Modulhandbuch
Informatik (Bachelor of Science (B.Sc.))
SPO 2008 und 2015
Sommersemester 2020
Stand 20.02.2020
Inhaltsverzeichnis

1. **Studienplan – Einführung** ... 9
 1.1. Studiengangs- und Qualifikationsprofil ... 9
 1.2. Modularisierung der Informatik-Studiengänge 9
 1.2.1. Versionierung von Modulen und Teilleistungen 10
 1.2.2. Leistungsstufen ... 10
 1.3. An-/Abmeldung und Wiederholung von Prüfungen 10
 1.4. Studienberatung ... 11

2. **Studienplan - Struktur des Bachelor-Studiengangs Informatik** 12
 2.1. Pflichtmodule – SPO 2015 .. 12
 2.2. Orientierungsprüfung .. 12
 2.3. Wahimodule ... 13
 2.3.1. Stamimodule ... 13
 2.3.2. Proseminar ... 14
 2.3.3. Sonstige Informatik-Wahlmodule .. 14
 2.4. Ergänzungsfachmodule .. 14
 2.5. Überfachliche Qualifikationen ... 14
 2.6. Zusatzeleistungen ... 14
 2.7. Vorzugsleistungen für das Masterstudium 15

3. **Aufbau des Studiengangs** ... 16
 3.1. Bachelorarbeit .. 16
 3.2. Theoretische Informatik ... 16
 3.3. Praktische Informatik .. 16
 3.4. Technische Informatik .. 16
 3.5. Mathematik .. 17
 3.6. Wahlibereich Informatik ... 18
 3.7. Ergänzungsfach .. 19
 3.7.1. Recht ... 19
 3.7.2. Mathematik ... 19
 3.7.3. Physik .. 19
 3.7.4. Informationsmanagement im Ingenieurwesen 20
 3.7.5. Elektro- und Informationstechnik .. 20
 3.7.6. Betriebswirtschaftslehre .. 21
 3.7.7. Volkswirtschaftslehre ... 21
 3.7.8. Operations Research ... 21
 3.8. Überfachliche Qualifikationen ... 21

4. **Module** ... 22
 4.1. Algebra - M-MATH-101315 .. 22
 4.2. Algorithmen für planare Graphen - M-MATH-101220 23
 4.3. Algorithmen I - M-MATH-100030 .. 24
 4.4. Algorithmen II - M-MATH-101173 .. 26
 4.5. Algorithmische Methoden für schwere Optimierungsprobleme - M-MATH-101237 .. 27
 4.6. Analysis 1 und 2 - M-MATH-101306 .. 28
 4.7. Analysis 3 - M-MATH-101318 ... 30
 4.8. Analysis 4 - M-MATH-103164 ... 32
 4.9. Antennen und Mehrenntennensysteme - M-MATH-100565 33
 4.10. Anwendungen des Operations Research - M-MATH-101413 34
 4.15. Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) - M-MATH-101633 .. 41
 4.16. Basispraktikum zum ICPC-Programmierwettbewerb - M-MATH-101230 .. 42
 4.17. Batteriemodellierung mit MATLAB - M-MATH-103271 43
 4.18. Bauökologie - M-MATH-101647 .. 44
 4.20. Bildgebende Verfahren in der Medizin I - M-MATH-100384 46

Informatik (Bachelor of Science (B.Sc.))
Modulhandbuch mit Stand vom 20.02.2020
Inhaltsverzeichnis

4.22. Computergrafik - M-INFO-100856 ... 48
4.23. CRM und Servicemanagement - M-WIWI-101460 49
4.24. Dosimetrie ionisierender Strahlung - M-ETIT-101847 51
4.25. eBusiness und Service Management - M-WIWI-101434 52
4.26. Echtzeitsysteme - M-INFO-100803 ... 54
4.27. eFinance - M-WIWI-101402 ... 55
4.28. Einführung in das Operations Research - M-WIWI-101418 57
4.29. Einführung in das Privatrecht - M-INFO-101190 .. 58
4.30. Einführung in die Algebra und Zahlentheorie - M-MATH-101314 59
4.31. Einführung in die Stochastik - M-MATH-101321 .. 60
4.32. Einführung in die Volkswirtschaftslehre - M-WIWI-101398 62
4.33. Elektrische Maschinen und Stromrichter - M-ETIT-102124 63
4.34. Elektroenergiesysteme - M-ETIT-102156 .. 64
4.35. Elektromagnetische Felder - M-ETIT-104428 ... 65
4.36. Elektromagnetische Wellen - M-ETIT-104515 .. 66
4.37. Elektronische Schaltungen - M-ETIT-102164 .. 67
4.38. Elektrotechnisches Grundlagenpraktikum - M-ETIT-102113 69
4.39. Elementare Geometrie - M-MATH-103152 ... 71
4.40. Empirical Finance - M-WIWI-105035 ... 72
4.41. Energiewirtschaft - M-WIWI-101464 ... 73
4.42. Erzeugung elektrischer Energie - M-ETIT-100407 75
4.43. Essentials of Finance - M-WIWI-101435 .. 76
4.44. Fertigungsmaschinen - M-ETIT-103043 .. 77
4.45. Finanzwissenschaft - M-WIWI-101403 .. 79
4.46. Flächen im CAD - M-INFO-101254 .. 80
4.47. Formale Systeme - M-INFO-100799 .. 81
4.48. Funktionalanalyse - M-MATH-101320 .. 83
4.49. Geistiges Eigentum und Datenschutz - M-INFO-101253 84
4.50. Geometrische Grundlagen der Geometrieverarbeitung - M-INFO-100756 85
4.51. Geometrische Optimierung - M-INFO-100730 .. 86
4.52. Governance, Risk & Compliance - M-INFO-101242 87
4.53. Graphentheorie - M-MATH-101336 .. 88
4.54. Grundbegriffe der Informatik - M-INFO-101170 89
4.55. Grundlagen der BWL - M-WIWI-101493 .. 90
4.56. Grundlagen der Hochfrequenztechnik - M-ETIT-102129 91
4.57. Grundlagen der Physik - M-PHYS-101339 ... 93
4.58. Grundlagen des Marketing - M-WIWI-101424 ... 94
4.59. Grundlagen und Technologie supraleitender Magnete - M-ETIT-101970 96
4.60. Höhere Mathematik - M-MATH-101305 .. 97
4.61. Hybride und elektrische Fahrzeuge - M-ETIT-100514 98
4.62. Industrielle Produktion I - M-WIWI-101437 .. 100
4.63. Informationsmanagement im Ingenieurwesen - M-MACH-102399 102
4.64. Informationstechnik I - M-ETIT-104539 ... 103
4.65. Informationstechnik II und Automatisierungstechnik - M-ETIT-104547 105
4.66. Kognitive Systeme - M-INFO-100819 ... 107
4.67. Kombinatorik - M-MATH-102950 ... 109
4.68. Kommunikation und Datenhaltung - M-INFO-101178 110
4.69. Kurven im CAD - M-INFO-101248 ... 111
4.70. Labor für angewandte Machine Learning Algorithmen - M-ETIT-104823 112
4.71. Labor Schaltungsentwurf - M-ETIT-100518 ... 114
4.72. Lego Mindstorms - Basispraktikum - M-INFO-102557 115
4.73. Lineare Algebra 1 und 2 - M-MATH-101309 .. 116
4.74. Lineare Algebra für die Fachrichtung Informatik - M-MATH-101307 118
4.75. Lineare Elektrische Netze - M-ETIT-101845 .. 120
4.76. Markovskie Ketten - M-MATH-101323 .. 121
4.77. MARS-Basispraktikum - M-INFO-101245 ... 123
4.78. Mechanik-Informatik in der Robotik - M-INFO-100757 124
4.79. Mensch-Maschine-Interaktion - M-INFO-100729 125
4.80. Methodische Grundlagen des OR - M-WIWI-101414 127
4.81. Microwave Laboratory I - M-ETIT-100425 .. 128

