800 (Funktionalanalysis)	2 SWS	Übung (Ü) / 🗣	Plum, Wunderlich

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Voraussetzungen

5.83 Teilleistung: Geistiges Eigentum und Datenschutz [T-INFO-109840]

Verantwortung: Prof. Dr. Thomas Dreier

Dr. Johannes Eichenhofer

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101253 - Geistiges Eigentum und Datenschutz

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrverans	Lehrveranstaltungen					
WS 21/22	24018	Datenschutzrecht	2 SWS	Vorlesung (V) / 🖥	Vettermann	
WS 21/22	24070	Gewerblicher Rechtsschutz und Urheberrecht	2 SWS	Vorlesung (V) / 🖥	Dreier	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prufung (Klausur) nach § 4 Abs. 2 Nr. 1 SPO.

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine.

5.84 Teilleistung: Geometrische Grundlagen der Geometrieverarbeitung [T-INFO-111453]

Verantwortung: Prof. Dr. Hartmut Prautzsch **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-105735 - Geometrische Grundlagen der Geometrieverarbeitung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Wintersemester	2

Lehrveranst	Lehrveranstaltungen					
WS 21/22		Geometrische Grundlagen der Geometrieverarbeitung	2+1 SWS	Vorlesung (V) / 🗯	Prautzsch	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20- 30 Minuten.

Voraussetzungen

Keine.

Anmerkungen

Ohne Übung.

5.85 Teilleistung: Geometrische Grundlagen der Geometrieverarbeitung [T-INFO-101293]

Verantwortung: Prof. Dr. Hartmut Prautzsch **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100756 - Geometrische Grundlagen der Geometrieverarbeitung

Teilleistungsart Prüfungsleistung mündlich Leistungspunkte

Notenskala Drittelnoten **Turnus** Unregelmäßig Version 2

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 - 30 Minuten und durch einen benoteten Übungsschein nach § 4 Abs. 2 Nr. 2 und 3 SPO.

Note = 0.8 x Note der mündlichen Prüfung + 0.2 x Note des Übungsscheins, wobei nur die erste Nachkommastelle ohne Rundung berücksichtigt wird.

Voraussetzungen

Keine.

5.86 Teilleistung: Geschäftspolitik der Kreditinstitute [T-WIWI-102626]

Verantwortung: Prof. Dr. Wolfgang Müller

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101465 - Topics in Finance I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	siehe Anmerkungen	1

Lehrveranstaltungen					
WS 21/22		Geschäftspolitik der Kreditinstitute	2 SWS	Vorlesung (V) / 🗣	Müller
SS 2022		Geschäftspolitik der Kreditinstitute	2 SWS	Vorlesung (V) / 🗙	Müller

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Vorlesung wird im Wintersemester 2021/22 zum letzten Mal angeboten. Die Prüfung (schriftliche Prüfung, 60 Minuten) findet letztmals im Sommersemester 2022 (nur noch für Wiederholer) statt.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Die Vorlesung wird im Wintersemester 2021/22 zum letzten Mal angeboten.

5.87 Teilleistung: Globale Optimierung I [T-WIWI-102726]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

M-WIWI-101414 - Methodische Grundlagen des OR

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte 4,5 **Notenskala** Drittelnoten **Turnus** Jedes Sommersemester Version

Lehrveranstaltungen					
SS 2022	2550134	Globale Optimierung I	2 SWS	Vorlesung (V) / 🗣	Stein

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu "Globale Optimierung II" erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

5.88 Teilleistung: Globale Optimierung I und II [T-WIWI-103638]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	9	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	2550134	Globale Optimierung I	2 SWS	Vorlesung (V) / 🗣	Stein	
SS 2022	2550135	Übung zu Globale Optimierung I und II	2 SWS	Übung (Ü) / 🗣	Stein	
SS 2022	2550136	Globale Optimierung II	2 SWS	Vorlesung (V) / 🗣	Stein	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPOs), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im **selben** Semester gelesen.

5.89 Teilleistung: Globale Optimierung II [T-WIWI-102727]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen					
SS 2022	2550136	Globale Optimierung II	2 SWS	Vorlesung (V) / 🗣	Stein

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu "Globale Optimierung I" erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Keine

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im **selben** Semester gelesen.

5.90 Teilleistung: Graphentheorie [T-MATH-102273]

Verantwortung: Prof. Dr. Maria Aksenovich
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101336 - Graphentheorie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	9	Drittelnoten	Unregelmäßig	1

Lehrveranstaltungen						
WS 21/22	0104500	Graph Theory	4 SWS	Vorlesung (V) / 🗣	Aksenovich, Weber	
WS 21/22	0104510	Tutorial for 0104500 (Graph Theory)	2 SWS	Übung (Ü) / 🗣	Aksenovich, Weber	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Voraussetzungen

Keine

5.91 Teilleistung: Grundbegriffe der Informatik [T-INFO-101964]

Verantwortung: Prof. Dr. Carsten Sinz **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101170 - Grundbegriffe der Informatik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrverans	taltungen				
WS 21/22	24001	Grundbegriffe der Informatik	3 SWS	Vorlesung (V) / 🗣	Sinz, Kleine Büning

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von i.d.R. zwei Stunden.

Anmerkungen

Achtung: Diese Teilleistung ist für den Bachelor Studiengang der Informatik, Informatik Lehramt und Informationswirtschaft Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO.Die Prüfung ist bis zum Ende des 2. Fachsemesters anzutreten und bis zum Ende des 3. Fachsemesters zu bestehen.

5.92 Teilleistung: Grundbegriffe der Informatik Übungsschein [T-INFO-101965]

Verantwortung: Prof. Dr. Carsten Sinz **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101170 - Grundbegriffe der Informatik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 21/22	24002	Übungen zu Grundbegriffe der Informatik	1 SWS	Übung (Ü) / 🗣	Sinz, Kleine Büning	

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO.

Für das Bestehen müssen regelmäßig Übungsblätter abgegeben werden. Die konkreten Angaben dazu werden in der Vorlesung bekannt gegeben.

Anmerkungen

Achtung: Diese Teilleistung ist Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO Informatik. Die Prüfung ist bis zum Ende des 2. Fachsemesters anzutreten und bis zum Ende des 3. Fachsemesters zu bestehen.

Der Übungsschein ist für die Studiengänge Geodäsie, Physik und Mathematik nicht verpflichtend.

5.93 Teilleistung: Grundlagen der Hochfrequenztechnik [T-ETIT-101955]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102129 - Grundlagen der Hochfrequenztechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	6

Lehrverans	Lehrveranstaltungen						
SS 2022	2308080	Tutorien zu 2308406 Grundlagen der Hochfrequenztechnik	SWS	Tutorium (Tu) / 🗯	Nuß		
SS 2022	2308406	Grundlagen der Hochfrequenztechnik	2 SWS	Vorlesung (V) / 🗯	Nuß		
SS 2022	2308408	Übungen zu 2308406 Grundlagen der Hochfrequenztechnik	2 SWS	Übung (Ü) / 🛱	Nuß		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird sowie durch die Bewertung von Hausübungen. Die Hausübungen können während des Semesters von den Studierenden bearbeitet und zur Korrektur abgegeben werden. Die Abgabe erfolgt in handschriftlicher Form.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

Anmerkungen

Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

5.94 Teilleistung: Grundlagen der Produktionswirtschaft [T-WIWI-102606]

Verantwortung: Prof. Dr. Frank Schultmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101437 - Industrielle Produktion I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	5 , 5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2581950	Grundlagen der Produktionswirtschaft	2 SWS	Vorlesung (V) / 🗣	Schultmann
SS 2022	2581951	Übungen Grundlagen der Produktionswirtschaft	2 SWS	Übung (Ü) / 🗣	Steins, Braun

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Minuten) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen

Keine

5.95 Teilleistung: Grundlagen der Unternehmensbesteuerung [T-WIWI-108711]

Verantwortung: Gerd Gutekunst

Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101403 - Finanzwissenschaft

M-WIWI-101465 - Topics in Finance I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 21/22	2560134	Grundlagen der Unternehmensbesteuerung	3 SWS	Vorlesung (V) / 🖥	Wigger, Gutekunst

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 90-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine

Empfehlungen

Es werden Kenntnisse über die Erhebung staatlicher Einnahmen vorausgesetzt. Daher empfiehlt es sich, die Lehrveranstaltungen"Öffentliche Einnahmen" im Vorfeld zu besuchen.

5.96 Teilleistung: Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik [T-MATH-102244]

Verantwortung: Prof. Dr. Nicole Bäuerle

Dr. rer. nat. Bruno Ebner Prof. Dr. Vicky Fasen-Hartmann

Prof. Dr. Daniel Hug PD Dr. Bernhard Klar Prof. Dr. Günter Last Prof. Dr. Mathias Trabs PD Dr. Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101308 - Praktische Mathematik

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	1

Lehrveranstaltungen						
WS 21/22	0133500	Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik	2 SWS	Vorlesung (V) / 🗣	Hug, Trabs	
WS 21/22	0133600	Übungen zu 0133500	1 SWS	Übung (Ü) / 🗣	Trabs	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (90 min).

Voraussetzungen

5.97 Teilleistung: Höhere Mathematik I Übungsschein [T-MATH-102232]

Verantwortung: Dr. Christoph Schmoeger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101305 - Höhere Mathematik

Voraussetzung für: T-MATH-102234 - Höhere Mathematik I und II

Teilleistungsart
StudienleistungLeistungspunkte
0Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
1

Lehrveranstaltungen					
WS 21/22	0133100	Übungen zu 0133000	2 SWS	Übung (Ü) / 🗣	Herzog

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Voraussetzungen

5.98 Teilleistung: Höhere Mathematik I und II [T-MATH-102234]

Verantwortung: Dr. Christoph Schmoeger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101305 - Höhere Mathematik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	15	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen					
WS 21/22		Höhere Mathematik I (Analysis) für die Fachrichtung Informatik	4 SWS	Vorlesung (V) / 🗣	Herzog
SS 2022		Höhere Mathematik II (Analysis) für die Fachrichtung Informatik	3 SWS	Vorlesung (V)	Herzog

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Voraussetzungen

Der Übungsschein aus HM I oder HM II muß bestanden sein.

5.99 Teilleistung: Höhere Mathematik II Übungsschein [T-MATH-102233]

Verantwortung: Dr. Christoph Schmoeger **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101305 - Höhere Mathematik

Voraussetzung für: T-MATH-102234 - Höhere Mathematik I und II

Teilleistungsart
StudienleistungLeistungspunkte
0Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
1

Lehrveranstaltungen					
SS 2022	0186900	Übungen zu 0186800	1 SWS	Übung (Ü)	Herzog

Voraussetzungen

5.100 Teilleistung: Hybride und elektrische Fahrzeuge [T-ETIT-100784]

Verantwortung: Dr.-Ing. Klaus-Peter Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik **Bestandteil von:** M-ETIT-100514 - Hybride und elektrische Fahrzeuge

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2306321	Hybride und elektrische Fahrzeuge	2 SWS	Vorlesung (V) / 🕃	Doppelbauer
WS 21/22	2306323	Übungen zu 2306321 Hybride und elektrische Fahrzeuge	1 SWS	Übung (Ü) / 🗯	Doppelbauer

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").

5.101 Teilleistung: Industrieökonomie [T-WIWI-102844]

Verantwortung: Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Unregelmäßig	1

Lehrveranstaltungen						
SS 2022	2560238	Industrieökonomie	2 SWS	Vorlesung (V) / 🖥	Reiß, Peters	
SS 2022	2560239	Übung zu Industrieökonomie	1 SWS	Übung (Ü) / 🖥	Peters, Reiß	

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Die Note ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Empfehlungen

Der vorherige Besuch des Moduls Volkswirtschaftslehre [WW1VWL] wird vorausgesetzt.

Anmerkungen

Diese Lehrveranstaltung wird im Sommersemester 2018 voraussichtlich nicht angeboten werden.

5.102 Teilleistung: Information Engineering [T-MACH-102209]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3DrittelnotenJedes Semester2

Lehrveranstaltungen					
SS 2022	2122014	Information Engineering	2 SWS	Seminar (S) / 🗯	Ovtcharova, Mitarbeiter

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Erfolgskontrolle anderer Art (schriftl. Ausarbeitung und Vortrag)

Voraussetzungen

Keine

5.103 Teilleistung: Informationstechnik I [T-ETIT-109300]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104539 - Informationstechnik I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	2311651	Informationstechnik I	2 SWS	Vorlesung (V) / 🗣	Sax	
SS 2022	2311652	Übungen zu 2311651 Informationstechnik I	1 SWS	Übung (Ü) / 🖥	Haas	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Voraussetzungen

keine

Empfehlungen

Grundlagen der Programmierung sind hilfreich (MINT-Kurs).

Die Inhalte des Moduls Digitaltechnik sind hilfreich.

5.104 Teilleistung: Informationstechnik I - Praktikum [T-ETIT-109301]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104539 - Informationstechnik I

Teilleistungsart
StudienleistungLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes SommersemesterVersion
2

Lehrverans	Lehrveranstaltungen					
SS 2022	2311653	Informationstechnik I – Praktikum	1 SWS	Praktikum (P) / 🖥	Sax	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Voraussetzungen

5.105 Teilleistung: Informationstechnik II und Automatisierungstechnik [T-ETIT-109319]

Verantwortung: Prof. Dr.-Ing. Eric Sax

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104547 - Informationstechnik II und Automatisierungstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen						
SS 2022	2311654	Informationstechnik II und Automatisierungstechnik	2 SWS	Vorlesung (V) / 🗣	Sax	
SS 2022	2311655	Übungen zu 2311654 Informationstechnik II und Automatisierungstechnik	1 SWS	Übung (Ü) / 🖥	Krauter	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Voraussetzungen

keine

Empfehlungen

Grundlagen der Programmierung sind hilfreich (MINT-Kurs).

Die Inhalte des Moduls "Informationstechnik I" sind hilfreich.

5.106 Teilleistung: Internationale Finanzierung [T-WIWI-102646]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101402 - eFinance

M-WIWI-101465 - Topics in Finance I

Teilleistungsart
Prüfungsleistung schriftlichLeistungspunkte
3Notenskala
DrittelnotenTurnus
siehe AnmerkungenVersion
1

Lehrveranstaltungen					
SS 2022	2530570	Internationale Finanzierung	2 SWS	Vorlesung (V) / 🗣	Walter, Uhrig- Homburg

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine

Empfehlungen

Keine

Anmerkungen

Die Veranstaltung wird 14-tägig oder als Blockveranstaltung angeboten.

5.107 Teilleistung: Investments [T-WIWI-102604]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101435 - Essentials of Finance

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2530575	Investments	2 SWS	Vorlesung (V) / 🗣	Uhrig-Homburg, Müller
SS 2022	2530576	Übung zu Investments	1 SWS	Übung (Ü) / 🗣	Uhrig-Homburg, Kargus

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art), oder als 60-minütige Klausur (schriftliche Prüfung) angeboten.

Bei erfolgreicher Teilnahme am Übungsbetrieb durch die Abgabe korrekter Lösungen zu mindestens 50% der gestellten Bonusübungsaufgaben kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse aus der Veranstaltung Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen [2610026] sind sehr hilfreich.

5.108 Teilleistung: IT-Systemplattform I4.0 [T-MACH-106457]

Verantwortung: Dipl.-Ing. Thomas Maier

Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art4DrittelnotenJedes Semester2

Lehrveranstaltungen					
WS 21/22	2123900	IT-Systemplattform I4.0	4 SWS	Projekt (PRO) / 🗯	Ovtcharova, Maier
SS 2022	2123900	IT-Systemplattform I4.0	4 SWS	Projekt (PRO) / 🗣	Ovtcharova, Maier

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (Projektarbeit)

Voraussetzungen

Keine

Anmerkungen

Teilnehmerzahl begrenzt.

5.109 Teilleistung: Kognitive Systeme [T-INFO-101356]

Verantwortung: Prof. Dr. Gerhard Neumann

Prof. Dr. Alexander Waibel

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100819 - Kognitive Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	24572	Kognitive Systeme	4 SWS	Vorlesung / Übung (VÜ) / 🖥	Waibel, Neumann	

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 der SPO.

Durch die Bearbeitung von Übungsblättern kann zusätzlich ein Notenbonus von max. 0,4 Punkte (entspricht einem Notenschritt) errreicht werden. Dieser Bonus ist nur gültig für eine Prüfung im gleichen Semester.

Voraussetzungen

Keine.

Empfehlungen

- Einfache Programmierkenntnisse (für die Übungen)
- Kenntnisse in der Programmierung von Python. Die Grundlagen werden aber am Anfang der Vorlesung kurz wiederholt sodass man sich diese Kenntnisse auch noch für diese Vorlesung aneignen kann.
- Gute mathematische Grundkennntnisse

5.110 Teilleistung: Kombinatorik [T-MATH-105916]

Verantwortung: Prof. Dr. Maria Aksenovich
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-102950 - Kombinatorik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	9	Drittelnoten	siehe Anmerkungen	2

Lehrveranstaltungen						
SS 2022	0150300	Combinatorics	4 SWS	Vorlesung (V)	Aksenovich, Weber, Winter	
SS 2022	0150310	Tutorial for 0150300 (Combinatorics)	2 SWS	Übung (Ü)	Aksenovich	

Voraussetzungen

Keine

Anmerkungen

Der Kurs wird jedes zweite Jahr angeboten.

5.111 Teilleistung: Kurven im CAD [T-INFO-102067]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101248 - Kurven im CAD

Teilleistungsart Prüfungsleistung mündlich Leistungspunkte

Notenskala Drittelnoten **Turnus** Unregelmäßig **Version** 1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 - 30 Minuten und durch einen benoteten Übungsschein nach § 4 Abs. 2 Nr. 2 und 3 SPO.

Modulnote = 0.8 x Note der mündlichen Prüfung + 0.2 x Note des Übungsscheins, wobei nur die erste Nachkommastelle ohne Rundung berücksichtigt wird.

Voraussetzungen

Keine

5.112 Teilleistung: Labor für angewandte Machine Learning Algorithmen [T-ETIT-109839]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Prof. Dr.-Ing. Eric Sax Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104823 - Labor für angewandte Machine Learning Algorithmen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung anderer Art	6	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrverans	Lehrveranstaltungen						
WS 21/22	2311650	Labor für angewandte Machine Learning Algorithmen	4 SWS	Praktikum (P) / 🗣	Sax, Stork, Becker		

Legende: ■ Online, 🚱 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Prüfungsleistungen anderer Art.

- · Protokolle (Labordokumentation) und kontinuierliche Bewertung der Teamarbeit während der Präsenzzeit
- · Vortrag in Form einer Präsentation

Abfrage nach Ende der Veranstaltung zu den Inhalten des Labors.

Voraussetzungen

keine

Empfehlungen

Vorausgesetzt werden Kenntnisse in den Grundlagen der Informationstechnik (z.B. M-ETIT-102098), Signal- und Systemtheorie (z.B. M-ETIT-102123) sowie Wahrscheinlichkeitstheorie (z.B. M-ETIT-102104)

Außerdem: Programmierkenntnisse (z.B. C++ oder Python) sind zwingend erforderlich

Anmerkungen

Das Labor ist aus Kapazitätsgründen auf eine Teilnehmerzahl von 30 Studierenden begrenzt. Sofern erforderlich wird ein Auswahlverfahren durchgeführt dessen Details in der ersten Veranstaltung und auf der Homepage der Veranstaltung bekanntgegeben werden. Während sämtlicher Labortermine einschließlich der Einführungsveranstaltung herrscht Anwesenheitspflicht.

5.113 Teilleistung: Labor Schaltungsdesign [T-ETIT-100788]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker

Dr.-Ing. Oliver Sander

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100518 - Labor Schaltungsdesign

TeilleistungsartLeistungspunkteNotenskala
DrittelnotenTurnusVersionPrüfungsleistung anderer Art6DrittelnotenJedes Wintersemester1

Lehrveranstaltungen					
WS 21/22	2311638	Labor Schaltungsdesign	4 SWS	Praktikum (P) / 🗣	Becker

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung, sowie einer mündlichen Gesamtprüfung (30 Minuten) über die ausgewählten Lehrveranstaltungen. Der Gesamteindruck wird bewertet.

Voraussetzungen

keine

Empfehlungen

Grundlegende Kenntnisse von elektronischen Basisschaltungen z.B. Lineare Elektrische Netze, Elektronische Schaltungen und Elektrische Maschinen und Stromrichter

5.114 Teilleistung: Lineare Algebra 1 - Klausur [T-MATH-106338]

Verantwortung: Prof. Dr. Tobias Hartnick

Prof. Dr. Frank Herrlich Prof. Dr. Enrico Leuzinger Prof. Dr. Roman Sauer Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2

Voraussetzung für: T-INFO-102031 - Praxis der Software-Entwicklung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	9	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen					
WS 21/22	0100700	Lineare Algebra 1	4 SWS	Vorlesung (V) / 🖥	Leuzinger

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Voraussetzungen

Der Übungsschein zur Linearen Algebra 1 muss bestanden sein.

5.115 Teilleistung: Lineare Algebra 1 - Übungsschein [T-MATH-102249]

Verantwortung: Prof. Dr. Tobias Hartnick

Prof. Dr. Frank Herrlich Prof. Dr. Enrico Leuzinger Prof. Dr. Roman Sauer Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2 **Voraussetzung für:** T-MATH-103337 - Lineare Algebra 1 - Klausur

T-MATH-106338 - Lineare Algebra 1 - Klausur

Teilleistungsart
StudienleistungLeistungspunkte
0Notenskala
best./nicht best.Version
1

Lehrveranstaltungen						
WS 21/22	0100800	Übungen zu 0100700 (Lineare Algebra 1)	2 SWS	Übung (Ü) / 🖥	Leuzinger	
WS 21/22	0190070	Tutorium Lineare Algebra 1	2 SWS	Tutorium (Tu) / 🗯	Leuzinger	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Der Übungsschein wird auf der Grundlage erfolgreich bearbeiteter wöchentlicher Übungsblätter vergeben. Für den Erwerb des Übungsscheines sind 40% der insgesamt auf den Übungsblättern erreichbaren Punkte, sowie 40% der Punkte auf den Übungsblättern 8-14 nötig.

Voraussetzungen

5.116 Teilleistung: Lineare Algebra 2 - Klausur [T-MATH-106339]

Verantwortung: Prof. Dr. Tobias Hartnick

Prof. Dr. Frank Herrlich Prof. Dr. Enrico Leuzinger Prof. Dr. Roman Sauer

Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich9DrittelnotenJedes Semester1

Lehrveranstaltungen					
SS 2022	0150500	Lineare Algebra 2	4 SWS	Vorlesung (V)	Leuzinger, Link

Voraussetzungen

Der Übungsschein in Lineare Algebra 2 muss bestanden sein.

5.117 Teilleistung: Lineare Algebra 2 - Übungsschein [T-MATH-102259]

Verantwortung: Prof. Dr. Tobias Hartnick

Prof. Dr. Frank Herrlich Prof. Dr. Enrico Leuzinger Prof. Dr. Roman Sauer Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2 **Voraussetzung für:** T-MATH-103337 - Lineare Algebra 1 - Klausur T-MATH-106339 - Lineare Algebra 2 - Klausur

TeilleistungsartLeistungspunkteNotenskalaVersionStudienleistung0best./nicht best.1

Lehrveranstaltungen					
SS 2022	0150600	Übungen zu 0150500 (Lineare Algebra 2)	2 SWS	Übung (Ü)	Leuzinger

Erfolgskontrolle(n)

Der Übungsschein wird auf der Grundlage erfolgreich bearbeiteter wöchentlicher Übungsblätter vergeben. Für den Erwerb des Übungsscheines sind 40% der insgesamt auf den Übungsblättern erreichbaren Punkte, sowie 40% der Punkte auf den Übungsblättern 8-13 nötig.

Voraussetzungen

5.118 Teilleistung: Lineare Algebra I für die Fachrichtung Informatik [T-MATH-103215]

Verantwortung: Dr. Sebastian Grensing

PD Dr. Stefan Kühnlein Dr. Gabriele Link

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101307 - Lineare Algebra für die Fachrichtung Informatik

Voraussetzung für: T-INFO-102031 - Praxis der Software-Entwicklung

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich9Drittelnoten1

Lehrveranstaltungen					
WS 21/22		Lineare Algebra I für die Fachrichtung Informatik	4 SWS	Vorlesung (V) / 🖥	Link
WS 21/22	0133300	Übungen zu 0133200	2 SWS	Übung (Ü) / 🖥	Link

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Voraussetzungen

Der Übungsschein aus LA I oder LA II muß bestanden sein.

5.119 Teilleistung: Lineare Algebra I für die Fachrichtung Informatik - Übungsschein [T-MATH-102238]

Verantwortung: Dr. Sebastian Grensing

PD Dr. Stefan Kühnlein Dr. Gabriele Link

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101307 - Lineare Algebra für die Fachrichtung Informatik
Voraussetzung für: T-MATH-103215 - Lineare Algebra I für die Fachrichtung Informatik

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best. **Version** 1

Voraussetzungen

5.120 Teilleistung: Lineare Algebra II für die Fachrichtung Informatik [T-MATH-102241]

Verantwortung: Dr. Sebastian Grensing

PD Dr. Stefan Kühnlein Dr. Gabriele Link

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101307 - Lineare Algebra für die Fachrichtung Informatik

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich5Drittelnoten1

Lehrveranstaltungen					
SS 2022	0187000	Lineare Algebra 2 für die Fachrichtung Informatik	2 SWS	Vorlesung (V)	Link
SS 2022	0187100	Übungen zu 0187000 (Lineare Algebra 2 für die Fachrichtung Informatik)	1 SWS	Übung (Ü)	Link

Voraussetzungen

5.121 Teilleistung: Lineare Algebra II für die Fachrichtung Informatik - Übungsschein [T-MATH-102240]

Verantwortung: Dr. Sebastian Grensing

PD Dr. Stefan Kühnlein Dr. Gabriele Link

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101307 - Lineare Algebra für die Fachrichtung Informatik
Voraussetzung für: T-MATH-103215 - Lineare Algebra I für die Fachrichtung Informatik

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Version 1

Voraussetzungen

5.122 Teilleistung: Lineare Elektrische Netze [T-ETIT-101917]

Verantwortung: Prof. Dr. Olaf Dössel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-101845 - Lineare Elektrische Netze

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich7DrittelnotenJedes Wintersemester2

Lehrveranstaltungen					
WS 21/22	2305256	Lineare elektrische Netze	4 SWS	Vorlesung (V)	Dössel
WS 21/22	2305258	Übungen zu 2305256 Lineare elektrische Netze	1 SWS	Übung (Ü)	Brenneisen
WS 21/22	2305581	Tutorien zu 2305256 Lineare elektrische Netze	SWS	Übung (Ü)	Brenneisen

Erfolgskontrolle(n)

In einer schriftlichen Prufung im Umfang von 120 Minuten werden die Inhalte der Lehrveranstaltung Lineare Elektrische Netze (7 LP) gepruft. Bei bestandener Prufung konnen Studierende einen Notenbonus von bis zu 0,4 Notenpunkten erhalten, wenn zuvor semesterbegleitend zwei Projektaufgaben erfolgreich bearbeitet wurden. Die Bearbeitung der Projektaufgaben wird durch die Abgabe einer Dokumentation oder des Projektcodes nachgewiesen.

Voraussetzungen

5.123 Teilleistung: Logistics and Supply Chain Management [T-WIWI-102870]

Verantwortung: Prof. Dr. Frank Schultmann

PD Dr. Marcus Wiens

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101437 - Industrielle Produktion I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3,5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2581996	Logistics and Supply Chain Management	2 SWS	Vorlesung (V) / 🗣	Schultmann
SS 2022	2581997	Übung zu Logistics and Supply Chain Management	1 SWS	Übung (Ü) / 🗣	Lüttenberg, Eberhardt

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen (30 Minuten) oder schriftlichen (60 Minuten) Prüfung (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen

Keine

5.124 Teilleistung: Macroeconomic Theory [T-WIWI-109121]

Verantwortung: Prof. Dr. Johannes Brumm

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 21/22	2560404	Macroeconomic Theory	2 SWS	Vorlesung (V) / 🖥	Brumm
WS 21/22	2560405	Übung zu Macroeconomic Theory	1 SWS	Übung (Ü) / 🖥	Pegorari

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

5.125 Teilleistung: Management und Marketing [T-WIWI-111594]

Verantwortung: Prof. Dr. Martin Klarmann

Prof. Dr. Hagen Lindstädt Prof. Dr. Petra Nieken Prof. Dr. Orestis Terzidis

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-105768 - Management und Marketing

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2600023	Management	2 SWS	Vorlesung (V) / 🗯	Nieken, Terzidis
WS 21/22	2610026	Marketing	2 SWS	Vorlesung (V) / 😘	Klarmann

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung über die beiden Lehrveranstaltungen "Management" sowie "Marketing". Die Prüfung wird jeweils zu Beginn der vorlesungsfreien Zeit angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

Voraussetzungen

Keine

5.126 Teilleistung: Marketing Mix [T-WIWI-102805]

Verantwortung: Prof. Dr. Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101424 - Grundlagen des Marketing

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4,5	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen					
SS 2022	2571152	Marketing Mix	2 SWS	Vorlesung (V) / 🗣	Klarmann
SS 2022	2571153	Übung zu Marketing Mix (Bachelor)	1 SWS	Übung (Ü) / 🗣	Cordts, Weber

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch die Ausarbeitung und Präsentation einer Case Study (max. 30 Punkte) sowie einer schriftlichen Klausur mit zusätzlichen Hilfsmitteln im Sinne einer Open Book Klausur (max. 60 Punkte). Insgesamt können in der Veranstaltung maximal 90 Punkte erzielt werden.

Im Wintersemester 2021/22 wird die schriftliche Klausur abhängig von der weiteren pandemischen Entwicklung entweder in Präsenz oder online stattfinden. Weitere Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

Anmerkungen

Die Teilleistung ist Pflicht im Modul "Grundlagen des Marketing".

Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing & Vertrieb (marketing.iism.kit.edu).

5.127 Teilleistung: Markovsche Ketten [T-MATH-102258]

Verantwortung: Prof. Dr. Nicole Bäuerle

Dr. rer. nat. Bruno Ebner Prof. Dr. Vicky Fasen-Hartmann

Prof. Dr. Daniel Hug PD Dr. Bernhard Klar Prof. Dr. Günter Last Prof. Dr. Mathias Trabs PD Dr. Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101323 - Markovsche Ketten

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6Drittelnoten1

Lehrveranstaltungen					
SS 2022	0159600	Markovsche Ketten	3 SWS	Vorlesung (V)	Klar
SS 2022	0159700	Übungen zu 0159600 (Markovsche Ketten)	1 SWS	Übung (Ü)	Klar

Voraussetzungen

5.128 Teilleistung: MARS-Basispraktikum [T-INFO-102053]

Verantwortung: Prof. Dr. Hartmut Prautzsch **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101245 - MARS-Basispraktikum

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung anderer Art	4	Drittelnoten	1

Lehrveranstaltungen					
WS 21/22	2400025	MARS-Basispraktikum	2 SWS	Praktikum (P) / 🗯	Xu, Prautzsch
SS 2022	2400036	MARS-Basispraktikum	4 SWS	Praktikum (P) / 🗯	Xu, Prautzsch

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt nach § 4 Abs. 3 der SPO als Erfolgskontrolle anderer Art und besteht aus mehreren Teilaufgaben und einem Abschlussgespräch

Voraussetzungen

Keine

Empfehlungen

Die Inhalte des Basispraktikums werden vertieft und weiterführend in der Vorlesung Kurven im CAD Kurven im CAD [M-INFO-101248] behandelt.

5.129 Teilleistung: Mechano-Informatik in der Robotik [T-INFO-101294]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100757 - Mechano-Informatik in der Robotik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Wintersemester	1

Lehrveranst	taltungen				
WS 21/22	2400077	Mechano-Informatik in der Robotik	2 SWS	Vorlesung (V) / 🗯	Asfour

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung in englischer Sprache im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.