Informatik (Bachelor of Science (B.Sc.))
Modulhandbuch mit Stand vom 20.02.2020
4.82. Mikroprozessoren I - M-INFO-101183	129
4.83. Mobile Computing und Internet der Dinge - M-INFO-101249	130
4.84. Moderne Physik für Informatiker - M-PHYS-101340	132
4.85. Modul Bachelorarbeit - M-INFO-101721	133
4.86. Nachrichtentechnik I - M-ETIT-102103	134
4.87. Nachrichtentechnik II - M-ETIT-100440	136
4.88. Nachrichtentechnik II / Communications Engineering II - M-ETIT-105274	137
4.89. Optik und Festkörperelektronik - M-ETIT-105005	138
4.90. Optimierung unter Unsicherheit - M-WIWI-103278	139
4.91. Optoelektronic Components - M-ETIT-100509	140
4.92. Photovoltaische Systemtechnik - M-ETIT-100411	141
4.93. Physiologie und Anatomie I - M-ETIT-100390	142
4.94. Praktikum Adaptive Sensorelektronik - M-ETIT-100469	143
4.95. Praktikum Hard- und Software in leistungselektronischen Systemen - M-ETIT-103263	145
4.96. Praktische Mathematik - M-MATH-101308	146
4.97. Praktischer Entwurf Regelungstechnischer Systeme - M-ETIT-103814	147
4.98. Praxis der Software-Entwicklung - M-INFO-101176	149
4.99. Programmieren - M-INFO-101174	151
4.100. Programmierparadigmen - M-INFO-101179	153
4.101. Proseminar - M-INFO-101181	155
4.102. Proseminar Mathematik - M-MATH-101313	156
4.103. Radiation Protection - M-ETIT-100562	157
4.104. Real Estate Management - M-WIWI-101466	158
4.105. Rechnerstrukturen - M-INFO-100818	159
4.107. Robotik I - Einführung in die Robotik - M-INFO-100893	161
4.108. Schlüsselqualifikationen - M-INFO-101723	162
4.109. Seminar Batterien I - M-ETIT-105319	164
4.110. Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung - M-ETIT-100397	165
4.112. Seminar: Informatik TECO - M-INFO-105328	168
4.113. Seminarmodul Recht - M-INFO-101218	169
4.114. Seminarmodul Wirtschaftswissenschaften - M-WIWI-101826	170
4.115. Sicherheit - M-INFO-100834	171
4.116. Signale und Systeme - M-ETIT-102123	172
4.117. Softwaretechnik I - M-INFO-101175	173
4.118. Softwaretechnik II - M-INFO-100833	174
4.119. Strategie und Organisation - M-WIWI-101425	177
4.120. Supply Chain Management - M-WIWI-101421	178
4.121. Systemdynamik und Regelungstechnik - M-ETIT-102181	179
4.122. Teamarbeit in der Softwareentwicklung - M-INFO-101225	180
4.123. Technische Informatik - M-INFO-101180	181
4.124. Telematik - M-INFO-100801	183
4.125. Theoretische Grundlagen der Informatik - M-INFO-101172	185
4.126. Topics in Finance I - M-WIWI-101465	187
4.127. Verfassungs- und Verwaltungsrecht - M-INFO-101912	188
4.128. Wahrscheinlichkeitstheorie - M-MATH-101322	189
4.129. Web-Anwendungen und Serviceorientierte Architekturen (I) - M-INFO-101636	191
4.130. Wirtschaftsprivatrecht - M-INFO-101191	192
4.131. Wirtschaftstheorie - M-WIWI-101501	193
5.5. Analysis 1 - Klausur - T-MATH-106335	202
5.9. Analysis 1 Übungsschein - T-MATH-102235	203
5.10. Analysis 2 - Klausur - T-MATH-106336 ... 204
5.11. Analysis 2 Übungsschein - T-MATH-102236 .. 205
5.12. Analysis 3 - Klausur - T-MATH-102245 ... 206
5.13. Analysis 4 - Prüfung - T-MATH-106286 ... 207
5.15. Antennen und Mehrantennensysteme - T-ETIT-106491 ... 209
5.16. Auction & Mechanism Design - T-WIWI-102876 .. 210
5.17. Bachelorarbeit - T-INFO-103336 .. 211
5.18. Basispraktikum Mobile Roboter - T-INFO-101992 ... 212
5.20. Basispraktikum Technische Informatik: Hardwarenaher Systementwurf Übung - T-INFO-105983 .. 214
5.22. Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) - T-INFO-103119 ... 216
5.23. Basispraktikum zum ICPC Programmiertestbewerb - T-INFO-101991 .. 217
5.24. Basispraktikum: Arbeiten mit Datenbanksystemen - T-INFO-103552 .. 218
5.25. Batteriemodellierung mit MATLAB - T-ETIT-106507 ... 219
5.27. Baukologie II - T-WIWI-102743 ... 221
5.28. Betriebssysteme - T-INFO-101969 .. 222
5.29. Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen - T-WIWI-102819 .. 223
5.30. Betriebswirtschaftslehre: Produktionswirtschaft und Marketing - T-WIWI-102818 ... 224
5.31. BGB für Anfänger - T-INFO-103339 ... 225
5.32. Bildgebende Verfahren in der Medizin I - T-ETIT-101930 ... 226
5.33. Bildverarbeitung - T-ETIT-105566 .. 227
5.34. CAD-Praktikum NX - T-MACH-102187 ... 228
5.35. Computergrafik - T-INFO-101393 .. 229
5.36. Customer Relationship Management - T-WIWI-102595 ... 230
5.37. Datenbanksysteme - T-INFO-101497 .. 231
5.38. Datenschutz durch Technik - T-INFO-108405 .. 232
5.39. Derivate - T-WIWI-102643 .. 233
5.41. Digital Services - T-WIWI-109938 .. 235
5.42. Dosimetrie ionisierender Strahlung - T-ETIT-104505 .. 236
5.43. Echtzeitssysteme - T-INFO-101340 .. 237
5.44. Economics and Behavior - T-WIWI-102892 .. 238
5.45. eFinance: Informationssysteme für den Wertpapierhandel - T-WIWI-110797 ... 239
5.46. Eine Einführung zum Informatikstudium am KIT (eezi) - T-INFO-109862 ... 240
5.47. Einführung in Algebra und Zahlentheorie - T-MATH-102251 ... 241
5.48. Einführung in das Operations Research I und II - T-WIWI-102758 .. 242
5.49. Einführung in die Energiewirtschaft - T-WIWI-102746 ... 243
5.50. Einführung in die Finanzwissenschaft - T-WIWI-102877 .. 244
5.51. Einführung in die Spieltheorie - T-WIWI-102850 ... 245
5.52. Einführung in die Stochastik - T-MATH-102256 ... 246
5.53. Einführung in die Stochastische Optimierung - T-WIWI-106546 .. 247
5.54. Einführung in Rechnernetze - T-INFO-102015 .. 248
5.55. Elektrische Maschinen und Stromrichter - T-ETIT-101954 .. 249
5.56. Elektroenergiesysteme - T-ETIT-101923 ... 250
5.57. Elektromagnetische Felder - T-ETIT-109078 ... 251
5.58. Elektromagnetische Wellen - T-ETIT-109245 .. 252
5.59. Elektronische Schaltungen - T-ETIT-101919 .. 253
5.60. Elektrotechnisches Grundlagenpraktikum - T-ETIT-101943 .. 254
5.61. Elementare Geometrie - Prüfung - T-MATH-103464 .. 255
5.62. Empirical Finance - T-WIWI-110216 ... 256
5.63. Energiepolitik - T-WIWI-102607 ... 257
5.64. Enterprise Risk Management - T-WIWI-102608 .. 258
5.65. Erzeugung elektrischer Energie - T-ETIT-101924 .. 259
5.66. Fertigungsmesstechnik - T-ETIT-106057 ... 260
5.67. Financial Accounting for Global Firms - T-WIWI-107505 ... 261
5.68. Financial Management - T-WIWI-102605 .. 262
5.69. Finanzintermediation - T-WIWI-102623 ... 263
<table>
<thead>
<tr>
<th>Kurs Titel</th>
<th>Kurscode</th>
<th>Kursstatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachrichtentechnik II</td>
<td>T-ETIT-100745</td>
<td></td>
</tr>
<tr>
<td>Nachrichtentechnik II / Communications Engineering II</td>
<td>T-ETIT-110697</td>
<td></td>
</tr>
<tr>
<td>Nichtlineare Optimierung I</td>
<td>T-WIWI-102724</td>
<td></td>
</tr>
<tr>
<td>Nichtlineare Optimierung I und II</td>
<td>T-WIWI-103637</td>
<td></td>
</tr>
<tr>
<td>Nichtlineare Optimierung II</td>
<td>T-WIWI-102725</td>
<td></td>
</tr>
<tr>
<td>Numerische Mathematik für die Fachrichtung Informatik</td>
<td>T-MATH-102242</td>
<td></td>
</tr>
<tr>
<td>Numerische Mathematik für die Fachrichtung Informatik, Übungsschein</td>
<td>T-MATH-102243</td>
<td></td>
</tr>
<tr>
<td>Öffentliche Einnahmen</td>
<td>T-WIWI-102739</td>
<td></td>
</tr>
<tr>
<td>Öffentliches Finanzwesen</td>
<td>T-WIWI-109590</td>
<td></td>
</tr>
<tr>
<td>Öffentliches Recht I & II</td>
<td>T-INFO-110300</td>
<td></td>
</tr>
<tr>
<td>Operatives CRM</td>
<td>T-WIWI-102597</td>
<td></td>
</tr>
<tr>
<td>Optik und Festkörperelektronik</td>
<td>T-ETIT-110275</td>
<td></td>
</tr>
<tr>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>T-WIWI-106545</td>
<td></td>
</tr>
<tr>
<td>Optoelectronic Components</td>
<td>T-ETIT-101907</td>
<td></td>
</tr>
<tr>
<td>Organisationsmanagement</td>
<td>T-WIWI-102630</td>
<td></td>
</tr>
<tr>
<td>Photovoltaische Systemtechnik</td>
<td>T-ETIT-100724</td>
<td></td>
</tr>
<tr>
<td>Physik für Informatiker I und II</td>
<td>T-PHYS-102303</td>
<td></td>
</tr>
<tr>
<td>Physiologie und Anatomie I</td>
<td>T-ETIT-101932</td>
<td></td>
</tr>
<tr>
<td>Platform Economy</td>
<td>T-WIWI-109936</td>
<td></td>
</tr>
<tr>
<td>Platzhalter Überfachliche Qualifikation 2 LP - unbenotet</td>
<td>T-INFO-105805</td>
<td></td>
</tr>
<tr>
<td>Platzhalter Überfachliche Qualifikation 2 LP</td>
<td>T-INFO-105804</td>
<td></td>
</tr>
<tr>
<td>Platzhalter Überfachliche Qualifikation 3 LP</td>
<td>T-INFO-105803</td>
<td></td>
</tr>
<tr>
<td>Platzhalter Überfachliche Qualifikation 4 LP</td>
<td>T-INFO-105802</td>
<td></td>
</tr>
<tr>
<td>PLM für mechatronische Produktentwicklung</td>
<td>T-MACH-102181</td>
<td></td>
</tr>
<tr>
<td>PLM-CAD Workshop</td>
<td>T-MACH-102153</td>
<td></td>
</tr>
<tr>
<td>Praktikum Adaptive Sensorelektronik</td>
<td>T-ETIT-100758</td>
<td></td>
</tr>
<tr>
<td>Praktikum Hard- und Software in leistungselektronischen Systemen</td>
<td>T-ETIT-106498</td>
<td></td>
</tr>
<tr>
<td>Praktikum: Lego Mindstorms</td>
<td>T-INFO-107502</td>
<td></td>
</tr>
<tr>
<td>Praktischer Entwurf Regelungstechnischer Systeme</td>
<td>T-ETIT-107702</td>
<td></td>
</tr>
<tr>
<td>Praxis der Software-Entwicklung</td>
<td>T-INFO-102031</td>
<td></td>
</tr>
<tr>
<td>Praxis der Unternehmensberatung</td>
<td>T-INFO-101975</td>
<td></td>
</tr>
<tr>
<td>Praxis des Lösungsvertriebs</td>
<td>T-INFO-101977</td>
<td></td>
</tr>
<tr>
<td>Principles of Insurance Management</td>
<td>T-WIWI-102603</td>
<td></td>
</tr>
<tr>
<td>Privatrechtliche Übung</td>
<td>T-INFO-102013</td>
<td></td>
</tr>
<tr>
<td>Problemlösung, Kommunikation und Leadership</td>
<td>T-WIWI-102871</td>
<td></td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td>T-MACH-105147</td>
<td></td>
</tr>
<tr>
<td>Produkt-, Prozess- und Ressourcienintegration in der Fahrzeugentstehung</td>
<td>T-MACH-102155</td>
<td></td>
</tr>
<tr>
<td>Produktion und Nachhaltigkeit</td>
<td>T-WIWI-102820</td>
<td></td>
</tr>
<tr>
<td>Programmieren</td>
<td>T-INFO-101531</td>
<td></td>
</tr>
<tr>
<td>Programmieren Übungsschein</td>
<td>T-INFO-101967</td>
<td></td>
</tr>
<tr>
<td>Programmierparadigmen</td>
<td>T-INFO-101530</td>
<td></td>
</tr>
<tr>
<td>Projektmanagement aus der Praxis</td>
<td>T-INFO-101976</td>
<td></td>
</tr>
<tr>
<td>Projektmanagement in der Produktentwicklung</td>
<td>T-INFO-100795</td>
<td></td>
</tr>
<tr>
<td>Proseminar</td>
<td>T-INFO-101971</td>
<td></td>
</tr>
<tr>
<td>Proseminar Mathematik</td>
<td>T-MATH-103404</td>
<td></td>
</tr>
<tr>
<td>Python for Empirical Finance</td>
<td>T-WIWI-110217</td>
<td></td>
</tr>
<tr>
<td>Radiation Protection</td>
<td>T-ETIT-100825</td>
<td></td>
</tr>
<tr>
<td>Real Estate Management I</td>
<td>T-WIWI-102744</td>
<td></td>
</tr>
<tr>
<td>Real Estate Management II</td>
<td>T-WIWI-102745</td>
<td></td>
</tr>
<tr>
<td>Rechnerstrukturen</td>
<td>T-INFO-101355</td>
<td></td>
</tr>
<tr>
<td>Rechnungswesen</td>
<td>T-WIWI-102816</td>
<td></td>
</tr>
<tr>
<td>Regelkonformes Verhalten im Unternehmensbereich</td>
<td>T-INFO-101288</td>
<td></td>
</tr>
<tr>
<td>Renewable Energy-Resources, Technologies and Economics</td>
<td>T-WIWI-100806</td>
<td></td>
</tr>
<tr>
<td>Robotik I - Einführung in die Robotik</td>
<td>T-INFO-108014</td>
<td></td>
</tr>
<tr>
<td>Selbstreflexion, Innen- und Außenkommunikation</td>
<td>T-INFO-102060</td>
<td></td>
</tr>
<tr>
<td>Seminar aus Rechtswissenschaften I</td>
<td>T-INFO-101997</td>
<td></td>
</tr>
<tr>
<td>Seminar Batterien I</td>
<td>T-ETIT-110800</td>
<td></td>
</tr>
<tr>
<td>Seminar Betriebswirtschaftslehre (Bachelor)</td>
<td>T-WIWI-103486</td>
<td></td>
</tr>
<tr>
<td>Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung</td>
<td>T-ETIT-100714</td>
<td></td>
</tr>
<tr>
<td>Seminar Operations Research (Bachelor)</td>
<td>T-WIWI-103488</td>
<td></td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