Empfehlungen

Basispraktikum Mobile Roboter

5.130 Teilleistung: Mensch-Maschine-Interaktion [T-INFO-101266]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	2

Lehrverans	taltungen				
SS 2022	24659	Mensch-Maschine-Interaktion	2 SWS	Vorlesung (V) / 🖥	Beigl

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

5.131 Teilleistung: Mikroprozessoren I [T-INFO-101972]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101183 - Mikroprozessoren I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	3	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2424688	Mikroprozessoren I	2 SWS	Vorlesung (V) / 🖥	Karl

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. etwa 30 Minuten gemäß § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen

Keine.

5.132 Teilleistung: Mobile Computing und Internet der Dinge [T-INFO-102061]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101249 - Mobile Computing und Internet der Dinge

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22		Mobile Computing und Internet der Dinge	2+1 SWS	Vorlesung / Übung (VÜ)	Beigl

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (i.d.R. 20min) nach § 4 Abs. 2 Nr. 2 SPO, in der auch Übungsresultate bewertet werden.

Voraussetzungen

Keine

5.133 Teilleistung: Modellieren und OR-Software: Einführung [T-WIWI-106199]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Sommersemester	3

Lehrveranstaltungen						
SS 2022	2550490	Modellieren und OR-Software: Einführung	3 SWS	Praktikum (P) / 🗯	Nickel, Linner, Pomes	

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung. Die Prüfung erfolgt jedes Semester. Die Erfüllung der Zulassungsvoraussetzung ist nur in Semestern mit angebotenem Übungsbetrieb möglich.

Voraussetzungen

Zulassungsvoraussetzung zu Klausur ist die erfolgreiche Teilnahme am Übungsbetrieb. Dies beinhaltet die Bearbeitung und Präsentation von Übungsaufgaben.

Empfehlungen

Sichere Kenntnisse des Stoffs aus der Vorlesung Einführung in das Operations Research I [2550040] im Modul Operations Research.

Anmerkungen

Aufgrund der begrenzten Teilnehmerzahl wird um eine Voranmeldung gebeten. Weitere Informationen entnehmen Sie der Internetseite des Software-Praktikums.

Die Lehrveranstaltung wird regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

5.134 Teilleistung: Moderne Physik für Informatiker [T-PHYS-102323]

Verantwortung: Dr. Stefan Gieseke

Prof. Dr. Milada Margarete Mühlleitner

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101340 - Moderne Physik für Informatiker

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich9Drittelnoten1

Lehrveranstaltungen					
SS 2022	4040451	Moderne Physik für Informatiker	4 SWS	Vorlesung (V) / 🗣	Gieseke
SS 2022	4040452	Übungen zu Moderne Physik für Informatiker	2 SWS	Übung (Ü) / 🗣	Gieseke, NN

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Voraussetzungen

5.135 Teilleistung: Modulprüfung Einführung in die Philosophie [T-GEISTSOZ-106828]

Verantwortung: Prof. Dr. Christian Seidel-Saul

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-103430 - Einführung in die Philosophie

M-GEISTSOZ-104500 - Einführung in die Philosophie (Euklid)

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte 14 **Notenskala** Drittelnoten

Turnus Jedes Semester Version 4

Erfolgskontrolle(n)

Die Erfolgskontrolle wird in Form einer Klausur teils mit frei zu bearbeitenden Aufgaben, teils solchen nach dem Antwort-Wahl-Verfahren (schriftliche Prüfungsleistung, nach § 4 Abs. 2 Nr. 1 i.V.m. § 5 Abs. 5 und § 6a SPO) im Umfang von 90 Minuten durchgeführt.

Voraussetzungen

Drei Studienleistungen aus den vier Studienleistungen Philo 1-4.

5.136 Teilleistung: Modulprüfung Praktische Philosophie I [T-GEISTSOZ-109222]

Verantwortung: Prof. Dr. Michael Schefczyk

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-104507 - Praktische Philosophie I

> **Teilleistungsart** Prüfungsleistung anderer Art

Leistungspunkte 11 **Notenskala** Drittelnoten **Turnus** Jedes Semester Version 4

Erfolgskontrolle(n)

Die Erfolgskontrolle nach §4 Abs. 2 Nr. 3 i.V.m. §6 Abs. 7 SPO besteht in einer Hausarbeit von ca. 15 Seiten Umfang zu einem Thema, das den in diesem Modul besuchten Lehrveranstaltungen zuzuordnen ist.

Die maximale Bearbeitungszeit der Hausarbeit beträgt nach Anmeldung sechs Monate. Bitte wenden Sie sich zur Vereinbarung von Prüfungen an die Lehrkräfte der besuchten Veranstaltungen. Das Thema der Prüfung wird von der prüfenden Lehrkraft festgelegt. Den Studierenden ist hierbei Gelegenheit zu geben, Themen vorzuschlagen.

Voraussetzungen

Es müssen mindestens zwei Studienleistungen bestanden sein sowie die Module Ars Rationalis und Einführung in die Philosophie

5.137 Teilleistung: Modulprüfung Theoretische Philosophie I [T-GEISTSOZ-109224]

Verantwortung: Prof. Dr. Gregor Betz

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-104509 - Theoretische Philosophie I

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Semester **Version** 3

Erfolgskontrolle(n)

Die Erfolgskontrolle nach §4 Abs. 2 Nr. 3 i.V.m. §6 Abs. 7 SPO besteht in einer Hausarbeit von ca. 15 Seiten Umfang zu einem Thema, das den in diesem Modul besuchten Lehrveranstaltungen zuzuordnen ist.

Die maximale Bearbeitungszeit der Hausarbeit beträgt nach Anmeldung sechs Monate. Bitte wenden Sie sich zur Vereinbarung von Prüfungen an die Lehrkräfte der besuchten Veranstaltungen. Das Thema der Prüfung wird von der prüfenden Lehrkraft festgelegt. Den Studierenden ist hierbei Gelegenheit zu geben, Themen vorzuschlagen.

Voraussetzungen

Es müssen mindestens zwei Studienleistungen des Moduls bestanden sein sowie die Module Ars Rationalis und Einführung in die Philosophie

Empfehlungen

Weil die Modulprüfung u.U. Voraussetzung für nachfolgende Teilleistungen ist, wird empfohlen, die Hausarbeit bis zum Ende des zweiten Semesters des Moduls abgegeben zu haben.

5.138 Teilleistung: Modulteilprüfung 1 - Ars Rationalis (Klausur) [T-GEISTSOZ-110370]

Verantwortung: Prof. Dr. Gregor Betz

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: M-GEISTSOZ-100614 - Ars Rationalis

Teilleistungsart Prüfungsleistung schriftlich Leistungspunkte

Notenskala Drittelnoten

Turnus Jedes Wintersemester Version 3

Erfolgskontrolle(n)

Die Erfolgskontrolle wird in Form einer Klausur teils mit frei zu bearbeitenden Aufgaben, teils solchen nach dem Antwort-Wahl-Verfahren (schriftliche Prüfungsleistung, nach § 4 Abs. 2 Nr. 1 i.V.m. § 5 Abs. 5 und § 6a SPO) im Umfang von 90 Minuten durchgeführt.

Voraussetzungen

Studienleistung Ars Rationalis I

5.139 Teilleistung: Modulteilprüfung 2 - Ars Rationalis (Argumentanalyse) [T-GEISTSOZ-110371]

Verantwortung: Prof. Dr. Gregor Betz

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: M-GEISTSOZ-100614 - Ars Rationalis

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art5DrittelnotenJedes Sommersemester1

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in einer schriftlichen Ausarbeitung einer Argumentationsanalyse im Umfang von 5-10 Seiten (Prüfungsleistung anderer Art, nach § 4 Abs. 2 Nr. 3 i.V.m. § 5 Abs. 5 und § 6a SPO).

Voraussetzungen

Studienleistung Ars Rationalis II

5.140 Teilleistung: Nachrichtentechnik I [T-ETIT-101936]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102103 - Nachrichtentechnik I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen						
WS 21/22	2310506	Nachrichtentechnik I	3 SWS	Vorlesung (V) / 🗯	Schmalen	
WS 21/22	2310508	Übungen zu 2310506 Nachrichtentechnik I	1 SWS	Übung (Ü) / 🗯	Schmalen, Bansbach	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 180 Minuten.

Voraussetzungen

keine

Empfehlungen

Inhalte der Höheren Mathematik I und II, Wahrscheinlichkeitstheorie und Signale und Systeme werden benötigt.

Anmerkungen

ab WS20/21 das erste Mal im Wintersemester statt im Sommersemester

5.141 Teilleistung: Nachrichtentechnik II [T-ETIT-100745]

Verantwortung: Dr.-Ing. Holger Jäkel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100440 - Nachrichtentechnik II

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4DrittelnotenJedes Wintersemester2

Lehrveranstaltungen					
SS 2022	2310513	Übungen zu 2310511 Nachrichtentechnik II	1 SWS	Übung (Ü) / 😘	Sturm

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Vorheriger Besuch der Vorlesung "Nachrichtentechnik I" wird empfohlen.

5.142 Teilleistung: Nachrichtentechnik II / Communications Engineering II [T-ETIT-110697]

Verantwortung: Dr.-Ing. Holger Jäkel

Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105274 - Nachrichtentechnik II / Communications Engineering II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	4	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrverans	taltungen				
WS 21/22	2310509	Communications Engineering II	2 SWS	Vorlesung (V) / 🗯	Jäkel
WS 21/22	2310510	Übung zu 2310509 Communications Engineering II	1 SWS	Übung (Ü) / 🗯	Jäkel
SS 2022	2310511	Nachrichtentechnik II	2 SWS	Vorlesung (V) / 🗯	Jäkel
SS 2022	2310513	Übungen zu 2310511 Nachrichtentechnik II	1 SWS	Übung (Ü) / 🛱	Sturm

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Kenntnis der grundlegenden Ingenieurmathematik inklusive Integraltransformationen und Wahrscheinlichkeitstheorie sowie Grundlagenwissen über die Nachrichtentechnik.

Empfehlungen

Vorheriger Besuch der Vorlesung "Nachrichtentechnik I", "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" wird empfohlen.

5.143 Teilleistung: Nichtlineare Optimierung I [T-WIWI-102724]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR M-WIWI-103278 - Optimierung unter Unsicherheit

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	4

Lehrveranstaltungen					
WS 21/22	2550111	Nichtlineare Optimierung I	2 SWS	Vorlesung (V) / 🗣	Stein
WS 21/22		Übungen zu Nichtlineare Optimierung I + II	SWS	Übung (Ü) / 🗣	Stein, Beck, Schwarze, Neumann

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben. Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten. Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Nichtlineare Optimierung II [2550113] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Die Teilleistung T-WIWI-103637 "Nichtlineare Optimierung I und II" darf nicht begonnen worden sein.

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

5.144 Teilleistung: Nichtlineare Optimierung I und II [T-WIWI-103637]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	9	Drittelnoten	Jedes Wintersemester	6

Lehrveranstaltungen					
WS 21/22	2550111	Nichtlineare Optimierung I	2 SWS	Vorlesung (V) / 🗣	Stein
WS 21/22	2550112	Übungen zu Nichtlineare Optimierung I + II	SWS	Übung (Ü) / 🗣	Stein, Beck, Schwarze, Neumann
WS 21/22	2550113	Nichtlineare Optimierung II	2 SWS	Vorlesung (V) / 🗣	Stein

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPO), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.

5.145 Teilleistung: Nichtlineare Optimierung II [T-WIWI-102725]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	3

Lehrveranstaltungen					
WS 21/22	2550112	Übungen zu Nichtlineare Optimierung I + II	SWS	Übung (Ü) / 🗣	Stein, Beck, Schwarze, Neumann
WS 21/22	2550113	Nichtlineare Optimierung II	2 SWS	Vorlesung (V) / 🗣	Stein

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs), für die durch erfolgreiche Teilnahme am Übungsbetrieb im Laufe des Semesters eine Zulassung erfolgen muss. Die genauen Einzelheiten werden in der Vorlesung bekannt gegeben.

Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu *Nichtlineare Optimierung I* erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Keine.

Anmerkungen

Teil I und II der Vorlesung werden nacheinander imgleichen Semester gelesen.

Einrichtung:

5.146 Teilleistung: Numerische Mathematik für die Fachrichtung Informatik [T-MATH-102242]

Verantwortung: Prof. Dr. Andreas Rieder

Dr. Daniel Weiß

Prof. Dr. Christian Wieners KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101308 - Praktische Mathematik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Semester	3

Lehrveranstaltungen					
SS 2022		Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen	2 SWS	Vorlesung (V)	Weiß
SS 2022	0187500	Übungen zu 0187400	1 SWS	Übung (Ü)	Weiß

Erfolgskontrolle(n)

Schriftliche Prüfung (120 min).

Voraussetzungen

Keine

5.147 Teilleistung: Numerische Mathematik für die Fachrichtung Informatik, Übungsschein [T-MATH-102243]

Verantwortung: Prof. Dr. Andreas Rieder

Dr. Daniel Weiß

Prof. Dr. Christian Wieners

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101308 - Praktische Mathematik

Teilleistungsart Studienleistung Leistungspunkte

Õ.

Notenskala best./nicht best. Version

Voraussetzungen

5.148 Teilleistung: Öffentliche Einnahmen [T-WIWI-102739]

Verantwortung: Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101403 - Finanzwissenschaft

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2560120	Öffentliche Einnahmen	2 SWS	Vorlesung (V) / 🗣	Wigger
SS 2022	2560121	Übung zu Öffentliche Einnahmen	1 SWS	Übung (Ü) / 🗣	Wigger

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine

Empfehlungen

Es wird Kenntnis der Grundlagen der Finanzwissenschaft vorausgesetzt.

5.149 Teilleistung: Öffentliches Finanzwesen [T-WIWI-109590]

Verantwortung: Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101403 - Finanzwissenschaft

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen					
WS 21/22	2560136	Öffentliches Finanzwesen	3 SWS	Vorlesung (V) / 🗣	Wigger, Groh

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

T-WIWI-107763 "Kommunales Finanzwesen" darf nicht begonnen sein.

Anmerkungen

Frühere Bezeichnung bis einschließlich Wintersemester 2018/19 "Kommunales Finanzwesen".

5.150 Teilleistung: Öffentliches Recht I & II [T-INFO-110300]

Verantwortung: Dr. Johannes Eichenhofer Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101192 - Verfassungs- und Verwaltungsrecht

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
WS 21/22	24016	Öffentliches Recht I - Grundlagen	2 SWS	Vorlesung (V) / 🖥	Bauer	
SS 2022	24520	Öffentliches Recht II - Öffentliches Wirtschaftsrecht	2 SWS	Vorlesung (V) /	Kappler	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt alS Modulprüfung in Form einer schriftlichen Gesamtklausur im Umfang von i.d.R. 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung im Sommersemester 2021 entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine.

Empfehlungen

Parallel zu den Veranstaltungen werden begleitende Tutorien angeboten, die insbesondere der Vertiefung der juristischen Arbeitsweise dienen. Ihr Besuch wird nachdrücklich empfohlen.

Während des Semesters wird eine Probeklausur zu jeder Vorlesung mit ausführlicher Besprechung gestellt. Außerdem wird eine Vorbereitungsstunde auf die Klausuren in der vorlesungsfreien Zeit angeboten. Details dazu auf der Homepage des ZAR (www.kit.edu/zar).

5.151 Teilleistung: Operatives CRM [T-WIWI-102597]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101460 - CRM und Servicemanagement

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
WS 21/22	2540522	Operatives CRM	2 SWS	Vorlesung (V)	Geyer-Schulz	
WS 21/22	2540523	Übung Operatives CRM	1 SWS	Übung (Ü)	Schweigert	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

Empfehlungen

Der Besuch der Vorlesungen Customer Relationship Management und Analytisches CRM wird als sinnvoll erachtet.