5.190. Seminar Statistik (Bachelor) - T-WIWI-103489 ... 386
5.191. Seminar über ausgewählte Kapitel der Biomedizinischen Technik - T-ETIT-100710 ... 387
5.192. Seminar Volkswirtschaftslehre (Bachelor) - T-WIWI-103487 ... 388
5.193. Seminar: Informatik TECO - T-INFO-110808 .. 389
5.194. Sicherheit - T-INFO-101371 ... 390
5.195. Signale und Systeme - T-ETIT-101922 ... 391
5.196. Softwaretechnik I - T-INFO-101968 ... 392
5.197. Softwaretechnik I Übungsschein - T-INFO-101995 ... 393
5.198. Softwaretechnik II - T-INFO-101370 ... 394
5.199. Spezialveranstaltung Wirtschaftsinformatik - T-WIWI-109940 ... 395
5.200. Standortplanung und strategisches Supply Chain Management - T-WIWI-102704 ... 396
5.201. Strategic Finance and Technology Change - T-WIWI-110511 ... 397
5.203. Taktisches und operatives Supply Chain Management - T-WIWI-102714 ... 399
5.204. Teamarbeit im Bereich Serviceorientierte Architekturen - T-INFO-104385 ... 400
5.205. Teamarbeit im Bereich Web-Anwendungen - T-INFO-102068 ... 401
5.206. Teamarbeit und Präsentation in der Softwareentwicklung - T-INFO-102018 ... 402
5.207. Technische Informatik - T-INFO-101970 ... 403
5.208. Technische Informationssysteme - T-MACH-102083 ... 404
5.209. Telematik - T-INFO-101338 ... 405
5.211. Übungen zu Computergrafik - T-INFO-104313 ... 407
5.212. Übungsschein Mensch-Maschine-Interaktion - T-INFO-106257 ... 408
5.213. Unternehmensführung und Strategisches Management - T-WIWI-102629 ... 409
5.214. Vertiefungs-Seminar Governance, Risk & Compliance - T-INFO-102047 ... 410
5.215. Vertragsgestaltung - T-INFO-101316 ... 411
5.216. Virtual Reality Praktikum - T-MACH-102149 ... 412
5.217. Volkswirtschaftslehre I: Mikroökonomie - T-WIWI-102708 ... 413
5.218. Volkswirtschaftslehre II: Makroökonomie - T-WIWI-102709 ... 414
5.219. Wahrscheinlichkeits theoretion - T-MATH-102257 ... 415
5.220. Web-Anwendungen und Serviceorientierte Architekturen (I) - T-INFO-103122 ... 416
5.221. Wohlfahrts theorie - T-WIWI-102610 ... 417
5.222. Workshop Praktischer Entwurf Regelungstechnischer Systeme - T-ETIT-108117 ... 418
1 Studienplan – Einführung

Der Studienplan definiert über die abstrakten Regelungen der Prüfungsordnung hinausgehende Details des Bachelor-Studiengangs Informatik am Karlsruher Institut für Technologie (KIT). Um Studienanfängern wie auch bereits Studierenden die Studienplanung zu erleichtern, dient der Studienplan als Empfehlung, das Studium optimal zu strukturieren. So können u. a. persönliche Fähigkeiten der Studierenden in Form von Wahlpflichtfächern, Ergänzungsfächern wie auch Überfachliche Qualifikationen von Anfang an berücksichtigt werden und Pflichtveranstaltungen, abgestimmt auf deren Turnus (WS/SS), in den individuellen Studienplan von Beginn an aufgenommen werden.

1.1 Studiengangs- und Qualifikationsprofil

Der Bachelorstudiengang Informatik vermittelt die wissenschaftlichen Grundlagen der Informatik, einschließlich umfangreicher Mathematikkenntnisse. Der Studiengang bietet eine fundierte und zugleich breit angelegte Ausbildung, die die verschiedenen Teilgebiete der Informatik abdeckt (Grundlagenstudium), wobei theoretische Kenntnisse und praktische Fähigkeiten aufeinander aufbauend vermittelt werden. Hinzu kommt ein Wahlbereich, in dem aus einem vielfältigen, vertieften Lehrangebot ausgewählt werden kann und eine erste Spezialisierung in mindestens zwei Gebieten erfolgt (Wahlfach). Das Studium wird ergänzt durch Inhalte aus einem benachbarten Fachgebiet (Ergänzungsfach) sowie durch die Vermittlung sozialer Kompetenz und Teamfähigkeit (als Überfachliche Qualifikationen).

Absolventinnen und Absolventen des Bachelorstudiengangs Informatik verfügen insbesondere über die folgenden Kompetenzen:

- **Methoden der Informatik (Kernkompetenz)**

- **Kommunikation**
 - Sie können Themen der Informatik in Wort und Schrift darstellen und mit Informatikern wie Fachfremden überzeugend diskutieren.

- **Teamarbeit**
 - Sie können in Teams interdisziplinär arbeiten.

- **Gesellschaftliche Bedeutung (zivilgesellschaftliches Engagement)**
 - Sie kennen die gesellschaftliche Relevanz von Informatik und können entsprechend verantwortungsvoll handeln.

- **Fortbildung (Persönlichkeitsentwicklung)**
 - Sie können sich auf neue Technologien einstellen und ihr Wissen auf zukünftige Entwicklungen übertragen.

1.2 Modularisierung der Informatik-Studiengänge

- Theoretische Informatik
- Praktische Informatik
- Technische Informatik
- Mathematik
- Wahlbereich Informatik
- Ergänzungsfach
- Schlüsselqualifikationen

Um die Transparenz bezüglich der durch den Studierenden erbrachten Leistung zu gewährleisten, werden Studien- und Prüfungsleistungen mit Leistungspunkten (LP), den so genannten ECTS-Punkten, bewertet. Diese sind im Modulhandbuch einzelnen Teilleistungen sowie Modulen zugeordnet und weisen durch ihre Höhe einerseits auf die Gewichtung einer Teilleistung in einem Modul und andererseits auf den mit der Veranstaltung verbundenen Arbeitsaufwand hin. Dabei entspricht ein Leistungspunkt einem Aufwand von ca. 30 Arbeitsstunden für einen durchschnittlichen Studierenden. Werden durch die belegten Studien- und Prüfungsleistungen in einem Modul mehr LP als dem Modul zugeordnet sind erreicht, so
An-/Abmeldung und Wiederholung von Prüfungen

Im Abschnitt Aufbau des Studiengangs werden die einzelnen Module mit den darin zu erreichenden Leistungspunkte und die Zuordnung der Module zu den jeweiligen Fächern detailliert beschrieben. Die daraus resultierenden Möglichkeiten, Module untereinander zu kombinieren, werden somit veranschaulicht. Da die Module sowie deren innere Struktur variieren, gibt das Modulhandbuch nähere Auskunft über die Teilleistungen, Prüfungsbedingungen, Inhalte sowie die Gewichtung hinsichtlich der ECTS-Punkte in einem Modul.

1.2.1 Versionierung von Modulen und Teilleistungen

Module sind dynamische Konstrukte, in denen es regelmäßig zu Aktualisierungen und/oder Änderungen kommt. In manchen Fällen werden Module nicht mehr angeboten, manchmal ändern sich die darin angebotenen Teilleistungen und damit die verbundenen Lehrveranstaltungen und/oder Voraussetzungen/Bedingungen. Wenn auch für die Studierenden immer das Modulhandbuch des aktuellen Semesters verbindlich ist, so gilt im Änderungsfall grundsätzlich Vertrauensschutz. Ein Studierender hat einen Anspruch darauf, ein Modul in derselben Form abzuschließen, in der es begonnen hat. Der Schutz bezieht sich nur auf die Möglichkeit, die Prüfung für das Modul weiterhin ablegen zu können, nicht aber auf das Angebot der Lehrveranstaltung während des Semesters. Als Beginn gilt dabei das Semester, in dem die ersten Studien- oder Prüfungsleistungen im Modul erbracht wurden. Sollte es in diesem Zusammenhang zu Problemen mit der Online-Anmeldung zu Prüfungen kommen, so sollten die Betroffenen mit dem Informatik Studiengangsservice der KIT-Fakultät (s. Abschnitt Studienberatung) aufsuchen. Wenn ein Modul begonnen wurde, aber nicht mehr beendet werden kann, so sollten die Betroffenen die Studienberatung der Fakultät kontaktieren.

Teilleistungen werden i.d.R. nur dann versioniert, wenn sich die Erfolgskontrolle ändert.

1.2.2 Leistungsstufen

Das Bachelorstudium Informatik besteht aus drei Studienjahren mit jeweils zwei Semestern, wodurch verschiedene Leistungsstufen entstehen, die bei der Wahl des persönlichen Studienplans berücksichtigt werden müssen. Die Module der Leistungsstufe 1 ermöglichen den Einstieg in das Informatikstudium und sind somit für Studienanfänger im ersten bzw. zweiten Semester zu absolvieren. Mit Leistungsstufe 2 werden Module bezeichnet, die im zweiten Studienjahr, also im dritten und vierten Semester, relevant sind. Die Leistungsstufe 3 bezieht sich auf die vierte und nachfolgenden Semester, um die höchste Stufe der Anforderungen zu erreichen.

1.3 An-/Abmeldung und Wiederholung von Prüfungen

falls in der Modul- oder Teilleistungsbeschreibung keine weiteren Regelungen vorgesehen sind. Der Zweitwiederholungsantrag ist bei dem Informatik Studiengangservice (ISS) schriftlich einzureichen.

Zu beachten ist, dass für Prüfungen, die Bestandteil der Orientierungsprüfung sind, kein Antrag auf Zweitwiederholung gestellt werden kann!

1.4 Studienberatung

Hilfe bei Problemen mit dem Studium, Anträgen aller Art oder auch einfach bei Fragen zur Studienplanung wird von der KIT-Fakultät für Informatik durch den Informatik Studiengangservice (ISS) (beratung-informatik@informatik.kit.edu), angeboten. Der ISS ist offizieller Ansprechpartner und erteilt verbindliche Auskünfte.

Aber auch die Fachschaft der KIT-Fakultät für Informatik bietet eine qualifizierte Beratung an. Hier können beispielsweise Detailfragen zur Formulierung von Härtefallanträgen geklärt werden. Darüber hinaus können bei der Fachschaft alte Klausuren und Prüfungsprotokolle erworben werden.

2 Studienplan - Struktur des Bachelor-Studiengangs Informatik

Im Laufe des sechssemestrigen Studiums werden insgesamt 180 Leistungspunkte für den erfolgreichen Abschluss erbracht. Die Leistungspunkte werden überwiegend in den verschiedenen Modulen der einzelnen Fächer erzielt, aber auch in der am Ende des Studiums angefertigten Bachelorarbeit, die mit 15 Leistungspunkten angerechnet wird. Hier sei noch angemerkt, dass die Verteilung der zu erwerbenden Leistungspunkte gleichmäßig auf die einzelnen Semester erfolgen sollte.

Im Folgenden wird ein Überblick zum gesamten Bachelorstudium vermittelt (s. auch Tabelle 1). Einige der Module des Bachelor-Studiengangs sind Pflichtmodule, welche immer absolviert werden müssen. Andere sind Wahllmodule und können je nach individuellem Studienplan belegt werden. Es müssen im Laufe des Bachelorstudiums aber mindestens zwei Stammmodule im Umfang von je 6 LP belegt werden, die dem Wahlbereich Informatik zugeordnet werden.

Tabelle 1: Struktur des Bachelorstudiengangs Informatik.

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Fach</th>
<th>Grundlagenstudium</th>
<th>Wahlbereich</th>
<th>Ergänzungs- lücke</th>
<th>Überfachliche Qualifikationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Grundbegriffe der Informatik 6 LP</td>
<td>Höhere Mathematik I 9 LP / Analysis I 9 LP</td>
<td>25 – 32 LP</td>
<td>6 LP</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Programmieren 5 LP</td>
<td>Lineare Algebra I für Informatik 9 LP</td>
<td>15 LP</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lineare Algebra I 9 LP</td>
<td>Sonstige Schlüsselqualifikationen 4 LP</td>
<td>2 LP</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Softwaretechnik I 6 LP</td>
<td>Höhere Mathematik II 6 LP / Analysis II 9 LP</td>
<td>Teamarbeit in der Software-entwicklung</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lineare Algebra II für Informatik 5 LP / Lineare Algebra II 9 LP</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wahlbereich</td>
<td>12 LP</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Praxis der Software-entwicklung 7 LP</td>
<td>Wahrscheinlichkeitsrechnung & Statistik 4,5 LP</td>
<td>Rechenorganisation 6 LP</td>
<td>3 LP</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Betriebssysteme 6 LP</td>
<td></td>
<td>Prospektor 3 LP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Kommunikation & Datenhaltung 8 LP</td>
<td></td>
<td>2 Strommodul I & II 12 LP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Numerische Mathematik 4,5 LP</td>
<td>+</td>
<td>Sonstige Wahlmodule</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Programmierparadigmen 6 LP</td>
<td></td>
<td>Elektrotechnik / Mathematik / Physik / Recht / Maschinenbau / Wirtschaftswissenschaften</td>
<td>4 LP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programmieren 5 LP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1 Pflichtmodule – SPO 2015

Die Pflichtmodule des Studiengangs stammen aus den Fächern *Theoretische Informatik, Praktische Informatik, Technische Informatik, Mathematik* und Überfachliche Qualifikationen.

Tabelle 3 gibt einen genauen Überblick, welche Lehrveranstaltungen des Pflichtprogramms in den einzelnen Semestern studienplanmässig zu besuchen sind. Dabei ist zu beachten, dass im Fach Mathematik wahlweise das Modul *Höhere Mathematik* (15 LP) oder *Analysis I und II* (18 LP) sowie statt dem Modul *Lineare Algebra* für die Fachrichtung Informatik (14 LP) auch das Modul *Lineare Algebra 1 und 2* (16 LP) belegt werden kann.

2.2 Orientierungsprüfung

Die Orientierungsprüfung erfolgt studienbegleitend. Ab dem Wintersemester 2015 / 2016 setzt sich die Orientierungsprüfung aus den Modulprüfungen:

- Grundbegriffe der Informatik (inkl. Übungsschein),
- Programmieren (inkl. Übungsschein) und
- Lineare Algebra I oder Lineare Algebra für die Fachrichtung Informatik I (inkl. Übungsschein)

zusammen.