5.152 Teilleistung: Optik und Festkörperelektronik [T-ETIT-110275]

Verantwortung: Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105005 - Optik und Festkörperelektronik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1 Sem.	1

Lehrveranstaltungen						
SS 2022	2313719	Optik und Festkörperelektronik	3 SWS	Vorlesung (V) / 🖥	Lemmer, Krewer	
SS 2022	2313721	Übungen zu 2313719 Optik- und Festkörperelektronik	2 SWS	Übung (Ü) / 🖥	Lemmer, Krewer	

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Voraussetzungen

5.153 Teilleistung: Optimierungsansätze unter Unsicherheit [T-WIWI-106545]

Verantwortung: Prof. Dr. Steffen Rebennack

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

M-WIWI-103278 - Optimierung unter Unsicherheit

Teilleistungsart
Prüfungsleistung schriftlichLeistungspunkte
4,5Notenskala
DrittelnotenTurnus
Jedes WintersemesterVersion
3

Lehrveranstaltungen						
WS 21/22	2550464	Optimierungsansätze unter Unsicherheit	SWS	Vorlesung (V)	Rebennack	
WS 21/22	2550465	Übungen zu Optimierungsansätze unter Unsicherheit	SWS	Übung (Ü)	Rebennack, Füllner	
WS 21/22	2550466	Rechnerübungen zu Optimierungsansätze unter Unsicherheit	2 SWS	Übung (Ü)	Rebennack, Füllner	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO). Die Prüfung wird jedes Semester angeboten.

Voraussetzungen

Keine.

5.154 Teilleistung: Optoelectronic Components [T-ETIT-101907]

Verantwortung: Prof. Dr. Wolfgang Freude

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100509 - Optoelectronic Components

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	2309486	Optoelectronic Components	2 SWS	Vorlesung (V) / 🖥	Freude	
SS 2022	2309487	Optoelectronic Components (Tutorial)	1 SWS	Übung (Ü) / 🖥	Freude	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten). Die individuellen Termine für die mündliche Prüfung werden regelmäßig angeboten.

Voraussetzungen

keine

Empfehlungen

Kenntnisse in folgenden Bereichen: Elemente der Wellenausbreitung, Physik des pn-Übergangs.

5.155 Teilleistung: Organisationsmanagement [T-WIWI-102630]

Verantwortung: Prof. Dr. Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101425 - Strategie und Organisation

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3,5	Drittelnoten	Jedes Wintersemester	3

Lehrveranstaltungen					
WS 21/22	2577902	Organisationsmanagement	2 SWS	Vorlesung (V)	Lindstädt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Keine

5.156 Teilleistung: Photovoltaische Systemtechnik [T-ETIT-100724]

Verantwortung: Dipl.-Ing. Robin Grab

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100411 - Photovoltaische Systemtechnik

Teilleistungsart
Prüfungsleistung schriftlichLeistungspunkte
3Notenskala
DrittelnotenTurnus
Jedes SommersemesterVersion

Lehrverans	Lehrveranstaltungen					
SS 2022	2307380	Photovoltaische Systemtechnik	2 SWS	Vorlesung (V) /	Grab, Präger	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen

5.157 Teilleistung: Physik für Informatiker I und II [T-PHYS-102303]

Verantwortung: Prof. Dr. Ralph Engel **Einrichtung:** KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101339 - Grundlagen der Physik

Teilleistungsart	Leistungspunkte	Notenskala	Version
Prüfungsleistung schriftlich	12	Drittelnoten	1

Lehrveranstaltungen						
WS 21/22	4040211	Physik II für Informatiker	3 SWS	Vorlesung (V) / 🗯	Engel, Schlösser, Hiller	
WS 21/22	4040212	Übungen zur Physik II für Informatiker	1 SWS	Übung (Ü) / 🗣	Engel, Hiller	
SS 2022	4040211	Physik I für Informatiker	3 SWS	Vorlesung (V) / 🗣	Engel, Hiller, Schlösser	
SS 2022	4040212	Übungen zur Physik I für Informatiker	1 SWS	Übung (Ü) / 🗣	Engel, Hiller, Schlösser	

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel 180 min)

Voraussetzungen

5.158 Teilleistung: Physiologie und Anatomie I [T-ETIT-101932]

Verantwortung: Prof. Dr. Werner Nahm

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100390 - Physiologie und Anatomie I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2305281	Physiologie und Anatomie I	2 SWS	Vorlesung (V) / 🗯	Nahm

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten.

Voraussetzungen

5.159 Teilleistung: Platform Economy [T-WIWI-109936]

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101421 - Supply Chain Management

M-WIWI-101434 - eBusiness und Service Management

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	3

Lehrveranstaltungen						
WS 21/22	2540468	Platform Economy	2 SWS	Vorlesung (V) / 🖥	Weinhardt	
WS 21/22	2540469	Übung zur Platform Economy	SWS	Übung (Ü) / 🖥	Richter	

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Details zur Notenbildung werden zu Beginn der Veranstaltung bekannt gegeben.

Voraussetzungen

siehe "Modellierte Voraussetzungen"

Empfehlungen

Keine

5.160 Teilleistung: PLM-CAD Workshop [T-MACH-102153]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art4DrittelnotenJedes Semester2

Lehrverans	Lehrveranstaltungen					
WS 21/22	2121357	PLM-CAD Workshop	4 SWS	Projekt (PRO) / 🗯	Ovtcharova, Mitarbeiter	
SS 2022	2121357	PLM-CAD Workshop	4 SWS	Projekt (PRO) / 🗣	Ovtcharova, Mitarbeiter	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet)

Voraussetzungen

Keine

Anmerkungen

Anwesenheitspflicht und Teilnehmerzahl begrenzt

5.161 Teilleistung: Praktikum Hard- und Software in leistungselektronischen Systemen [T-ETIT-106498]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103263 - Praktikum Hard- und Software in leistungselektronischen Systemen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	6	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen						
WS 21/22	2306346	Praktikum Hard- und Software in leistungselektronischen Systemen		Praktikum (P) / 😘	Stoß, Schulz, Hiller	
SS 2022	2306346	Praktikum Hard- und Software in leistungselektronischen Systemen		Praktikum (P) / 🗯	Stoß, Schulz, Hiller	

Legende:
☐ Online,
☐ Präsenz/Online gemischt, Präsenz, × Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung.

Voraussetzungen

Die Module "M-ETIT-100402 - Workshop Schaltungstechnik in der Leistungselektronik" und "M-ETIT-100404 - Workshop Mikrocontroller in der Leistungselektronik" wurden weder begonnen noch abgeschlossen.

5.162 Teilleistung: Praktikum: Lego Mindstorms [T-INFO-107502]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-102557 - Lego Mindstorms - Basispraktikum

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	4	best./nicht best.	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	24306	Basispraktikum Lego Mindstorms	3 SWS	Praktikum (P) / 🗯	Asfour

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung anderer Art nach § 4 Abs. 3 SPO.

Voraussetzungen

Keine.

Empfehlungen

Grundlegende Kenntnisse in Java sind zur erfolgreichen Teilnahme erforderlich.

5.163 Teilleistung: Praktische Philosophie 1.1 (Einführung/Überblick zu entw. Ethik, Politische Philosophie oder Handlungstheorie) [T-GEISTSOZ-101170]

Verantwortung: Prof. Dr. Michael Schefczyk

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-104507 - Praktische Philosophie I

Voraussetzung für: T-GEISTSOZ-109222 - Modulprüfung Praktische Philosophie I

Teilleistungsart Studienleistung **Leistungspunkte**

Notenskala best./nicht best.

Turnus Jedes Wintersemester Version 3

Lehrveranstaltungen						
WS 21/22	5012022	Einführung in die Praktische Philosophie	2 SWS	Kurs (Ku)	Schmidt-Petri	

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme an einer Veranstaltung für "Praktische Philosophie 1.1", d.h. im Bestehen der in der Veranstaltung geforderten Leistung in Form von Hausaufgaben, Test oder Referat.

Voraussetzungen

keine

Empfehlungen

Die ausgesprochene Empfehlung, die Veranstaltung im Wintersemester zu besuchen, gilt nur für den durchschnittlichen Regelfall. Abhängig vom konkreten Lehrangebot kann es gute Gründe geben, von ihr abzuweichen.

5.164 Teilleistung: Praktische Philosophie 1.2 [T-GEISTSOZ-101081]

Verantwortung: Prof. Dr. Michael Schefczyk

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-104507 - Praktische Philosophie I

Voraussetzung für: T-GEISTSOZ-109222 - Modulprüfung Praktische Philosophie I

Teilleistungsart
StudienleistungLeistungspunkte
0Notenskala
best./nicht best.Turnus
Jedes SemesterVersion
2

Lehrverans	_ehrveranstaltungen							
WS 21/22	5012028	"Das wird man wohl noch sagen dürfen!" Gründe und Grenzen der Redefreiheit	2 SWS	Hauptseminar (HS)	Schefczyk			
WS 21/22	5012033	J.S. Mill: Die Unterwerfung der Frauen	2 SWS	Hauptseminar (HS)	Schmidt-Petri			
WS 21/22	5012062	Die SKIP-Argumente in der ethischen Debatte um die embryonale Stammzellenforschung	2 SWS	Hauptseminar (HS)	Link			
SS 2022	5012009	"Das wird man wohl noch sagen dürfen!" Gründe und Grenzen der Redefreiheit	2 SWS	Hauptseminar (HS)	Schefczyk			
SS 2022	5012010	Mill: Utilitarismus und Über die Freiheit	SWS	Hauptseminar (HS) / 🖥	Schmidt-Petri			
SS 2022	5012021	Schuld. Eine mächtige Kategorie	SWS	Hauptseminar (HS) / 🖥	Nennen			
SS 2022	5012055	Kant: Grundlegung zur Metaphysik der Sitten	2 SWS	Hauptseminar (HS)	Link			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme am Proseminar "Praktische Philosophie 1.2", d.h. im Bestehen der in der Veranstaltung geforderten Leistungen in Form von Hausaufgaben, Test oder Referat.

Voraussetzungen

keine

Empfehlungen

Die ausgesprochene Empfehlung, die Veranstaltung im Wintersemester zu besuchen, gilt nur für den durchschnittlichen Regelfall. Abhängig vom konkreten Lehrangebot kann es gute Gründe geben, von ihr abzuweichen.

5.165 Teilleistung: Praktische Philosophie 1.3 [T-GEISTSOZ-101171]

Verantwortung: Prof. Dr. Michael Schefczyk

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-104507 - Praktische Philosophie I

Voraussetzung für: T-GEISTSOZ-109222 - Modulprüfung Praktische Philosophie I

Teilleistungsart
StudienleistungLeistungspunkte
0Notenskala
best./nicht best.Turnus
Jedes SemesterVersion
2

Lehrverans	_ehrveranstaltungen							
WS 21/22	5012028	"Das wird man wohl noch sagen dürfen!" Gründe und Grenzen der Redefreiheit	2 SWS	Hauptseminar (HS)	Schefczyk			
WS 21/22	5012033	J.S. Mill: Die Unterwerfung der Frauen	2 SWS	Hauptseminar (HS)	Schmidt-Petri			
WS 21/22	5012062	Die SKIP-Argumente in der ethischen Debatte um die embryonale Stammzellenforschung	2 SWS	Hauptseminar (HS)	Link			
SS 2022	5012009	"Das wird man wohl noch sagen dürfen!" Gründe und Grenzen der Redefreiheit	2 SWS	Hauptseminar (HS)	Schefczyk			
SS 2022	5012010	Mill: Utilitarismus und Über die Freiheit	SWS	Hauptseminar (HS) / 🖥	Schmidt-Petri			
SS 2022	5012021	Schuld. Eine mächtige Kategorie	SWS	Hauptseminar (HS) / 🖥	Nennen			
SS 2022	5012055	Kant: Grundlegung zur Metaphysik der Sitten	2 SWS	Hauptseminar (HS)	Link			

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme an der Veranstaltung "Praktische Phiilosophie 1.3", d.h. im Bestehen der in der Veranstaltung geforderten Leistung, die in Form von Hausaufgaben, Test oder Referaten zu erbringen ist.

Voraussetzungen

keine

Empfehlungen

Die ausgesprochene Empfehlung, die Veranstaltung im Sommersemester zu besuchen, gilt nur für den durchschnittlichen Regelfall. Abhängig vom konkreten Lehrangebot kann es gute Gründe geben, von ihr abzuweichen.

5.166 Teilleistung: Praxis der Software-Entwicklung [T-INFO-102031]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101176 - Praxis der Software-Entwicklung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	7	Drittelnoten	Jedes Semester	1

Lehrveranstaltungen					
SS 2022	l	Praxis der Softwareentwicklung (PSE) (nach Absprache)	4 SWS	Vorlesung (V) / 🕃	Snelting, Fried

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt nach § 4 Abs. 2 Nr. 3 SPO als benotete Erfolgskontrolle anderer Art.

Die in den Anmerkungen genannten Artefakte werden separat benotet und gehen mit folgendem Prozentsatz in die Gesamtnote ein:

Pflichtenheft 10% Entwurf 30%

Implementierung 30% Qualitätssicherung 20%

Abschlusspräsentation 10%.

Voraussetzungen

Für SPO 2015 gilt:

Das Modul muss zusammen mit dem Modul Teamarbeit in der Software-Entwicklung belegt werden.

Der erfolgreiche Abschluss der **Orientierungsprüfung** - der Module **Lineare Algebra I, Grundbegriffe der Informatik** und **Programmieren** - und des Moduls **Softwaretechnik 1** werden vorausgesetzt.

Für SPO 2008 gilt:

Das Modul muss zusammen mit dem Modul Teamarbeit in der Software-Entwicklung belegt werden.

Der erfolgreiche Abschluss der **Orientierungsprüfung** und des Moduls **Softwaretechnik 1** werden vorausgesetzt.DIe Orientierungsprüfung besteht aus einer der Module **Lineare Algebra** oder **Höhere Mathmatik** und die Module **Grundbegriffe der Informatik** und **Programmieren**.

Empfehlungen

Die Veranstaltung sollte erst belegt werden, wenn alle Module aus den ersten beiden Semestern abgeschlossen sind.

Anmerkungen

Zur Struktur: Das Praktikum gliedert sich in die Phasen Pflichtenheft, Entwurf und Feinspezifikation, Implementierung, Qualitätssicherung, Abschlusspräsentation. Alle Phasen werden nach dem Stand der Softwaretechnik objektorientiert und werkzeugunterstützt durchgeführt. Zu jeder Phase muss das entsprechende Artefakt (Pflichtenheft, UML-Diagramme mit Erläuterungen, vollständiger Java-Quellcode, Testprotokolle, laufendes System) in einem Kolloquium präsentiert werden. Das vollständige System wird von den Betreuern auf Funktionalität, Bedienbarkeit und Robustheit geprüft.

PSE kann im 3. oder 4. Semester besucht werden. Falls die Fakultät im 3. Sem nicht genug Plätze anbieten kann, werden die Anmeldungen bevorzugt, die die o.g. Empfehlung (erfolgreicher Abschluss der Module des 1. Studienjahres) erfüllen. Alle anderen Anmeldungen erhalten einen Platz im 4. Sem.

Für SPO 208 gilt: es müssen einer der beiden Module, die für die Orientierungsprüfung beastanden werden müssen auch bestanden werden.

Ein Rücktritt ist bis zum Tag vor dem 1. Kolloquium (=Teilprüfungsleistung zum Pflichtenheft) möglich. Danach ist ein Rücktritt ausgeschlossen.

5.167 Teilleistung: Praxis der Unternehmensberatung [T-INFO-101975]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart
StudienleistungLeistungspunkte
1,5Notenskala
best./nicht best.Turnus
UnregelmäßigVersion
1

Lehrveranst	taltungen				
WS 21/22	24664	Praxis der Unternehmensberatung	2 SWS	Vorlesung (V)	Böhm, Lang

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO und besteht aus mehreren Teilaufgaben. Dazu gehören Vorträge, Projektarbeiten, schriftliche Arbeiten und Seminararbeiten.

Zum Bestehen der Prüfung müssen alle Teilaufgaben erfolgreich bestanden werden.

Voraussetzungen

Keine.

5.168 Teilleistung: Praxis des Lösungsvertriebs [T-INFO-101977]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart
StudienleistungLeistungspunkte
1,5Notenskala
best./nicht best.Turnus
UnregelmäßigVersion
1

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Studienleistung nach § 4 Abs. 3 SPO und besteht aus mehreren Teilaufgaben. Dazu gehören Vorträge, Marktstudien, Projekte, Fallstudien und Berichte.

Zum Bestehen der Prüfung müssen alle Teilaufgaben erfolgreich bestanden werden.

Voraussetzungen

Keine.

Anmerkungen

Praxis der Lösungsvertriebs findet zur Zeit nicht statt

5.169 Teilleistung: Principles of Insurance Management [T-WIWI-102603]

Verantwortung: Prof. Dr. Ute Werner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101436 - Risk and Insurance Management

Teilleistungsart Prüfungsleistung mündlich Leistungspunkte 4,5 **Notenskala** Drittelnoten **Turnus** Jedes Sommersemester Version

Erfolgskontrolle(n)

Die Erfolgskontrolle setzt sich zusammen aus einer mündlichen Prüfung (nach §4(2), 2 SPO) und Vorträgen und Ausarbeitungen im Rahmen der Veranstaltung (nach §4(2), 3 SPO).

Die Note setzt sich zu je 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und der mündlichen Prüfung zusammen. Die Prüfung wird für Erstschreiber letztmalig im Sommersemester 2017 angeboten.

Voraussetzungen

Keine

Empfehlungen

Keine

5.170 Teilleistung: Privatrechtliche Übung [T-INFO-102013]

Verantwortung: Prof. Dr. Thomas Dreier

Dr. Yvonne Matz

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101191 - Wirtschaftsprivatrecht

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art9DrittelnotenJedes Semester2

Lehrveranstaltungen						
WS 21/22	24011	Handels- und Gesellschaftsrecht	2 SWS	Vorlesung (V) / 🗣	Wiele	
WS 21/22	24017	Privatrechtliche Übung	2 SWS	Vorlesung (V) / 🗯	Dreier	
SS 2022	24504	BGB für Fortgeschrittene	2 SWS	Vorlesung (V) / 🖥	Matz	
SS 2022	24506	Privatrechtliche Übung	2 SWS	Vorlesung (V) / 🖥	Dreier	
SS 2022	24926	Übung zur Privatrechtlichen Übung	2 SWS	Übung (Ü) / 🗣	Hägle, Herr	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Studierende müssen 2 bis 5 Falllösungen abgeben, wobei aus jedem Bereich (Bürgerlichen Recht bzw. Handels- und Gesellschaftsrecht) mind. ein Fall gelöst werden muss. Die Falllösungen erfolgen schriftlich im Rahmen von Kolloquien. Für alle gelösten Fälle wird eine Gesamtnote vergeben, Zwischennoten werden nicht vergeben.

Voraussetzungen

Erfolgreicher Abschluss des Moduls Einführung in das Privatrecht.

5.171 Teilleistung: Problemlösung, Kommunikation und Leadership [T-WIWI-102871]

Verantwortung: Prof. Dr. Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101425 - Strategie und Organisation

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	2	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen						
WS 21/22		Problemlösung, Kommunikation und Leadership	1 SWS	Vorlesung (V)	Lindstädt	
SS 2022	2577910	Problemlösung, Kommunikation und Leadership	1 SWS	Vorlesung (V) / 🗣	Lindstädt	

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (30min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

5.172 Teilleistung: Product Lifecycle Management [T-MACH-105147]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4DrittelnotenJedes Wintersemester2

Lehrveranstaltungen					
WS 21/22	2121350	Product Lifecycle Management	2 SWS	Vorlesung (V) / 🗯	Ovtcharova, Elstermann

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung 90 Min.

Voraussetzungen

Keine

5.173 Teilleistung: Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung [T-MACH-102155]

Verantwortung: Prof. Dr.-Ing. Sama Mbang **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

Teilleistungsart
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungspunkte
A

Notenskala
Drittelnoten
Jedes Sommersemester
2

Lehrveranstaltungen					
SS 2022		Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)	2 SWS	Vorlesung / Übung (VÜ) / ● *	Mbang

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung 20 Min.

Voraussetzungen

Keine

Anmerkungen

Teilnehmerzahl begrenzt.

5.174 Teilleistung: Produktion und Nachhaltigkeit [T-WIWI-102820]

Verantwortung: Prof. Dr. Frank Schultmann

Dr.-Ing. Rebekka Volk

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101437 - Industrielle Produktion I

Teilleistungsart
Prüfungsleistung schriftlich
Prüfungsleistung schriftlich

Leistungspunkte
3,5

Notenskala
Drittelnoten
Jedes Wintersemester
1

Lehrveranstaltungen					
WS 21/22	2581960	Produktion und Nachhaltigkeit	2 SWS	Vorlesung (V) / 🗣	Volk

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 Minuten) oder mündlichen (30 Minuten) Prüfung (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Turnus

Jedes Wintersemester

Version

1

5.175 Teilleistung: Produktion, Logistik und Wirtschaftsinformatik [T-WIWI-111602]

Verantwortung: Prof. Dr. Wolf Fichtner

Prof. Dr. Andreas Geyer-Schulz Prof. Dr. Alexander Mädche Prof. Dr. Stefan Nickel Prof. Dr. Frank Schultmann Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-105770 - Produktion, Logistik und Wirtschaftsinformatik

TeilleistungsartPrüfungsleistung schriftlich

Leistungspunkte

6

Notenskala
Drittelnoten

Erfolgskontrolle(n)

Schriftliche Prüfung über die beiden Lehrveranstaltungen "Wirtschaftsinformatik" sowie "Produktion und Logistik". Die Prüfung wird jeweils zu Beginn der vorlesungsfreien Zeit angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

5.176 Teilleistung: Programmieren [T-INFO-101531]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner

Einrichtung: KIT-Fakultät für Informatik **Bestandteil von:** M-INFO-101174 - Programmieren

TeilleistungsartLeistungspunkteNotenskala
DrittelnotenTurnusVersion911

Lehrveranstaltungen						
WS 21/22	24004	Programmieren	4 SWS	Vorlesung / Übung (VÜ)	Heinrich	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO Informatik und besteht aus zwei Abschlussaufgaben, die zeitlich getrennt voneinander abgegeben werden.

Eine Abmeldung ist nur innerhalb von zwei Wochen nach Bekanntgabe der ersten Aufgabe möglich.

Voraussetzungen

Der Übungsschein muss bestanden sein.

Empfehlungen

Vorkenntnisse in Java-Programmierung können hilfreich sein, werden aber nicht vorausgesetzt.

Anmerkungen

Im Falle einer Wiederholung der Prüfung müssen beide Aufgaben erneut abgegeben werden.

Zwei Wochen nach Bekanntgabe der ersten Programmieraufgabe ist der Rücktritt von der Prüfung ohne triftigen Grund nicht mehr möglich.

Achtung: Diese Teilleistung ist Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO Informatik.

5.177 Teilleistung: Programmieren Übungsschein [T-INFO-101967]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101174 - Programmieren

Voraussetzung für: T-INFO-101531 - Programmieren

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Semester	1

Lehrverans	Lehrveranstaltungen					
WS 21/22	24004	Programmieren	4 SWS	Vorlesung / Übung (VÜ)	Heinrich	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Studienleistung nach § 4 Abs. 3 SPO Informatik. Es muss ein Übungsschein erworben werden. Um die Studienleistung zu bestehen, müssen 50% der Punkte durch die Ausarbeitung der Übungsblätter erreicht werden und die Präsenzübung muss bestanden werden.

Wenn keine 50% der Punkte durch die Ausarbeitung der Übungsblätter erreicht werden, gilt der Übungsschein als nicht bestanden. Wenn die Präsenzübung nicht bestanden wird, gilt der Übungsschein als nicht bestanden.

Die Präsenzübung findet i.d.R. in der 2. Hälfte des Semesters statt. Die Präsenzübung soll zeigen, dass Studierende die bereits in den Übungsblättern erarbeiteten Studieninhalte beherrschen und ohne Hilfsmittel einsetzen können.

Voraussetzungen

keine

Anmerkungen

- Der Übungsschein ist Voraussetzung für die Teilnahme an der Prüfung Programmieren.
- Mit der Anmeldung zum Übungsschein erfolgt automatisch auch die Anmeldung zu der Präsenzübung. Nimmt der Studierende nicht an der Präsenzübung teil oder besteht er diese nicht, gilt der Übungsschein als nicht bestanden. In diesem Fall müssen im kommenden Semester sowohl die Ausarbeitung der Übungsblätter, als auch die Präsenzübung erfolgreich wiederholt werden.
- Wer die Ausarbeitung der Übungsblätter erfolgreich besteht, jedoch aus nicht zu vertretendem Grund an der Präsenzübung nicht teilnimmt, kann im nächsten Semester nur an der Präsenzübung teilnehmen. Wenn die Präsenzübung im nächsten Semester nicht bestanden wird, gilt der Übungsschein als nicht bestanden.
- Studierende, die an den Übungsschein bereits vor WS 16/17 ohne Erfolg teilgenommen haben, müssen an der Präsenzübung nicht teilnehmen.
- · Achtung: Diese Teilleistung ist Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO Informatik.

5.178 Teilleistung: Programmierparadigmen [T-INFO-101530]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101179 - Programmierparadigmen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	24030	Programmierparadigmen	3 SWS	Vorlesung (V) / 🗣	Snelting, Reussner
WS 21/22	24043	Übung zu Programmierparadigmen	1 SWS	Vorlesung (V) / 🗣	Snelting, von Raumer, Ullrich

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Das Modul Theoretische Grundlagen der Informatik muss abgeschlossen sein.

Empfehlungen

Keine.

5.179 Teilleistung: Projektmanagement aus der Praxis [T-INFO-101976]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	1,5	best./nicht best.	Unregelmäßig	1

Lehrveranstaltungen					
SS 2022	2400019	Projektmanagement aus der Praxis	2 SWS	Vorlesung (V) / 🗣	Böhm, Schnober

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO und besteht aus mehreren Teilaufgaben. Dazu gehören Vorträge, Projektarbeiten, schriftliche Arbeiten und Seminararbeiten.

Zum Bestehen der Prüfung müssen alle Teilaufgaben erfolgreich bestanden werden.

Voraussetzungen

Keine.

Empfehlungen

Kenntnisse zu Grundlagen des Projektmanagements.

5.180 Teilleistung: Projektmanagement im Zeitalter der Digitalisierung [T-INFO-110998]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour

Dr.-Ing. Michael Kaiser

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	3	best./nicht best.	Unregelmäßig	1

Lehrveranstaltungen					
WS 21/22		Projektmanagement im Zeitalter der Digitalisierung	2 SWS	Vorlesung (V) / 🗣	Kaiser

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Studienleistung nach § 4 Abs. 3 SPO.

Voraussetzungen

keine

5.181 Teilleistung: Proseminar [T-INFO-101971]

Verantwortung: Prof. Dr. Bernhard Beckert

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101181 - Proseminar

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte

Notenskala Drittelnoten **Turnus** Jedes Semester

Version 1

Lehrveran	staltungen				
WS 21/22	2400041	Proseminar Algorithmen für Computerspiele	2 SWS	Proseminar / Seminar (PS) / 🗣	Schüßler, Piochowiak
WS 21/22	2400066	Aktuelle Forschung im IT- Sicherheitsmanagement für vernetzte Systeme	2 SWS	Proseminar (PS) /	Hartenstein, Grundmann, Stengele
WS 21/22	2400085	Proseminar Mobile Computing	2 SWS	Proseminar / Seminar (PS/S)	Beigl, Zhou, Pescara
WS 21/22	2400100	Ausgewählte Kapitel der Rechnerarchitektur	2 SWS	Proseminar (PS)	Karl, Hoffmann, Becker, Lehmann
WS 21/22	2400109	Proseminar: Novel advances in Data Science	SWS	Proseminar (PS) /	Böhm, Renftle, Arzamasov, Bielski, Böhnke
WS 21/22	2400111	Proseminar: Grundlagen des maschinellen Lernens	SWS	Proseminar (PS) /	Friederich, Zhou
WS 21/22	2400112	Proseminar: Fortgeschrittene Themen des Maschinellen Lernens	SWS	Proseminar (PS) /	Friederich
WS 21/22	2400130	Post-Quantum Kryptographie	2 SWS	Proseminar (PS) /	Müller-Quade, Tiepelt Ottenhues
WS 21/22	2400282	Smart Embedded Systems	2 SWS	Proseminar (PS) /	Bauer, Ghasemy, Gonzalez, Hussain, Salamin, Rapp, Zervakis, Faghih, Pfeiffer, Hizzani, Sikal Nassar, Khdr, Prakash Henkel
WS 21/22	24056	Proseminar Informatik in der Medizin	2 SWS	Proseminar / Seminar (PS)	Mathis-Ullrich
WS 21/22	24060	Proseminar Anthropomatik: Von der Theorie zur Anwendung	2 SWS	Proseminar (PS) /	Hanebeck, Beyerer, Radtke
SS 2022	2400001	Proseminar Computergrafik	2 SWS	Proseminar / Seminar (PS/S) /	Schudeiske
SS 2022	2400010	Proseminar Mobile Computing	2 SWS	Proseminar (PS) /	Beigl, Riedel, Pescara
SS 2022	2400020	Windows Internals (Proseminar Operating System Internals)	2 SWS	Proseminar (PS) /	Bellosa, Rittinghaus
SS 2022	2400027	Proseminar: Novel advances in Data Science	SWS	Proseminar (PS) /	Böhm, Bielski
SS 2022	2400070	Proseminar "Formale Methoden und Maschinelles Lernen" findet im SS 2022 nicht statt!	SWS	Proseminar (PS) /	Beckert, Sinz
SS 2022	2400075	Proseminar Software- Katastrophen: Was Software- Fehler anrichten, und was wir aus ihnen lernen können	2 SWS	Proseminar (PS) /	Reussner
SS 2022	2400076	Proseminar Software- Anforderungen und -Entwurf	2 SWS	Proseminar (PS) /	Koziolek

SS 2022	2400079	Proseminar: Designing and Conducting Experimental Studies	2 SWS	Proseminar (PS) /	Schankin, Beigl, Exler, Pescara
SS 2022	2400086	Proseminar Algorithmen für NP- schwere Probleme	2 SWS	Proseminar (PS) /	Ueckerdt, Merker, Weyand, Feilhauer
SS 2022	2400109	Quantum Information Theory	2 SWS	Proseminar (PS) /	Müller-Quade, Tiepelt, Ottenhues
SS 2022	2400121	Interactive Analytics Seminar	2 SWS	Proseminar / Seminar (PS/S) / 🖥	Beigl, Mädche, Pescara
SS 2022	2400151	Proseminar: Grundlagen des maschinellen Lernens	2 SWS	Proseminar (PS) /	Friederich
SS 2022	2400282	Smart Embedded Systems	2 SWS	Proseminar (PS) /	Bauer, Gonzalez, Hussain, Rapp, Zervakis, Pfeiffer, Sikal, Nassar, Khdr, Prakash, Henkel
SS 2022	24060	Proseminar Softwaretechnik: Ausgewählte Turing-Preisträger aus der Softwaretechnik	2 SWS	Proseminar (PS) /	Schaefer
SS 2022	2424815	Ausgewählte Kapitel der Rechnerarchitektur	3 SWS	Proseminar (PS) /	Karl, Becker, Hoffmann, Lehmann
SS 2022	24544	Proseminar: Anthropomatik: Von der Theorie zur Anwendung	2 SWS	Proseminar (PS) /	Hanebeck, Beyerer, Reith-Braun

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Studierende müssen eine schriftliche Ausarbeitung im Umfang von ca. 10 Seiten abgeben und eine Präsentation im Umfang von ca. 30 Minuten mit anschließender Diskussion halten.

Bei der Benotung werden sowohl die schriftliche Arbeit als auch die Präsentation berücksichtigt.

Voraussetzungen

Keine.

Anmerkungen

Das Proseminar soll im 3. oder 4. Fachsemester belegt werden.

Es können nur Proseminare der KIT-Fakultät für Informatik belegt werden. Eine vollständige Auflistung ist dem Vorlesungsverzeichnis zu entnehmen.