Für Studierende, die bereits im Sommersemester 2015 im Studiengang immatrikuliert waren, ändern sich die Bedingungen nicht.
2.3 Wahlmodule

Im Wahlbereich können beliebige Module aus dem Wahlangebot belegt werden. Insgesamt umfasst der Wahlbereich max. 32 LP (falls das Modul Analysis 1 und 2 statt Höhere Mathematik und/oder das Modul Lineare Algebra 1 und 2 statt Lineare Algebra für die Fachrichtung Informatik belegt wurde, max. 29 LP bzw. 25 LP). Dabei muss beachtet werden, dass mindestens zwei Stammmodule, wie im Abschnitt Stammmodule aufgeführt, belegt werden müssen. Außerdem muss ein Proseminar mit mindestens 3 LP absolviert werden (Es kann nur ein Proseminar belegt werden). Insgesamt können im Bachelor-Studiengang Informatik bis zu 9 LP aus Praktika, Basispraktika und Seminaren (inkl. das Proseminar) erbracht werden. Hierbei werden nur die (Pro-)Seminare und (Basis-)Praktika berücksichtigt, die an der KIT-Fakultät für Informatik (also nicht im Ergänzungsfach) erbracht werden.

2.3.1 Stammmodule

Stammmodule bestehen aus Veranstaltungen, die inhaltlich wichtige Basisthemen der Informatik abdecken, die im Kernstudium nicht als Pflichtveranstaltung eingeschlossen sind.

Es ist zu beachten, dass auch im Master-Studiengang Informatik mindestens vier Stammmodule erbracht werden müssen und dass bereits im Bachelor geprüfte Module im Master-Studiengang nicht mehr belegt werden können. Die Liste der Stammmodule ist dem Abschnitt Aufbau des Studiengangs im Fach Wahlbereich zu entnehmen.
2.3.2 Proseminar

2.3.3 Sonstige Informatik-Wahlmodule
Sonstige vertiefende Wahlmodule werden nicht unbedingt regelmäßig angeboten. Das aktuelle Angebot finden Sie im Abschnitt Aufbau des Studiengangs. Studierende können aus diesen Modulen frei wählen und sich so einen ersten Überblick über interessante Vertiefungsgebiete im späteren Masterstudium verschaffen.

2.4 Ergänzungsfachmodule
Das Ergänzungsfach im Umfang von 21 Leistungspunkten soll Kenntnisse in einem der vielen Anwendungsgebiete der Informatik vermitteln. Es ist von eminenter Bedeutung für die weitere berufliche Entwicklung, die Informatik auch außerhalb der Kerngebiete erlernt zu haben.

Folgende Ergänzungsfächer können im Bachelorstudium gewählt werden:

- Elektro- und Informationstechnik (Ansprechpartner: Prof. Heizmann)
- Informationsmanagement im Ingenieurwesen (Ansprechpartner: Prof. Ovtcharova, Dr. Schwarz)
- Mathematik (Ansprechpartner: Dr. Kühlein)
- Physik (Ansprechpartner: Dr. Haberland)
- Grundlagen des Rechts (Ansprechpartner: Prof. Dreier, Dr. Matz)
- Volkswirtschaftslehre (Ansprechpartner: Hilser)
- Betriebswirtschaftslehre (Ansprechpartner: Hilser)
- Operations Research (Ansprechpartner: Hilser)

Sollten für das gewählte Ergänzungsfach im Modulhandbuch keine Module aufgelistet sein, ist eine individuelle Zusammenstellung von Modulen möglich (s. FAQ).

2.5 Überfachliche Qualifikationen

Auf Fachebene werden Schlüsselqualifikationen als nicht benotete Leistungen im Studium eingerechnet. Leistungen werden mit oder ohne Note verbucht (so wie vom Dozent bescheinigt), der Bereich Überfachliche Qualifikationen wird aber im Studienablaufplan nur mit bestanden / nicht bestanden angewiesen. Für den Abschluss werden somit nur die Leistungspunkte (und nicht die Noten) berücksichtigt.

Teilnahmebescheinigungen können im Bereich der Schlüsselqualifikationen nicht angerechnet werden. Um die Leistungen anrechnen zu können, muss eine Erfolgskontrolle durchgeführt und deren Ergebnis bescheinigt werden.

2.6 Zusatzleistungen
Im Bachelor-Studiengang Informatik können bis zu 30 Leistungspunkte durch Zusatzleistungen erbracht werden. Diese zählen weder was den Umfang noch die Note betrifft zum Bachelor-Abschluss. Diese Leistungen können manuell im StudierendenService (SPO 2008) oder online (SPO 2019) angemeldet werden.
2.7 Vorzugsleistungen für das Masterstudium

3 Aufbau des Studiengangs

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit</td>
<td>15 LP</td>
</tr>
<tr>
<td>Theoretische Informatik</td>
<td>18 LP</td>
</tr>
<tr>
<td>Praktische Informatik</td>
<td>38 LP</td>
</tr>
<tr>
<td>Technische Informatik</td>
<td>12 LP</td>
</tr>
<tr>
<td>Mathematik</td>
<td>38-45 LP</td>
</tr>
<tr>
<td>Wahlbereich Informatik</td>
<td>25-32 LP</td>
</tr>
<tr>
<td>Ergänzungsfach</td>
<td>21 LP</td>
</tr>
<tr>
<td>Überfachliche Qualifikationen</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

3.1 Bachelorarbeit

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Bachelorarbeit</td>
<td>15 LP</td>
</tr>
</tbody>
</table>

3.2 Theoretische Informatik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundbegriffe der Informatik</td>
<td>6 LP</td>
</tr>
<tr>
<td>Algorithmen I</td>
<td>6 LP</td>
</tr>
<tr>
<td>Theoretische Grundlagen der Informatik</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

3.3 Praktische Informatik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmieren</td>
<td>5 LP</td>
</tr>
<tr>
<td>Softwaretechnik I</td>
<td>6 LP</td>
</tr>
<tr>
<td>Praxis der Software-Entwicklung</td>
<td>7 LP</td>
</tr>
<tr>
<td>Betriebssysteme</td>
<td>6 LP</td>
</tr>
<tr>
<td>Kommunikation und Datenhaltung</td>
<td>8 LP</td>
</tr>
<tr>
<td>Programmierparadigmen</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

3.4 Technische Informatik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Informatik</td>
<td>12 LP</td>
</tr>
</tbody>
</table>
3.5 Mathematik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101308 Praktische Mathematik</td>
<td>9 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Wahlpflichtmodule (mindestens 1 Bestandteil sowie zwischen 29 und 36 LP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101305 Höhere Mathematik</td>
<td>15 LP</td>
</tr>
<tr>
<td>M-MATH-101306 Analysis 1 und 2</td>
<td>18 LP</td>
</tr>
<tr>
<td>M-MATH-101309 Lineare Algebra 1 und 2</td>
<td>18 LP</td>
</tr>
<tr>
<td>M-MATH-101307 Lineare Algebra für die Fachrichtung Informatik</td>
<td>14 LP</td>
</tr>
</tbody>
</table>
3.6 Wahlbereich Informatik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101181 Proseminar</td>
<td>3 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Stammmodule (2 Bestandteile)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-100729 Mensch-Maschine-Interaktion</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100799 Formale Systeme</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100801 Telematik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100803 Echtzeitsysteme</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100818 Rechnerstrukturen</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100819 Kognitive Systeme</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100833 Softwaretechnik II</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100834 Sicherheit</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100856 Computergrafik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100893 Robotik I - Einführung in die Robotik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-101173 Algorithmen II</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Wahlmodule (mindestens 1 Bestandteil sowie zwischen 10 und 17 LP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-100729 Mensch-Maschine-Interaktion</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100730 Geometrische Optimierung</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-INFO-100756 Geometrische Grundlagen der Geometrierearbeitung</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-INFO-100757 Mechano-Informatik in der Robotik</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-INFO-100799 Formale Systeme</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100801 Telematik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100803 Echtzeitsysteme</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100818 Rechnerstrukturen</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100819 Kognitive Systeme</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100833 Softwaretechnik II</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100834 Sicherheit</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100856 Computergrafik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-100893 Robotik I - Einführung in die Robotik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-101173 Algorithmen II</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-101183 Mikroprozessoren I</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-INFO-101184 Basispraktikum Mobile Roboter</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-INFO-101219 Basispraktikum TI: Hardwarenaher Systementwurf</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-INFO-101220 Algorithmen für planare Graphen</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-INFO-101230 Basispraktikum zum ICPC-Programmierwettbewerb</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-INFO-101237 Algorithmische Methoden für schwere Optimierungsprobleme</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-INFO-101247 Basispraktikum Protocol Engineering</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-INFO-101248 Kurven im CAD</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-INFO-101249 Mobile Computing und Internet der Dinge</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-INFO-101254 Flächen im CAD</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-INFO-101633 Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I)</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-INFO-101636 Web-Anwendungen und Serviceorientierte Architekturen (I)</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-INFO-102557 Lego Mindstorms - Basispraktikum</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-INFO-101865 Basispraktikum Arbeiten mit Datenbanksystemen</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-INFO-101245 MARS-Basispraktikum</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-INFO-105328 Seminar: Informatik TECO</td>
<td>3 LP</td>
</tr>
</tbody>
</table>
3.7 Ergänzungsfach

Wahlpflichtblock: Ergänzungsfach (1 Bestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recht</td>
<td>21 LP</td>
</tr>
<tr>
<td>Mathematik</td>
<td>21 LP</td>
</tr>
<tr>
<td>Physik</td>
<td>21 LP</td>
</tr>
<tr>
<td>Informationsmanagement im Ingenieurwesen</td>
<td>21 LP</td>
</tr>
<tr>
<td>Elektro- und Informationstechnik</td>
<td>21 LP</td>
</tr>
<tr>
<td>Betriebswirtschaftslehre</td>
<td>21 LP</td>
</tr>
<tr>
<td>Volkswirtschaftslehre</td>
<td>21 LP</td>
</tr>
<tr>
<td>Operations Research</td>
<td>21 LP</td>
</tr>
</tbody>
</table>