5.182 Teilleistung: Proseminar Mathematik [T-MATH-103404]

Verantwortung: PD Dr. Stefan Kühnlein **Einrichtung:** KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101313 - Proseminar Mathematik

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Version

Voraussetzungen

keine

5.183 Teilleistung: Radiation Protection [T-ETIT-100825]

Verantwortung: Prof. Dr. Olaf Dössel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100562 - Radiation Protection

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3	Drittelnoten	Jedes Sommersemester	2

Lehrveranstaltungen					
SS 2022	2305272	Radiation Protection	2 SWS	Vorlesung (V) / 🖥	Breustedt

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (2 h).

Voraussetzungen

keine

5.184 Teilleistung: Real Estate Management I [T-WIWI-102744]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101466 - Real Estate Management

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2586400	Real Estate Management I	2 SWS	Vorlesung (V) / 🖥	Lützkendorf, Worschech
WS 21/22	2586401	Übungen zu Real Estate Management I	2 SWS	Übung (Ü) / 🖥	Worschech

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Wintersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

Anmerkungen

Das Angebot wird durch Vorträge von Gästen aus verschiedenen Bereichen der Immobilienwirtschaft und durch Exkursionen ergänzt.

5.185 Teilleistung: Real Estate Management II [T-WIWI-102745]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101466 - Real Estate Management

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2585400	Real Estate Management II	2 SWS	Vorlesung (V) / 🗯	Lützkendorf, Worschech
SS 2022	2585401	Übung zu Real Estate Management II	2 SWS	Übung (Ü) / 😘	Worschech

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als 60-minütige (reine Bearbeitungszeit) Upload-Klausur (Open Book Exam @ Home) (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine

Empfehlungen

Es wird eine Kombination mit dem ModulBauökologieIempfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- · Finanzwirtschaft und Banken
- Versicherungen
- · Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion, Facility Management)

Anmerkungen

Das Angebot wird durch Vorträge von Gästen aus verschiedenen Bereichen der Wohnungswirtschaft und durch Exkursionen ergänzt.

5.186 Teilleistung: Rechnerstrukturen [T-INFO-101355]

Verantwortung: Prof. Dr. Wolfgang Karl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100818 - Rechnerstrukturen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2424570	Rechnerstrukturen	3 SWS	Vorlesung (V) / 🖥	Karl

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Der vorherige Abschluss des Moduls *Technische Informatik* wird empfohlen.

5.187 Teilleistung: Renewable Energy-Resources, Technologies and Economics [T-WIWI-100806]

Verantwortung: PD Dr. Patrick Jochem

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101464 - Energiewirtschaft

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3,5	Drittelnoten	Jedes Wintersemester	4

Lehrveranstaltungen					
WS 21/22	2581012	Renewable Energy – Resources, Technologies and Economics	2 SWS	Vorlesung (V) / 🗣	Jochem

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten, englisch, Antworten auf deutsch oder englisch möglich) (nach SPO § 4(2)). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung ggf. als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4(2) Pkt. 3) angeboten.

Voraussetzungen

Keine.

5.188 Teilleistung: Robotik I - Einführung in die Robotik [T-INFO-108014]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100893 - Robotik I - Einführung in die Robotik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	2424152	Robotik I - Einführung in die Robotik	3/1 SWS	Vorlesung (V) / 🕃	Asfour

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

Empfehlungen

Zur Abrundung ist der nachfolgende Besuch der LVs "Robotik II", "Robotik III" und "Mechano-Informatik in der Robotik" sinnvoll.

Anmerkungen

Dieses Modul darf nicht gerprüft werden, wenn im Bacherlor-Studiengang Informatik SPO 2008 die Lehrveranstaltung **Robotik I** mit **3 LP** im Rahmen des Moduls **Grundlagen der Robotik** geprüft wurde.

5.189 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-benotet [T-INFO-111475]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art2DrittelnotenJedes Semester1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

5.190 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-benotet [T-INFO-111476]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3DrittelnotenJedes Semester1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

5.191 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-benotet [T-INFO-111474]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art1DrittelnotenJedes Semester1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

5.192 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-unbenotet [T-INFO-111479]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart
StudienleistungLeistungspunkte
3Notenskala
best./nicht best.Turnus
Jedes SemesterVersion
1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- · House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

5.193 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-unbenotet [T-INFO-111478]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart
StudienleistungLeistungspunkte
2Notenskala
best./nicht best.Turnus
Jedes SemesterVersion
1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

5.194 Teilleistung: Selbstverbuchung-HOC-SPZ-ZAK-unbenotet [T-INFO-111477]

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Turnus Jedes Semester **Version** 1

Verbuchung von ÜQ-Leistungen

Diese Teilleistung eignet sich zur Selbstverbuchung von SQ/ÜQ-Leistungen durch Studierende. Es können Leistungen der folgenden Anbieter ohne Antrag verbucht werden:

- House of Competence
- Sprachenzentrum
- · Zentrum für Angewandte Kulturwissenschaft und Studium Generale

Anmerkungen

Überfachliche Qualifikationen (ÜQ), die am House-of-Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) oder am Sprachenzentrum (SpZ) erbracht wurden, können im Selfservice zugeordnet werden.

5.195 Teilleistung: Seminar aus Rechtswissenschaften I [T-INFO-101997]

Verantwortung: Prof. Dr. Thomas Dreier **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101218 - Seminarmodul Recht

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Semester	1

Lehrverans	Lehrveranstaltungen							
WS 21/22	2400311	Seminar "Aktuelle Probleme des Markenrechts"	2 SWS	Seminar (S)	Matz			
SS 2022	2400005	Vertiefungs-Seminar Governance, Risk & Compliance	2 SWS	Seminar (S)	Herzig			
SS 2022	2400061	Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung	2 SWS	Seminar (S) /	Bless, Boehm, Hartenstein, Mädche, Zitterbart, Volkamer			
SS 2022	2400168	"Vom Original zur Kopie und vom Analogen zum Digitalen"	2 SWS	Seminar (S)	Dreier, Jehle			
SS 2022	2400240	Grundlagen Ethik und IT	2 SWS	Seminar (S)	Dreier			
SS 2022	24820	Aktuelle Fragen des Patentrechts	2 SWS	Seminar (S) / 🖥	Melullis			

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Seminararbeit sowie ihrer Präsentation als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen

Keine

Anmerkungen

Es können alle Seminare des Instituts für Informations- und Wirtschaftsrecht (IIWR) belegt werden.

5.196 Teilleistung: Seminar Batterien I [T-ETIT-110800]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105319 - Seminar Batterien I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Dauer	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Semester	1 Sem.	1

Lehrveranstaltungen					
WS 21/22	2304226	Seminar Batterien	2 SWS	Seminar (S) / 🖥	Weber
SS 2022	2304226	Seminar Batterien	2 SWS	Seminar (S) / 🗣	Weber

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗴 Abgesagt

Voraussetzungen

keine

5.197 Teilleistung: Seminar Betriebswirtschaftslehre (Bachelor) [T-WIWI-103486]

Verantwortung: Professorenschaft des Fachbereichs Betriebswirtschaftslehre

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101826 - Seminarmodul Wirtschaftswissenschaften

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3DrittelnotenJedes Semester1

Lehrverans	staltungen				
WS 21/22	2500019	Digital Citizen Science	2 SWS	Seminar (S) / 😘	Mädche, Nieken
WS 21/22	2500028	Seminar in Empirical Finance	2 SWS	Seminar (S)	Ulrich
WS 21/22	2500125	Current Topics in Digital Transformation Seminar	3 SWS	Seminar (S) / 😘	Mädche
WS 21/22	2530374	Machine Learning for Business Applications	2 SWS	Seminar (S) / 🖥	Ulrich
WS 21/22	2530580	Seminar in Finance: Green is the new Black – Nachhaltigkeit in der Finanzwelt	2 SWS	Seminar (S) / 🗣	Uhrig-Homburg
WS 21/22	2530610	Seminar in Financial Economics: Fintech on the Rise (Bachelor)	2 SWS	Seminar (S) /	Thimme
WS 21/22	2540473	Data Science in Service Management	2 SWS	Seminar (S)	Stoeckel, Badewitz
WS 21/22	2540475	Electronic Markets & User behavior	2 SWS	Seminar (S) / 🖥	Knierim
WS 21/22	2540477	Digital Experience and Participation	2 SWS	Seminar (S)	Peukert, Fegert, Greif- Winzrieth, Hoffmann
WS 21/22	2540478	Smart Grids and Energy Markets	2 SWS	Seminar (S)	Dinther, Staudt, Richter, vom Scheidt, Golla, Schmidt, Henni, Bluhm, Klimm, Semmelmann
WS 21/22	2540524	Bachelor Seminar in Data Science and Machine Learning	2 SWS	Seminar (S)	Geyer-Schulz, Nazemi, Schweizer
WS 21/22	2540557	Information Systems and Design (ISSD) Seminar	2 SWS	Seminar (S) / 😂	Mädche
WS 21/22	2545010	Entrepreneurship Basics (Track 1)	2 SWS	Seminar (S)	Eckerle, Hirte
WS 21/22	2545011	Entrepreneurship Basics (Track 2)	2 SWS	Seminar (S)	Böhrer, Terzidis
WS 21/22	2571180	Seminar in Marketing und Vertrieb (Bachelor)	2 SWS	Seminar (S) / 🗣	Klarmann, Mitarbeiter
WS 21/22	2572173	Seminar in Marketing & Innovation (Bachelor)	SWS	Seminar (S)	Klarmann
WS 21/22	2573010	Seminar: Personal und Organisation (Bachelor)	2 SWS	Seminar (S) / 🗣	Nieken, Mitarbeiter
WS 21/22	2573011	Seminar: Human Resource Management (Bachelor)	2 SWS	Seminar (S) / 🗣	Nieken, Mitarbeiter
WS 21/22	2579919	Seminar Management Accounting - Special Topics	2 SWS	Seminar (S) / 🗣	Wouters, Ebinger
WS 21/22	2581030	Seminar Energiewirtschaft IV: Aktuelle Themen der Energiepolitik	2 SWS	Seminar (S) / 🗣	Dehler-Holland, Fichtner, Britto
WS 21/22	2581976	Seminar Produktionswirtschaft und Logistik I	2 SWS	Seminar (S)	Glöser-Chahoud, Schultmann
WS 21/22	2581977	Seminar Produktionswirtschaft und Logistik II	2 SWS	Seminar (S)	Volk, Schultmann

WS 21/22	2581980	Seminar Energiewirtschaft II: Aktuelle Entwicklungen auf den europäischen Energiemärkten	2 SWS	Seminar (S) /	Fichtner, Fraunholz, Kraft, Zimmermann
WS 21/22	2581981	Seminar Energiewirtschaft III: Energiewende und Klimaschutz im Kontext von Markt, Gesellschaft und Technik	2 SWS	Seminar (S) /	Ardone, Finck, Fichtner, Slednev
WS 21/22	2581990	Seminar Produktionswirtschaft und Logistik IV	2 SWS	Seminar (S)	Schultmann
SS 2022	2500125	Current Topics in Digital Transformation Seminar	3 SWS	Seminar (S) / 🗯	Mädche
SS 2022	2530293	Seminar in Finance (Bachelor, Prof. Ruckes)	2 SWS	Seminar (S)	Ruckes, Luedecke, Hoang, Benz, Wiegratz, Silbereis
SS 2022	2530374	Machine Learning for Business Applications	2 SWS	Seminar (S)	Ulrich
SS 2022	2530610	Seminar Financial Economics	SWS	Seminar (S) / 🖥	Thimme
SS 2022	2540472	Digital Citizen Science	2 SWS	Seminar (S)	Weinhardt, Knierim
SS 2022	2540473	Business Data Analytics	2 SWS	Seminar (S)	Badewitz, Weinhardt
SS 2022	2540477	Digital Experience & Participation	2 SWS	Seminar (S)	Peukert, Fegert
SS 2022	2540478	Smart Grid Economics & Energy Markets	2 SWS	Seminar (S)	Staudt, Henni, Semmelmann, Qu, Bluhm, Golla
SS 2022	2540524	Bachelor Seminar in Data Science and Machine Learning	2 SWS	Seminar (S)	Geyer-Schulz, Schweigert, Schweizer
SS 2022	2540553	User-Adaptive Systems Seminar	2 SWS	Seminar (S) / 🗯	Mädche, Beigl
SS 2022	2540557	Information Systems and Service Design Seminar	3 SWS	Seminar (S) / 🗯	Mädche
SS 2022	2545010	Entrepreneurship Basics (Track 1)	2 SWS	Seminar (S) / 🗣	Terzidis, Hirte
SS 2022	2545011	Entrepreneurship Basics (Track 2)	2 SWS	Seminar (S) / 🗣	Böhrer, Terzidis
SS 2022	2573010	Seminar Personal und Organisation (Bachelor)	2 SWS	Seminar (S) / 🗣	Nieken, Mitarbeiter
SS 2022	2573011	Seminar Human Resource Management (Bachelor)	2 SWS	Seminar (S) / 🗣	Nieken, Mitarbeiter
SS 2022	2579909	Seminar Management Accounting	2 SWS	Seminar (S) / 🗣	Wouters, Jaedeke
SS 2022	2579919	Seminar in Management Accounting - Special Topics	2 SWS	Seminar (S) / 🗣	Ebinger
SS 2022	2581030	Seminar Energiewirtschaft IV	2 SWS	Seminar (S) / 🗣	Dehler-Holland, Fichtner
SS 2022	2581977	Seminar Produktionswirtschaft und Logistik II	2 SWS	Seminar (S) / 🗣	Volk, Schultmann
SS 2022	2581980	Seminar Energiewirtschaft II	2 SWS	Seminar (S) / 🗣	Kraft, Fichtner
SS 2022	2581990	Seminar Produktionswirtschaft IV	2 SWS	Seminar (S) / 🗣	Schultmann

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- · Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen

In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Die verfügbaren Seminarplätze werden im WiWi-Portal unter https://portal.wiwi.kit.edu aufgeführt.

5.198 Teilleistung: Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung [T-ETIT-100714]

Verantwortung: Dr.-Ing. Klaus-Peter Becker

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100397 - Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	4	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022		Leistungselektronik in Systemen der regenerativen Energieerzeugung	3 SWS	Seminar (S) / 🗣	Hiller

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Endvortrag, ca. 20-30 min mit anschließender Fragerunde.

Bewertet werden:

Folienqualität (Form und Inhalt)

Vortrag (Aufbau, Stil, Inhalt)

Verhalten bei der Fragerunde

Voraussetzungen

keine

Anmerkungen

Teilnahme an insgesamt 7 vorbereitenden Treffen (ca. alle 14 Tage mit durchschnittlich 3 h Dauer) mit den Themen:

Infoveranstaltung

Besprechung und Verteilung der Themen

Vortrags- und Präsentationstechniken

Präsentation der Materialsammlungen

Vorstellung von Struktur und Aufbau der Vorträge

Vorstellung der fertigen Folienpräsentation

Probevorträge

5.199 Teilleistung: Seminar Operations Research (Bachelor) [T-WIWI-103488]

Verantwortung: Prof. Dr. Stefan Nickel

Prof. Dr. Steffen Rebennack

Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101826 - Seminarmodul Wirtschaftswissenschaften

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3DrittelnotenJedes Semester1

Lehrverans	Lehrveranstaltungen						
WS 21/22	2550131	Seminar zu Methodischen Grundlagen des Operations Research (B)	2 SWS	Seminar (S) / 🗣	Stein, Beck, Neumann, Schwarze		
WS 21/22	2550472	Seminar on Power Systems Optimization (Bachelor)	2 SWS	Seminar (S)	Rebennack, Sinske		
WS 21/22	2550491	Seminar: Modern OR and Innovative Logistics	2 SWS	Seminar (S) / 🗯	Nickel, Mitarbeiter		
SS 2022	2550132	Seminar zur Mathematischen Optimierung (MA)	2 SWS	Seminar (S) / 🗣	Stein, Beck, Schwarze		
SS 2022	2550472	Seminar on Power Systems Optimization (Bachelor)	2 SWS	Seminar (S) / 🕄	Rebennack, Warwicker		
SS 2022	2550491	Seminar: Modern OR and Innovative Logistics	2 SWS	Seminar (S) / 🕃	Nickel, Mitarbeiter		

Legende: 🖥 Online, 😂 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- · Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen

In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Die verfügbaren Seminarplätze werden im WiWi-Portal unter https://portal.wiwi.kit.edu aufgeführt.