3.7.1 Recht

Bestandteil von: Ergänzungsfach

Wahlpflichtblock: Wahlpflichtmodule (mind. 21 LP)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INF-101190 Einführung in das Privatrecht</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-INF-101191 Wirtschaftsprivatrecht</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-INF-101192 Verfassungs- und Verwaltungsrecht</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INF-101218 Seminarmodul Recht</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-INF-101242 Governance, Risk & Compliance</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-INF-101253 Geistiges Eigentum und Datenschutz</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

3.7.2 Mathematik

Bestandteil von: Ergänzungsfach

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101313 Proseminar Mathematik</td>
<td>3 LP</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtmodule (mind. 18 LP)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101314 Einführung in die Algebra und Zahlentheorie</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-101315 Algebra</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-101318 Analysis 3</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-101320 Funktionalanalysis</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-101321 Einführung in die Stochastik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MATH-101322 Wahrscheinlichkeitstheorie</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MATH-101323 Markovsche Ketten</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MATH-101336 Graphentheorie</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-103152 Elementare Geometrie</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-103164 Analysis 4</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-102950 Kombinatorik</td>
<td>9 LP</td>
</tr>
</tbody>
</table>

3.7.3 Physik

Bestandteil von: Ergänzungsfach

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101339 Grundlagen der Physik</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-PHYS-101340 Moderne Physik für Informatiker</td>
<td>9 LP</td>
</tr>
</tbody>
</table>
3.7.4 Informationsmanagement im Ingenieurwesen

Bestandteil von: Ergänzungsfach

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Wahl Informationsmanagement im Ingenieurwesen (mind. 21 LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102399</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
</tr>
</tbody>
</table>

3.7.5 Elektro- und Informationstechnik

Bestandteil von: Ergänzungsfach

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Elektrotechnik (mindestens 1 Bestandteil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-101845</td>
</tr>
<tr>
<td>M-ETIT-102164</td>
</tr>
<tr>
<td>M-ETIT-104428</td>
</tr>
<tr>
<td>M-ETIT-104515</td>
</tr>
<tr>
<td>M-ETIT-105005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Informationstechnik (mindestens 1 Bestandteil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-102103</td>
</tr>
<tr>
<td>M-ETIT-102123</td>
</tr>
<tr>
<td>M-ETIT-104539</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Wahlbereich (max. 9 LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-102124</td>
</tr>
<tr>
<td>M-ETIT-102129</td>
</tr>
<tr>
<td>M-ETIT-102156</td>
</tr>
<tr>
<td>M-ETIT-102181</td>
</tr>
<tr>
<td>M-ETIT-100383</td>
</tr>
<tr>
<td>M-ETIT-100384</td>
</tr>
<tr>
<td>M-ETIT-100390</td>
</tr>
<tr>
<td>M-ETIT-100397</td>
</tr>
<tr>
<td>M-ETIT-100407</td>
</tr>
<tr>
<td>M-ETIT-100411</td>
</tr>
<tr>
<td>M-ETIT-100425</td>
</tr>
<tr>
<td>M-ETIT-100440</td>
</tr>
<tr>
<td>M-ETIT-100469</td>
</tr>
<tr>
<td>M-ETIT-100509</td>
</tr>
<tr>
<td>M-ETIT-100514</td>
</tr>
<tr>
<td>M-ETIT-100518</td>
</tr>
<tr>
<td>M-ETIT-100562</td>
</tr>
<tr>
<td>M-ETIT-100565</td>
</tr>
<tr>
<td>M-ETIT-101847</td>
</tr>
<tr>
<td>M-ETIT-101970</td>
</tr>
<tr>
<td>M-ETIT-102113</td>
</tr>
<tr>
<td>M-ETIT-102651</td>
</tr>
<tr>
<td>M-ETIT-105319</td>
</tr>
<tr>
<td>M-ETIT-103043</td>
</tr>
<tr>
<td>M-ETIT-103263</td>
</tr>
<tr>
<td>M-ETIT-103271</td>
</tr>
<tr>
<td>M-ETIT-103814</td>
</tr>
</tbody>
</table>

Studierende müssen sich selbst erkundigen, welche notwendige oder empfohlenen Vorkenntnisse für die gewählten Module genannt werden.
3.7.6 Betriebswirtschaftslehre

Bestandteil von: Ergänzungsfach

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101402</td>
<td>eFinance</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101421</td>
<td>Supply Chain Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101424</td>
<td>Grundlagen des Marketing</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101425</td>
<td>Strategie und Organisation</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101434</td>
<td>eBusiness und Service Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101435</td>
<td>Essentials of Finance</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101436</td>
<td>Risk and Insurance Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101437</td>
<td>Industrielle Produktion I</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101460</td>
<td>CRM und Servicemanagement</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101464</td>
<td>Energiewirtschaft</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101465</td>
<td>Topics in Finance I</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101466</td>
<td>Real Estate Management</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101467</td>
<td>Bauökologie</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101493</td>
<td>Grundlagen der BWL</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-WIWI-101826</td>
<td>Seminarmodul Wirtschaftswissenschaften</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-WIWI-105035</td>
<td>Empirical Finance</td>
<td>9 LP</td>
</tr>
</tbody>
</table>

3.7.7 Volkswirtschaftslehre

Bestandteil von: Ergänzungsfach

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101398</td>
<td>Einführung in die Volkswirtschaftslehre</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-WIWI-101403</td>
<td>Finanzwissenschaft</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101501</td>
<td>Wirtschaftstheorie</td>
<td>9 LP</td>
</tr>
</tbody>
</table>

3.7.8 Operations Research

Bestandteil von: Ergänzungsfach

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-101413</td>
<td>Anwendungen des Operations Research</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101414</td>
<td>Methodische Grundlagen des OR</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-WIWI-101418</td>
<td>Einführung in das Operations Research</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-WIWI-103278</td>
<td>Optimierung unter Unsicherheit</td>
<td>9 LP</td>
</tr>
</tbody>
</table>

3.8 Überfachliche Qualifikationen

Bestandteil von: Ergänzungsfach

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-101225</td>
<td>Teamarbeit in der Softwareentwicklung</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-INFO-101723</td>
<td>Schlüsselqualifikationen</td>
<td>4 LP</td>
</tr>
</tbody>
</table>
4 Module

4.1 Modul: Algebra [M-MATH-101315]

Verantwortung: Prof. Dr. Frank Herrlich
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte: 9
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102253 Algebra</td>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 30 min.)

Qualifikationsziele

Absolventinnen und Absolventen können

- wesentliche Konzepte der Algebra nennen und erörtern,
- den Aufbau der Galoistheorie nachvollziehen und ihre Aussagen auf konkrete Fragestellungen anwenden,
- grundlegende Resultate über Bewertungsringe und ganze Ringerweiterungen nennen und zueinander in Beziehung setzen,
- und sind darauf vorbereitet, eine Abschlussarbeit im Bereich Algebra zu schreiben

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen

Inhalt

- **Körper:** algebraische Körpererweiterungen, Galoistheorie, Einheitswurzeln und Kreisteilung, Lösen von Gleichungen durch Radikale
- **Bewertungen:** Beträge, Bewertungsringe
- **Ringtheorie:** Tensorprodukt von Moduln, ganze Ringerweiterungen, Normalisierung, noethersche Ringe, Hilbertscher Basissatz

Empfehlungen

Das Modul "Einführung in Algebra und Zahlentheorie" sollte bereits belegt worden sein.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.2 Modul: Algorithmen für planare Graphen [M-INFO-101220]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101986 | Algorithmen für planare Graphen | 5 LP | Wagner |

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele

Studierende sind außerdem in der Lage die besonderen strukturellen Unterschiede zwischen allgemeinen Graphen und planaren Graphen zu erörtern. Sie können weiterhin erläutern wie sich diese speziellen Eigenschaften planarer Graphen auf die Laufzeit von Algorithmen auswirken. Insbesondere ist es ihm/ihr möglich zu erläutern warum einige Algorithmen für planaren Graphen korrekt sind und eine polynomielle Laufzeit haben, während sie für allgemeine Graphen entweder nicht das korrekte Ergebnis produzieren oder eine deutlich schlechtere Laufzeit haben. Das gilt im Besonderen für Probleme für die kein Algorithmus mit polynomieller Laufzeit für allgemeine Graphen bekannt ist, die aber auf planaren Graphen in Polynomialzeit lösbar sind. Dieses Wissen können die Teilnehmer nutzen um algorithmische Probleme für planare Graphen zu identifizieren, auf ihren algorithmischen Kern reduzieren und anschließend formal formulieren.

Voraussetzungen
Siehe Teilleistung

Inhalt
Ein planarer Graph ist ein Graph, der in der Ebene gezeichnet werden, ohne dass die Kanten sich kreuzen. Planare Graphen haben viele schöne Eigenschaften, die benutzt werden können um für zahlreiche Probleme besonders einfache, schnelle und schöne Algorithmen zu entwerfen. Oft können sogar Probleme, die auf allgemeinen Graphen (NP-)schwer sind auf planaren Graphen sehr effizient gelöst werden. In dieser Vorlesung werden einige dieser Probleme und Algorithmen zu ihrer Lösung vorgestellt.

Anmerkungen
Dieses Modul wird in unregelmäßigen Abständen angeboten.

Arbeitsaufwand
ca. 150 Stunden
4.3 Modul: Algorithmen I [M-INFO-100030]

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Theoretische Informatik

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile
T-INFO-100001 Algorithmen I 6 LP Sanders

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende

- kennt und versteht grundlegende, häufig benötigte Algorithmen, ihren Entwurf, Korrektheits- und Effizienzanalyse, Implementierung, Dokumentierung und Anwendung,
- kann mit diesem Verständnis auch neue algorithmische Fragestellungen bearbeiten,
- wendet die im Modul Grundlagen der Informatik (Bachelor Informationswirtschaft / Wirtschaftsinformatik) erworbenen Programmierkenntnisse auf nichttriviale Algorithmen an,
- wendet die in Grundbegriffe der Informatik und den Mathematikvorlesungen erworbenen mathematischen Herangehensweise an die Lösung von Problemen an. Schwerpunkte sind hier formale Korrektheitsargumente und eine mathematische Effizienzanalyse.

Voraussetzungen
Siehe Teilleistung

Inhalt
Dieses Modul soll Studierenden grundlegende Algorithmen und Datenstrukturen vermitteln.

Die Vorlesung behandelt unter anderem:

- Grundbegriffe des Algorithm Engineering
- Asymptotische Algorithmenanalyse (worst case, average case, probabilistisch, amortisiert)
- Datenstrukturen z.B. Arrays, Stapel, Warteschlangen und Verkettete Listen
- Hashtabellen
- Sortieren: vergleichsbasierte Algorithmen (z.B. quicksort, insertionsort), untere Schranken, Linearzeitalgorithmen (z.B. radixsort)
- Prioritätslisten
- Sortierte Folgen, Suchbäume und Selektion
- Graphen (Repräsentation, Breiten-/Tiefensuche, Kürzeste Wege, Minimale Spannbäume)
- Generische Optimierungsalgorithmen (Greedy, Dynamische Programmierung, systematische Suche, lokale Suche)
- Geometrische Algorithmen

Empfehlungen
Siehe Teilleistung
Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung.
6 LP entspricht ca. 180 Stunden
cia. 45 Std. Vorlesungsbesuch,
cia. 15 Std. Übungsbesuch,
cia. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter
cia. 30 Std. Prüfungsvorbereitung
4.4 Modul: Algorithmen II [M-INFO-101173]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)
Wahlbereich Informatik (Wahlmodule)

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

| T-INFO-102020 | Algorithmen II | 6 LP | Prautzsch, Sanders, Wagner |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele
Der/die Studierende besitzt einen vertieften Einblick in die theoretischen und praktischen Aspekte der Algorithmik und kann algorithmische Probleme in verschiedenen Anwendungsgebieten identifizieren und formal formulieren. Außerdem kennt er/sie weiterführende Algorithmen und Datenstrukturen aus den Bereichen Graphenalgorithmen, Algorithmische Geometrie, String-Matching,

Algebraische Algorithmen, Kombinatorische Optimierung und Algorithmen für externen Speicher. Er/Sie kann unbekannte Algorithmen eigenständig verstehen, sie den genannten Gebieten zuordnen, sie anwenden, ihre Laufzeit bestimmen, sie beurteilen sowie geeignete

Algorithmen für gegebene Anwendungen auswählen. Darüber hinaus ist der/die Studierende in der Lage bestehende Algorithmen auf verwandte Problemstellungen zu übertragen.

Voraussetzungen
Siehe Teilleistung.

Inhalt

Anmerkungen
Im Bachelor-Studiengang SPO 2008 ist das Modul Algorithmen II ein Pflichtmodul.

Arbeitsaufwand
Vorlesung mit 3 SWS + 1 SWS Übung.
6 LP entspricht ca. 180 Stunden
ca. 45 Std. Vorlesungsbesuch,
ca. 15 Std. Übungsbesuch,
ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter
ca. 30 Std. Prüfungsvorbereitung
4.5 Modul: Algorithmische Methoden für schwere Optimierungsprobleme [M-INFO-101237]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-103334 | Algorithmische Methoden für schwere Optimierungsprobleme | 5 LP | Wagner |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele
Der/die Studierende

- identifiziert algorithmische Optimierungsprobleme aus unterschiedlichen Bereichen und kann diese entsprechend formal beschreiben,
- kann sich qualifiziert und in strukturiertener Form zu verschiedenen Aspekten der Optimierung äußern,
- kann einfache Algorithmen exemplarisch ausführen und ihre Eigenschaften erklären,
- kennt methodische Ansätze für den Entwurf und die Beurteilung von Optimierungs-Algorithmen und weiß diese geeignet anzuwenden,
- kann die Berechnungskomplexität algorithmischer Probleme aus unterschiedlichen Bereichen herleiten und einschätzen,
- kann geeignete algorithmische Lösungstechniken erkennen und auf verwandte unbekannte Probleme anwenden.

Voraussetzungen
Siehe Teilleistung

Inhalt

Es gibt viele praktische Probleme, die nicht perfekt gelöst werden können oder bei denen es sehr lange dauern würde, eine optimale Lösung zu finden. Ein Beispiel dafür ist Bin-Packing, wo Objekte in Behältern ("bins") einzupacken sind, wobei man möglichst wenige Behälter benutzen will. Manchmal gibt es auch Probleme, bei denen man Entscheidungen treffen muss, ohne vollständige Kenntnis über die Zukunft oder die Gegenwart zu haben (Online-Probleme). Man möchte etwa beim Bin-Packing irgendwann auch Bins abschließen und wegschicken, während vielleicht noch neue Objekte ankommen. Für verschiedene NP-schwere Problemstellungen behandelt die Vorlesung neben Approximationsalgorithmen und Online-Verfahren auch Lösungstechniken, die der menschlichen Intuition oder natürlichen Vorgängen nachempfunden sind (Heuristiken und Metaheuristiken).

Empfehlungen
Siehe Teilleistungen

Anmerkungen

Dieses Modul wird in unregelmäßigen Abständen angeboten.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).
4.6 Modul: Analysis 1 und 2 [M-MATH-101306]

Verantwortung: Prof. Dr. Michael Plum
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik (Wahlpflichtmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungstreiber</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-106335</td>
<td>Analysis 1 - Klausur</td>
<td>9 LP Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt</td>
</tr>
<tr>
<td>T-MATH-106336</td>
<td>Analysis 2 - Klausur</td>
<td>9 LP Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt</td>
</tr>
<tr>
<td>T-MATH-102235</td>
<td>Analysis 1 Übungsschein</td>
<td>0 LP Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt</td>
</tr>
<tr>
<td>T-MATH-102236</td>
<td>Analysis 2 Übungsschein</td>
<td>0 LP Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form von zwei schriftlichen Prüfungen von jeweils 120 Minuten Dauer sowie den beiden bestandenen Studienleistungen aus den Übungen.

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Durchschnittsnote der beiden Teilprüfungen. Beide Teilprüfungen sind getrennt zu bestehen.

Voraussetzungen
Keine
Inhalt

- Vollständige Induktion, reelle und komplexe Zahlen,
- Konvergenz von Folgen, Zahlenreihen, Potenzreihen
- Elementare Funktionen
- Stetigkeit reeller Funktionen
- Differentiation reeller Funktionen, Satz von Taylor
- Integration reeller Funktionen, uneigentliches Integral
- Konvergenz von Funktionenfolgen- und reihen
- Normierte Vektorräume, topologische Grundbegriffe, Fixpunktsatz von Banach
- Mehrdimensionale Differentiation, implizit definierte Funktionen, Extrema ohne/mit Nebenbedingungen
- Kurvenintegral, Wegunabhängigkeit
- Lineare gewöhnliche Differentialgleichungen, Trennung der Variablen, Satz von Picard und Lindelöf.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 540 Stunden
Präsenzzeit: 240 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 300 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung der Vorlesungsinhalte
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.7 Modul: Analysis 3 [M-MATH-101318]

Verantwortung: Prof. Dr. Wolfgang Reichel
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte: 9
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modulprüfung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102245</td>
<td>Analysis 3 - Klausur</td>
<td>9 LP</td>
</tr>
</tbody>
</table>

Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120min).

Qualifikationsziele
Absolventinnen und Absolventen können

- das Problem des Messens von Inhalten von Mengen beurteilen
- die Konstruktion des Lebesgueschen Masses, des Lebesgueschen Integrals und des Oberflächenintegrals reproduzieren und grundlegende Eigenschaften nennen
- Volumina von Körpern und mehrdimensionale Integrale berechnen
- Integralsätze erläutern und anwenden
- Aussagen zur Konvergenz von Fourierreihen treffen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Inhalt

- Messbare Mengen, messbare Funktionen
- Lebesguesche Mass, Lebesguesches Integral
- Konvergenzsätze für Lebesgue Integrale
- Prinzip von Cavalieri, Satz von Fubini
- Transformationssatz
- Divergenzsatz (Gausscher Integralsatz)
- Satz von Stokes
- Fourierreihen

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Analysis 1 und 2
Lineare Algebra 1 und 2
Arbeitsaufwand
Gesamter Arbeitsaufwand: 270 Stunden
Präsenzzeit: 120 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Analysis 4 [M-MATH-103164]

Verantwortung: Prof. Dr. Roland Schnaubelt
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MATH-106286</th>
<th>Analysis 4 - Prüfung</th>
<th>9 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Qualifikationsziele

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Inhalt

- Modellierung mit Differentialgleichungen
- Existenztheorie
- Phasenebene, Stabilität
- Randwertprobleme, elementare partielle Differentialgleichungen
- Holomorphie
- Integralsatz und -formel von Cauchy
- Hauptsätze der Funktionentheorie
- isolierte Singularitäten, reelle Integrale

Empfehlungen

Empfehlung: Analysis 1-3, Lineare Algebra 1+2.

Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.9 Modul: Antennen und Mehrantennensysteme [M-ETIT-100565]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-106491 | Antennen und Mehrantennensysteme | 6 LP | Zwick |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Qualifikationsziele
Die Studierenden besitzen ein vertieftes Wissen zu Antennen und Antennensystemen. Hierzu gehören Funktionsweise, Berechnungsmethoden aber auch Aspekte der praktischen Umsetzung. Sie sind in der Lage, die Funktionsweise beliebiger Antennen zu verstehen sowie Antennen mit vorgegebenen Eigenschaften zu entwickeln und dimensionieren.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Das Modul "Antennen und Antennensysteme" darf nicht begonnen oder abgeschlossen sein.