5.200 Teilleistung: Seminar Statistik (Bachelor) [T-WIWI-103489]

Verantwortung: Prof. Dr. Oliver Grothe

Prof. Dr. Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101826 - Seminarmodul Wirtschaftswissenschaften

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung anderer Art	3	Drittelnoten	Jedes Semester	1

Lehrverans	Lehrveranstaltungen					
WS 21/22	2521310	Topics in Econometrics	2 SWS	Seminar (S)	Schienle, Rüter, Görgen	
SS 2022	2550560	Spezielle Themen der Datenanalyse und Statistik	2 SWS	Seminar (S) / 🗣	Grothe, Kaplan, Kächele	

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- · Regelmäßige Teilnahme an den Seminarterminen
- · Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- · Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen

In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Die verfügbaren Seminarplätze werden im WiWi-Portal unter https://portal.wiwi.kit.edu aufgeführt.

5.201 Teilleistung: Seminar über ausgewählte Kapitel der Biomedizinischen Technik [T-ETIT-100710]

Verantwortung: Dr.-Ing. Axel Loewe

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100383 - Seminar über ausgewählte Kapitel der Biomedizinischen Technik

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3DrittelnotenJedes Wintersemester1

Lehrveranstaltungen					
WS 21/22		Seminar über ausgewählte Kapitel der Biomedizinischen Technik	2 SWS	Seminar (S) / 🗣	Loewe

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages mit nachfolgender Diskussion.

Voraussetzungen

keine

5.202 Teilleistung: Seminar Volkswirtschaftslehre (Bachelor) [T-WIWI-103487]

Verantwortung: Professorenschaft des Fachbereichs Volkswirtschaftslehre

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101826 - Seminarmodul Wirtschaftswissenschaften

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art3DrittelnotenJedes Semester1

Lehrverans	staltungen				
WS 21/22	2521310	Topics in Econometrics	2 SWS	Seminar (S)	Schienle, Rüter, Görgen
WS 21/22	2560140	Disruption and the Digital Economy - Topics in Political Economy (Bachelor)	2 SWS	Seminar (S)	Szech, Huber, Rosar
WS 21/22	2560141	Overcoming the Corona Crisis - Morals & Social Behavior (Bachelor)	2 SWS	Seminar (S)	Szech, Zhao, Rau, Rosar
WS 21/22	2560142	Disruption and the Digital Economy - Topics in Political Economy (Master)	2 SWS	Seminar (S)	Szech, Huber, Rosar
WS 21/22	2560145	Moral Wiggle Room and Information Avoidance - Topics on Polit Econ (Bachelor)	2 SWS	Seminar (S)	Szech, Rau, Huber
WS 21/22	2561208	Ausgewählte Aspekte der europäischen Verkehrsplanung und -modellierung	2 SWS	Seminar (S)	Szimba
SS 2022	2560233	Seminar zur Luftverkehrspolitik	SWS	Seminar (S) / 🖥	Mitusch, Wisotzky
SS 2022	2560241	Digital IT Solutions and Services transforming the Field of Public Transportation	2 SWS	Seminar (S)	Janoshalmi
SS 2022	2560553	Shaping AI and Digitization for Society - Seminar Morals and Social Behavior (Bachelor)	2 SWS	Seminar (S) / 🕄	Szech, Zhao
SS 2022	2560554	Bounded Rationality - Theory and Experiments, Seminar on Topics in Political Economy (Master)	2 SWS	Seminar (S) / 🕸	Szech, Rau

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- · Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen

In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Die verfügbaren Seminarplätze werden im WiWi-Portal unter https://portal.wiwi.kit.edu aufgeführt.

5.203 Teilleistung: Seminar: Advanced Topics in High Performance Computing, Data Management and Analytics [T-INFO-111837]

Verantwortung: Prof. Dr. Achim Streit **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-105888 - Seminar: Advanced Topics in High Performance Computing, Data Management and

Analytics

TeilleistungsartLeistungspunkteNotenskala
DrittelnotenTurnusVersion4DrittelnotenJedes Wintersemester1

Lehrveranstaltungen						
WS 21/22		Advanced Topics in High Performance Computing, Data Management and Analytics	3 SWS	Seminar (S) /	Streit, Farshian Abbasi, Pfisterer	

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer **Prüfungsleistung anderer Art** nach § 4 Abs. 2 Nr. 3 SPO. Es müssen eine schriftliche Ausarbeitung erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Voraussetzungen

Keine.

Empfehlungen

Grundkenntnisse in den Bereichen Datenbanken, Datenmanagement, Datenanalyse, Parallelrechner oder Parallelprogrammierung sind hilfreich.

5.204 Teilleistung: Sicherheit [T-INFO-101371]

Verantwortung: Prof. Dr. Dennis Hofheinz

Prof. Dr. Jörn Müller-Quade

Einrichtung: KIT-Fakultät für Informatik **Bestandteil von:** M-INFO-100834 - Sicherheit

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	24941	Sicherheit	3 SWS	O · · ·	Müller-Quade, Strufe, Wressnegger	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von 90 Minuten.

Voraussetzungen

Keine.

5.205 Teilleistung: Signale und Systeme [T-ETIT-101922]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102123 - Signale und Systeme

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	3

Lehrveranstaltungen					
WS 21/22	2302109	Signale und Systeme	2 SWS	Vorlesung (V) / 🗯	Heizmann
WS 21/22	2302111	Übungen zu 2302109 Signale und Systeme	2 SWS	Übung (Ü) / 🗣	Heizmann

Legende: █ Online, ∰ Präsenz/Online gemischt, � Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Signale und Systeme.

Notenbildung ergibt sich aus der schriftlichen Prüfung.

Voraussetzungen

Keine

Empfehlungen

Höhere Mathematik I + II

5.206 Teilleistung: Softwaretechnik I [T-INFO-101968]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner Prof. Dr. Walter Tichy

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101175 - Softwaretechnik I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen						
SS 2022	24518	Softwaretechnik I	4 SWS	Vorlesung / Übung (VÜ) / 🖥	Schaefer, Eichhorn, Runge, Gerking, Hey		

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO Informatik im Umfang von i.d.R. 60 Minuten.

Voraussetzungen

Keine.

Empfehlungen

Das Modul Programmieren sollte abgeschlossen sein.

5.207 Teilleistung: Softwaretechnik I Übungsschein [T-INFO-101995]

Verantwortung: Prof. Dr. Walter Tichy **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101175 - Softwaretechnik I

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Sommersemester	1

Lehrverans	Lehrveranstaltungen					
SS 2022	24518	Softwaretechnik I		Vorlesung / Übung (VÜ) / 🖥	Schaefer, Eichhorn, Runge, Gerking, Hey	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Es muss ein unbenoteter Übungsschein als Erfolgskontrolle in Form einer Studienleistung nach § 4 Abs. 3 SPO Informatik erbracht werden.

Voraussetzungen

keine

Empfehlungen

Das Modul Programmieren sollte abgeschlossen sein.

5.208 Teilleistung: Softwaretechnik II [T-INFO-101370]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek

Prof. Dr. Ralf Reussner Prof. Dr. Walter Tichy

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100833 - Softwaretechnik II

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen						
	WS 21/22	24076	Softwaretechnik II	4 SWS	Vorlesung (V) / 🗣	Reussner

Legende: █ Online, ∰ Präsenz/Online gemischt, ♠ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Die Lehrveranstaltung Softwaretechnik I sollte bereits gehört worden sein.

5.209 Teilleistung: Spezialveranstaltung Wirtschaftsinformatik [T-WIWI-109940]

Verantwortung: Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101434 - eBusiness und Service Management

Teilleistungsart Prüfungsleistung anderer Art Leistungspunkte 4,5 **Notenskala** Drittelnoten **Turnus** Jedes Semester Version 2

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch das Ausarbeiten einer schriftlichen Dokumentation, einer Präsentation der Ergebnisse der durchgeführten praktischen Komponenten und der aktiven Beteiligung an den Diskussionen.

Bitte beachten Sie, dass auch eine praktische Komponente wie die Durchführung einer Umfrage, oder die Implementierung einer Applikation neben der schriftlichen Ausarbeitung zum regulären Leistungsumfang der Veranstaltung gehört. Die jeweilige Aufgabenstellung entnehmen Sie bitte der Veranstaltungsbeschreibung.

Die Gesamtnote der Prüfungsleistung anderer Art wird wie folgt gebildet:

Insgesamt können 60 Punkte erreicht werden, davon

- maximal 30 Punkte für die schriftliche Dokumentation
- maximal 30 Punkte für die praktische Komponente

Voraussetzungen

siehe "Modellierte Voraussetzungen"

Empfehlungen

Keine

Anmerkungen

Für die Spezialveranstaltung Wirtschaftsinformatik können sich interessierte Studierende initiativ mit einem Themenvorschlag an die Wissenschaftlichen Mitarbeiter des Lehrstuhls von Prof. Weinhardt wenden.

Die Spezialveranstaltung Wirtschaftsinformatik entspricht dem Seminarpraktikum, wie es bisher nur für den Studiengang Wirtschaftsinformatik angeboten wurde. Mit dieser Veranstaltung wird die Möglichkeit, praktische Erfahrungen zu sammeln bzw. wissenschaftliche Arbeitsweise im Rahmen eines Seminarpraktikums zu erlernen, auch Studierenden des Wirtschaftsingenieurwesens und der Technischen Volkswirtschaftslehre zugänglich gemacht.

Die Spezialveranstaltung Wirtschaftsinformatik kann anstelle einer regulären Vorlesung (siehe Modulbeschreibung) gewählt werden. Sie kann aber nur einmal pro Modul angerechnet werden.

5.210 Teilleistung: Standortplanung und strategisches Supply Chain Management [T-WIWI-102704]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

M-WIWI-101414 - Methodische Grundlagen des OR M-WIWI-101421 - Supply Chain Management

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	Jedes Wintersemester	4

Lehrveranstaltungen					
WS 21/22	2550486	Standortplanung und strategisches Supply Chain Management	2 SWS	Vorlesung (V)	Nickel
WS 21/22	2550487	Übungen zu Standortplanung und strategisches SCM	1 SWS	Übung (Ü) / 🖥	Pomes, Linner

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO).

Die Prüfung wird jedes Semester angeboten.

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Voraussetzungen

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Empfehlungen

Keine

Anmerkungen

Die Lehrveranstaltung wird in jedem Wintersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

5.211 Teilleistung: Strategic Finance and Technology Change [T-WIWI-110511]

Verantwortung: Prof. Dr. Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101465 - Topics in Finance I

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich1,5DrittelnotenJedes Sommersemester1

Lehrveranstaltungen						
WS 21/22	2530214	Strategic Finance and Technology Change	1 SWS	Vorlesung (V)	N.N.	

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Bei einer geringen Anzahl zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung abzuhalten.

Voraussetzungen

Keine

Empfehlungen

Der Besuch der Vorlesung "Financial Management" wird dringend empfohlen.

5.212 Teilleistung: Systemdynamik und Regelungstechnik [T-ETIT-101921]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102181 - Systemdynamik und Regelungstechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	2

Lehrveranstaltungen						
WS 21/22	2303155	Systemdynamik und Regelungstechnik	2 SWS	Vorlesung (V) / 🗯	Hohmann	
WS 21/22	2303156	Tutorien zu 2303155 Systemdynamik und Regelungstechnik	SWS	Tutorium (Tu) / 🕄	Schneider	
WS 21/22	2303157	Übungen zu 2303155 Systemdynamik und Regelungstechnik	1 SWS	Übung (Ü) / 😘	Schneider	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Anmerkungen

wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten

5.213 Teilleistung: Taktisches und operatives Supply Chain Management [T-WIWI-102714]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

M-WIWI-101421 - Supply Chain Management M-WIWI-103278 - Optimierung unter Unsicherheit

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich4,5DrittelnotenJedes Sommersemester3

Lehrveranstaltungen					
SS 2022	2550486	Taktisches und operatives SCM	3 SWS	Vorlesung (V) / 🗯	Nickel
SS 2022	2550487	Übungen zu Taktisches und operatives SCM	1,5 SWS	Übung (Ü) / 🗯	Pomes, Linner

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftlichen Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Die Prüfung wird jedes Semester angeboten.

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Voraussetzungen

Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Empfehlungen

Keine

Anmerkungen

Die Lehrveranstaltung wird in jedem Sommersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

5.214 Teilleistung: Teamarbeit im Bereich Serviceorientierte Architekturen [T-INFO-104385]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	2400071	Teamarbeit im Bereich Serviceorientierte Architekturen	2 SWS	Seminar (S) / 🖥	Abeck	

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Ergebnisdokumentation sowie der Präsentation derselbigen als Studienleistung nach § 4 Abs. 3 SPO.

Voraussetzungen

Keine.

Anmerkungen

Details zu der Schlüsselqualifikation finden Sie unter: http://cm.tm.kit.edu/study.php.

5.215 Teilleistung: Teamarbeit im Bereich Web-Anwendungen [T-INFO-102068]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen						
SS 2022	2400069	Teamarbeit im Bereich Web-	2 SWS	Seminar (S) / 🖥	Abeck	
		Anwendungen				

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Ergebnisdokumentation sowie der Präsentation derselbigen als Studieleistung nach § 4 Abs. 3 SPO.

Voraussetzungen

Keine.

Anmerkungen

Details zu der Schlüsselqualifikation finden Sie unter: http://cm.tm.kit.edu/study.php.

5.216 Teilleistung: Teamarbeit und Präsentation in der Softwareentwicklung [T-INFO-102018]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101225 - Teamarbeit in der Softwareentwicklung

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	2	best./nicht best.	Jedes Semester	1

Lehrveranstaltungen					
SS 2022		Teamarbeit und Präsentation in der Software-Entwicklung (TSE)	1 SWS	Vorlesung (V) / 🗣	Snelting, Fried

Legende: ☐ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO.

Teilnehmer müssen als Team von ca. 5 Studierenden Präsentationen zu den Software-Entwicklungsphasen Pflichtenheft, Entwurf, Implementierung, Qualitätssicherung sowie eine Abschlusspräsentation von je 15 Minuten erarbeiten. Teilnehmer müssen Dokumente zur Projektplanung, insbesondere Qualitätssicherungsplan und Implementierungsplan vorlegen und umsetzen.

Voraussetzungen

Das Modul kann nur zusammen mit *Praxis der Softwareentwicklung* belegt werden.

Empfehlungen

Die Veranstaltung sollte erst belegt werden, wenn alle Scheine aus den ersten beiden Semestern erworben wurden.

Anmerkungen

Für SPO 208 gilt:

es müssen einer der beiden Module, die für die Orientierungsprüfung beastanden werden müssen auch bestanden werden.

5.217 Teilleistung: Technische Informatik [T-INFO-101970]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101180 - Technische Informatik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	12	Drittelnoten	Jedes Semester	1

Lehrverans	Lehrveranstaltungen						
WS 21/22	2411807	Tutorien zu Rechnerorganisation	SWS	Tutorium (Tu)	Bauer, Lehmann		
WS 21/22	24502	Rechnerorganisation	3 SWS	Vorlesung (V)	Henkel, Bauer, Lehmann, Karl		
WS 21/22	24505	Übungen zu Rechnerorganisation	2 SWS	Übung (Ü)	Henkel, Lehmann		
SS 2022	24007	Digitaltechnik und Entwurfsverfahren	3 SWS	Vorlesung (V) / 🗣	Tahoori		
SS 2022	24008	Übungen zu Digitaltechnik und Entwurfsverfahren	1 SWS	Übung (Ü) / 🗣	Tahoori, Lehmann		
SS 2022	2411809	Tutorien zu Digitaltechnik und Entwurfsverfahren	SWS	Tutorium (Tu) / 🖥	Lehmann		

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 Minuten) gemäß § 4 Abs. 2 Nr. 1 SPO über die Lehrveranstaltungen "Rechnerorganisation" und "Digitaltechnik und Entwurfsverfahren".

Zusatzlich werden für die Bearbeitung von Übungsblätter ein Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben werden. Der erlangte Notenbonus wird auf eine bestandene Klausur angerechnet. Die Teilnahme ist freiwillig.

Voraussetzungen

Keine.

Empfehlungen

Es wird empfohlen, das Modul nach dem Modul *Grundbegriffe der Informatik* abzulegen.

5.218 Teilleistung: Technische Informationssysteme [T-MACH-102083]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

Teilleistungsart
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungsleistung mündlich
Prüfungspunkte
A

Notenskala
Drittelnoten
Jedes Sommersemester
2

Lehrveranstaltungen					
WS 21/22	2121001	Technische Informationssysteme	3 SWS	Vorlesung / Übung (VÜ) / 🖥	Ovtcharova, Elstermann
SS 2022	2121001	Technische Informationssysteme	3 SWS	Vorlesung / Übung (VÜ) / ♀	Ovtcharova, Elstermann

Legende: █ Online, ቆ Präsenz/Online gemischt, ♣ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung 20 Min.

Voraussetzungen

Keine

5.219 Teilleistung: Telematik [T-INFO-101338]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100801 - Telematik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	24128	Telematik	3 SWS	Vorlesung (V) / 🗣	Heseding, König, Kopmann, Zitterbart

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von ca. 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Bei unvertretbar hohem Prüfungsaufwand kann die Prüfungsmodalität geändert werden. Daher wird sechs Wochen im Voraus angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO

stattfindet.

Voraussetzungen

Keine

Empfehlungen

- Inhalte der Vorlesung Einführung in Rechnernetze oder vergleichbarer Vorlesungen werden vorausgesetzt.
- Der Besuch des modulbegleitenden Basispraktikums Protokoll Engineering wird empfohlen.

5.220 Teilleistung: Theoretische Grundlagen der Informatik [T-INFO-103235]

Verantwortung: Dr. rer. nat. Torsten Ueckerdt

Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101172 - Theoretische Grundlagen der Informatik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	6	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	24005	Theoretische Grundlagen der Informatik	3/1 SWS	Vorlesung / Übung (VÜ) / 😘	Ueckerdt, Sauer, Merker

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (i.d.R. 120 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Durch die erfolgreiche Bearbeitung von Übungsaufgaben kann ein Notenbonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben. Dieser Bonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.

Anmerkungen

5.221 Teilleistung: Theoretische Philosophie 1.1 (Einführung in /Überblick über ein Teilgebiet der Theoretischen Philosophie) [T-GEISTSOZ-101176]

Verantwortung: Prof. Dr. Gregor Betz

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-104509 - Theoretische Philosophie I

Voraussetzung für: T-GEISTSOZ-109224 - Modulprüfung Theoretische Philosophie I

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Version 2

Lehrveranstaltungen					
WS 21/22	5012020	Einführung in die Theoretische Philosophie	2 SWS	Hauptseminar (HS) / ♀	Bones

Legende: █ Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme an einer Veranstaltung für "Theoretische Philosophie 1.1", d.h. im Bestehen der in der Veranstaltung geforderten Leistungen, die in Form von Hausaufgaben oder Referaten zu erbringen sind.

Voraussetzungen

keine

Empfehlungen

Die ausgesprochene Empfehlung, die Veranstaltung im Wintersemester zu besuchen, gilt nur für den durchschnittlichen Regelfall. Abhängig vom konkreten Lehrangebot kann es gute Gründe geben, von ihr abzuweichen.

5.222 Teilleistung: Theoretische Philosophie 1.2 [T-GEISTSOZ-101177]

Verantwortung: Prof. Dr. Gregor Betz

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-104509 - Theoretische Philosophie I

Voraussetzung für: T-GEISTSOZ-109224 - Modulprüfung Theoretische Philosophie I

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Version 1

Lehrveran	staltungen				
WS 21/22	5000035	KOPIE Forum für kritische Interdisziplinarität (FKI)	2 SWS	Hauptseminar (HS)	Gutmann, Nick
WS 21/22	5012009	Dilemmas: Wahrheit, Wissen, Freiheit aus Sicht der Ordinary Language Philosophy	2 SWS	Hauptseminar (HS) / 🗣	Bones
WS 21/22	5012011	Forum für kritische Interdisziplinarität (FKI)	2 SWS	Hauptseminar (HS)	Gutmann, Nick
WS 21/22	5012060	Zur Genealogie der Moral	2 SWS	Hauptseminar (HS)	Ommeln
WS 21/22	5012068	Hegel und Marx	2 SWS	Hauptseminar (HS)	Hau
SS 2022	5012003	Computational Models in Epistemology and Sociology	2 SWS	Hauptseminar (HS) / 😘	Mäs, Betz
SS 2022	5012026	Wozu Philosophie? Ein Streifzug durch die europäische Philosophiegeschichte (das 19. Jahrhundert)	2 SWS	Hauptseminar (HS)	Hau
SS 2022	5012052	Forum für Kritische Interdisziplinarität	2 SWS	Hauptseminar (HS) / •	Gutmann, Nick
SS 2022	5012059	Das Verhältnis von Ästhetik und Ethik	2 SWS	Hauptseminar (HS) / 🖥	Ommeln
SS 2022	5012065	David Humes empirische Philosophie - Grundlagen und Grundthemen	2 SWS	Hauptseminar (HS)	Ebner

Legende: █ Online, ເૐ Präsenz/Online gemischt, Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme an einem Proseminar "Theoretische Philosophie 1.2", d.h. im Bestehen der in der Veranstaltung geforderten Leistungen, die in Form von Hausaufgaben oder Referaten zu erbringen sind.

Voraussetzungen

keine

Empfehlungen

Die ausgesprochene Empfehlung, die Veranstaltung im Wintersemester zu besuchen, gilt nur für den durchschnittlichen Regelfall. Abhängig vom konkreten Lehrangebot kann es gute Gründe geben, von ihr abzuweichen.

5.223 Teilleistung: Theoretische Philosophie 1.3 [T-GEISTSOZ-101178]

Verantwortung: Prof. Dr. Gregor Betz

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften **Bestandteil von:** M-GEISTSOZ-104509 - Theoretische Philosophie I

Voraussetzung für: T-GEISTSOZ-109224 - Modulprüfung Theoretische Philosophie I

Teilleistungsart Studienleistung Leistungspunkte

Notenskala best./nicht best.

Version 1

Lehrveran	staltungen				
WS 21/22	5000035	KOPIE Forum für kritische Interdisziplinarität (FKI)	2 SWS	Hauptseminar (HS)	Gutmann, Nick
WS 21/22	5012009	Dilemmas: Wahrheit, Wissen, Freiheit aus Sicht der Ordinary Language Philosophy	2 SWS	Hauptseminar (HS) / 🗣	Bones
WS 21/22	5012011	Forum für kritische Interdisziplinarität (FKI)	2 SWS	Hauptseminar (HS)	Gutmann, Nick
WS 21/22	5012060	Zur Genealogie der Moral	2 SWS	Hauptseminar (HS)	Ommeln
WS 21/22	5012068	Hegel und Marx	2 SWS	Hauptseminar (HS)	Hau
SS 2022	5012003	Computational Models in Epistemology and Sociology	2 SWS	Hauptseminar (HS) / 😘	Mäs, Betz
SS 2022	5012026	Wozu Philosophie? Ein Streifzug durch die europäische Philosophiegeschichte (das 19. Jahrhundert)	2 SWS	Hauptseminar (HS)	Hau
SS 2022	5012052	Forum für Kritische Interdisziplinarität	2 SWS	Hauptseminar (HS) / •	Gutmann, Nick
SS 2022	5012059	Das Verhältnis von Ästhetik und Ethik	2 SWS	Hauptseminar (HS) / 🖥	Ommeln
SS 2022	5012065	David Humes empirische Philosophie - Grundlagen und Grundthemen	2 SWS	Hauptseminar (HS)	Ebner

Legende: █ Online, ቆ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahem an einer Veranstaltung "Theoretische Philosophie 1.3" (Vorlesung oder Proseminar), d.h. im Bestehen der in der Veranstaltung geforderten Leistungen, die in Form von Hausaufgaben oder Referaten zu erbringen sind.

Voraussetzungen

keine

Empfehlungen

Die ausgesprochene Empfehlung, die Veranstaltung im Sommersemester zu besuchen, gilt nur für den durchschnittlichen Regelfall. Abhängig vom konkreten Lehrangebot kann es gute Gründe geben, von ihr abzuweichen.

5.224 Teilleistung: Übungen zu Computergrafik [T-INFO-104313]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100856 - Computergrafik

Teilleistungsart
StudienleistungLeistungspunkte
0Notenskala
best./nicht best.Turnus
Jedes WintersemesterVersion
1

Lehrveranstaltungen					
WS 21/22	24083	Übungen zu Computergrafik	SWS	Vorlesung / Übung (VÜ)	Jung, Dolp

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Studienleistung nach § 4 Abs. 3 SPO.

Für das Bestehen müssen regelmäßig Programmieraufgaben abgegeben werden. Die konkreten Angaben dazu werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine.

5.225 Teilleistung: Übungsschein Mensch-Maschine-Interaktion [T-INFO-106257]

Verantwortung: Prof. Dr.-Ing. Michael Beigl **Einrichtung:** KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion
Voraussetzung für: T-INFO-101266 - Mensch-Maschine-Interaktion

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Studienleistung	0	best./nicht best.	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022	2400095	Mensch-Maschine-Interaktion	1 SWS	Übung (Ü) / 🖥	Beigl
SS 2022	24659	Mensch-Maschine-Interaktion	2 SWS	Vorlesung (V) / 🖥	Beigl

Legende: 🖥 Online, 🗯 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO (unbenoteter Übungsschein).

Voraussetzungen

Keine.

Anmerkungen

Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.

5.226 Teilleistung: Unternehmensführung und Strategisches Management [T-WIWI-102629]

Verantwortung: Prof. Dr. Hagen Lindstädt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften **Bestandteil von:** M-WIWI-101425 - Strategie und Organisation

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	3,5	Drittelnoten	Jedes Sommersemester	1

Lehrveranstaltungen					
SS 2022		Unternehmensführung und Strategisches Management	2 SWS	Vorlesung (V) / 🗣	Lindstädt

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗴 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters.

Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine

5.227 Teilleistung: Virtual Reality Praktikum [T-MACH-102149]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova **Einrichtung:** KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung anderer Art4DrittelnotenJedes Semester2

Lehrveranstaltungen					
WS 21/22	2123375	Virtual Reality Praktikum	3 SWS	Projekt (PRO) / 🗯	Ovtcharova, Mitarbeiter

Legende: █ Online, ເૐ Präsenz/Online gemischt, ♥ Präsenz, x Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet)

Voraussetzungen

Keine

Anmerkungen

Teilnehmerzahl begrenzt

5.228 Teilleistung: Volkswirtschaftslehre I: Mikroökonomie [T-WIWI-102708]

Verantwortung: Prof. Dr. Clemens Puppe

Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101398 - Einführung in die Volkswirtschaftslehre

Voraussetzung für: T-WIWI-102610 - Wohlfahrtstheorie

T-WIWI-102825 - Theory of Economic Growth (Wachstumstheorie)

T-WIWI-102850 - Einführung in die Spieltheorie

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich6DrittelnotenJedes Wintersemester1

Lehrveranstaltungen					
WS 21/22	2610012	Volkswirtschaftslehre I: Mikroökonomie	3 SWS	Vorlesung (V) / 🗯	Puppe, Kretz

Legende: 🖥 Online, 😂 Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) (nach §4(2), 1 SPO).

Die Prüfung (Hauptklausur) wird im Anschluss an die Vorlesung angeboten. Die Nachklausur folgt im gleichen Prüfungszeitraum. Zulassungsberechtigt zur Nachklausur sind i.d.R. nur Wiederholer. Näheres bei den Klausurregelungen des Instituts.

Voraussetzungen

Keine

5.229 Teilleistung: Volkswirtschaftslehre II: Makroökonomie [T-WIWI-102709]

Verantwortung: Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101398 - Einführung in die Volkswirtschaftslehre

Voraussetzung für: T-WIWI-102825 - Theory of Economic Growth (Wachstumstheorie)

TeilleistungsartLeistungspunkteNotenskalaTurnusVersionPrüfungsleistung schriftlich6DrittelnotenJedes Sommersemester1

Lehrveranstaltungen					
SS 2022	2600014	Volkswirtschaftslehre II: Makroökonomie	4 SWS	Vorlesung (V)	Wigger
SS 2022	2660015	Tutorien zu Volkswirtschaftslehre II	2 SWS	Tutorium (Tu)	Schmelzer, Setio, Herberholz

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 120-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Keine

5.230 Teilleistung: Wahrscheinlichkeitstheorie [T-MATH-102257]

Verantwortung: Prof. Dr. Nicole Bäuerle

Dr. rer. nat. Bruno Ebner Prof. Dr. Vicky Fasen-Hartmann

Prof. Dr. Daniel Hug PD Dr. Bernhard Klar Prof. Dr. Günter Last Prof. Dr. Mathias Trabs PD Dr. Steffen Winter

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101322 - Wahrscheinlichkeitstheorie

TeilleistungsartLeistungspunkteNotenskalaVersionPrüfungsleistung schriftlich6Drittelnoten1

Lehrveranstaltungen					
SS 2022	0158400	Wahrscheinlichkeitstheorie	3 SWS	Vorlesung (V)	Trabs
SS 2022	0158500	Übungen zu Wahrscheinlichkeitstheorie 0158400	1 SWS	Übung (Ü)	Trabs
SS 2022	0195840	Tutorium Wahrscheinlichkeitstheorie	2 SWS	Tutorium (Tu)	Trabs

Voraussetzungen

keine

5.231 Teilleistung: Web-Anwendungen und Serviceorientierte Architekturen (I) [T-INFO-103122]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101636 - Web-Anwendungen und Serviceorientierte Architekturen (I)

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich	4	Drittelnoten	Jedes Wintersemester	1

Lehrveranstaltungen					
WS 21/22	24153	Web-Anwendungen und Serviceorientierte Architekturen (I)	2 SWS	Vorlesung (V) / 🖥	Abeck, Schneider, Sänger, Throner

Legende: █ Online, ∰ Präsenz/Online gemischt, ♥ Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO. Die Zulassung zur Prüfung erfolgt nur bei nachgewiesener Mitarbeit an den in der Vorlesung gestellten praktischen

Voraussetzungen

Aufgaben.

Die Vorlesung kann nur in Kombination mit dem Basispraktikum "Web-Anwendungen und Serviceorientierte Architekturen (I)" (24312) und/oder dem Proseminar "Web-Anwendungen" (24782) im gleichen Semester gehört und geprüft werden.

5.232 Teilleistung: Wohlfahrtstheorie [T-WIWI-102610]

Verantwortung: Prof. Dr. Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung schriftlich	4,5	Drittelnoten	siehe Anmerkungen	3

Lehrveranstaltungen					
SS 2022	2520517	Wohlfahrtstheorie	2 SWS	Vorlesung (V) / 🖥	Puppe, Rollmann
SS 2022	2520518	Übung zur Wohlfahrtstheorie	1 SWS	Übung (Ü) / 🖥	Puppe, Rollmann

Legende: █ Online, ∰ Präsenz/Online gemischt, 🗣 Präsenz, 🗙 Abgesagt

Erfolgskontrolle(n)

Abhängig von der weiteren pandemischen Entwicklung wird die Prüfung entweder als Open-Book-Prüfung (Prüfungsleistung anderer Art nach SPO § 4 Abs. 2, Pkt. 3), oder als 60-minütige Klausur (schriftliche Prüfung nach SPO § 4 Abs. 2, Pkt. 1) angeboten.

Voraussetzungen

Die Veranstaltung Volkswirtschaftslehre I (Mikroökonomie) [2610012] muss erfolgreich abgeschlossen sein.

Empfehlungen

Keine

Anmerkungen

Die Veranstaltung findet nur jedes zweite Sommersemester statt, der nächste Durchgang ist im Sommersemester 2021 geplant.