Inhalt

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen: Präsenzstudienzeit Vorlesung/Übung: 30 h
Präsenzstudienzeit Rechnerübung CST/MATLAB: 30h
Selbststudienzeit inkl. Prüfungsvorbereitung: 120 h
Insgesamt 180 h = 6 LP

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Operations Research

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (zwischen 1 und 2 Bestandteilen)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modultitel</th>
<th>Leistungspunkte</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management</td>
<td>4,5 LP</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management</td>
<td>4,5 LP</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modultitel</th>
<th>Leistungspunkte</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I</td>
<td>4,5 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-106199</td>
<td>Modellieren und OR-Software: Einführung</td>
<td>4,5 LP</td>
<td>Nickel</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>4,5 LP</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach § 4(2), 1 SPO) über die gewählten Lehrveranstaltungen des Moduls, mit denen in Summe die Mindestanforderungen an Leistungspunkten erfüllt ist.

Die Erfolgskontrolle wird bei jeder Lehrveranstaltung beschrieben.

Die Gesamtnote des Moduls wird aus den mit Leistungspunkten gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/ die Studierende

- ist vertraut mit wesentlichen Konzepten und Begriffen des Supply Chain Managements,
- kennt die verschiedenen Teilgebiete des Supply Chain Managements und die zugrunde liegenden Optimierungsprobleme,
- ist mit den klassischen Standortmodellen (in der Ebene, auf Netzwerken und diskret), sowie mit den grundlegenden Methoden zur Ausliefer- und Transportplanung, Warenlagerplanung und Lagermanagement vertraut,
- ist in der Lage praktische Problemstellungen mathematisch zu modellieren und kann deren Komplexität abschätzen sowie geeignete Lösungsverfahren auswählen und anpassen.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen des OR.

Mindestens eine der Teilleistungen "Standortplanung und strategisches Supply Chain Management" sowie "Taktisches und operatives Supply Chain Management" muss absolviert werden.

Empfehlungen

Anmerkungen
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.

Arbeitsaufwand
4.11 Modul: Basispraktikum Arbeiten mit Datenbanksystemen [M-INFO-101865]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte: 4
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-INFO-103552 | Basispraktikum: Arbeiten mit Datenbanksystemen | 4 LP | Böhm |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

Voraussetzungen
Siehe Teilleistung.

Inhalt
Das Datenbankpraktikum bietet Studierenden einen Einstieg in das Arbeiten mit Datenbanksystemen, als Ergänzung zu den Inhalten der Datenbankvorlesungen. Zunächst werden den Teilnehmern die wesentlichen Bestandteile von Datenbanksystemen in ausgewählten Versuchen mit relationaler Datenbanktechnologie nähergebracht. Sie erproben die klassischen Konzepte des Datenbankentwurfs und von Anfragesprachen an praktischen Beispielen. Darauf aufbauend führen Sie die folgenden Versuche durch:

- Zugriff auf Datenbanken aus Anwendungsprogrammen heraus,
- Verwaltung großer Datenbestände interessanter Anwendungsgebiete,
- Performanceoptimierungen bei der Anfragebearbeitung.

Arbeiten im Team ist ein wichtiger Aspekt bei allen Versuchen.

Arbeitsaufwand
120 h
4.12 Modul: Basispraktikum Mobile Roboter [M-INFO-101184]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101992 | Basispraktikum Mobile Roboter | 4 LP | Asfour |

Erfolgskontrolle(n)

Siehe Teilleistung.

Qualifikationsziele

Voraussetzungen

Siehe Teilleistung.

Inhalt

Empfehlungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

Arbeitsaufwand

120h
4.13 Modul: Basispraktikum Protocol Engineering [M-INFO-101247]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102066</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Siehe Teilleistung.

Qualifikationsziele

Voraussetzungen

Siehe Teilleistung.

Inhalt

Das semesterbegleitende Projekt behandelt die Standardisierung eines Internetprotokolls. Diese gliedert sich in Entwurf, Spezifikation, Implementierung und Interoperabilitätstest.

Arbeitsaufwand

- Präsenzzeit / Treffen in Groß- und Kleingruppen: 30h
- Konzeption + Spezifikation: 20h
- Implementierung: 40h
- Präsentation: 10h
- Interoperabilitätstest + Nachbereitung: 10h
Modul: Basispraktikum TI: Hardwarenaher Systementwurf [M-INFO-101219]

Verantwortung: Prof. Dr. Wolfgang Karl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-INFO-102011</th>
<th>Basispraktikum TI: Hardwarenaher Systementwurf</th>
<th>4 LP</th>
<th>Karl</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-105983</td>
<td>Basispraktikum Technische Informatik: Hardwarenaher Systementwurf Übung</td>
<td>0 LP</td>
<td>Karl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

Lernziele:

Voraussetzungen
Siehe Teilleistung.

Inhalt

- Kennenlernen der Hardwarebeschreibungssprache VHDL
- Einführung in verschiedene generische und herstellerspezifische Entwurfswerkzeuge
- Einführung und Grundlagen programmierbarer Logikbausteine (FPGAs)
- Schaltungsentwurf und -implementation
- Selbstständiger Entwurf einer Hardwareschaltung in Teamarbeit
- Projektplanung
- Implementierungsphase in einem Team
- Vorstellung der Ergebnisse durch eine Präsentation

Empfehlungen
Siehe Teilleistung.
Arbeitsaufwand
Themen-Einführungen: 6 x 3 SWS = 18 SWS
Übungsblätter: 2 x 3 x 4 SWS = 24 SWS
Abschlussprojekt:
- Entwurf/Projektplan 8 SWS
- Implementierungsphase 8 x 8 SWS = 64 SWS
- Projektvorstellung: 1 x 10 SWS = 10 SWS
= 124 SWS = 4 ECTS
4.15 Modul: Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) [M-INFO-101633]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-103119 | Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) | 5 LP | Abbeck |

Erfolgskontrolle(n)

Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden können die kennengelernten Konzepte und Technologien durch den Einsatz von Werkzeugen in einem konkreten Projektkontext anwenden (Anwenden).
- Die Studierenden können die Einsetzbarkeit der kennengelernten Konzepte und Technologien in der Praxis einschätzen (Beurteilen).

Voraussetzungen

Siehe Teilleistung.

Inhalt

Im Praktikum wird eine individuelle Projektaufgabe gestellt, die vom Studierenden unter Nutzung der in der Vorlesung "Web-Anwendungen und Serviceorientierte Architekturen (I)" behandelten Konzepte in einem Projektteam zu lösen ist.

Arbeitsaufwand

150h
Präsenzzeit (Projektteamtreffen) 22,5 (15 x 1,5)
Nacharbeit der Projektteamtreffen 22,5 (15 x 1,5)
Entwicklungsarbeiten, praktische Experimente 45 (15 x 3)
Ausarbeitung 60 (15 x 4)
4.16 Modul: Basispraktikum zum ICPC-Programmierwettbewerb [M-INFO-101230]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101991 | Basispraktikum zum ICPC Programmierwettbewerb | 4 LP | Wagner |

Erfolgskontrolle(n)

Siehe Teilleistung.

Qualifikationsziele

Der/Die Studierende soll

- vertiefte und erweiterte Kompetenzen in den Bereichen Problemanalyse, Softwareentwicklung und Teamarbeit erwerben.
- die Fähigkeit, in einem vorgegebenen Zeitrahmen zu einer vorgegebenen Aufgabe eine Lösung selbständig erarbeiten und praktisch umsetzen zu können, erwerben.

Voraussetzungen

Siehe Teilleistung.

Inhalt

Im Praktikum werden zu allen für den Wettbewerb relevanten Themengebieten die wichtigsten theoretisch Grundlagen vermittelt und an praktischen Übungsaufgaben erprobt. Höhepunkte des Praktikums sind Local Contests, in denen sich die Praktikumsteilnehmer unter Wettbewerbsbedingungen miteinander messen.

Aus den Teilnehmern des Praktikums werden außerdem die Teams ausgewählt, die die Universität Karlsruhe beim ACM ICPC *Regionalwettbewerb der Region Süddeutschland* (SWERC) im Herbst vertreten werden.

Arbeitsaufwand

ca. 120 Stunden
4.17 Modul: Batteriemodellierung mit MATLAB [M-ETIT-103271]

Verantwortung: Dr.-Ing. Andre Weber
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-ETIT-106507 Batteriemodellierung mit MATLAB 3 LP Weber

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Qualifikationsziele
Die Studierenden sind mit den Grundlagen der Lithium-Ionen Batterietechnologie vertraut, sie sind in der Lage Batteriemodelle aufzustellen und in MATLAB zu implementieren.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
keine

Inhalt

Im Übungsteil der Lehrveranstaltung werden von den Studierenden selbstständig MATLAB-Modelle zur Simulation von Batterien entworfen, implementiert und getestet. Der praktische Teil der Lehrveranstaltung umfasst nach einer Einweisung in MATLAB (fakultativ) die Konzeptionierung verschiedener Modelle, das Aufstellen der benötigten Modellgleichungen, die Implementierung dieser in MATLAB und den Test des Modelle in Simulationsrechnungen.

Arbeitsaufwand
1. Präsenzzeit Vorlesung: 7 * 2 h = 14 h
2. Präsenzzeit Übung: 8 * 2h = 16 h
3. selbstständiges Implementieren der Modelle: 15 * 3 h = 45 h
4. Prüfungsvorbereitung und Präsens in selbiger: 15 h

Insgesamt: 90 h = 3 LP
4.18 Modul: Bauökologie [M-WIWI-101467]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

Leistungspunkte 9
Turnus Jedes Semester
Dauer 2 Semester
Sprache Deutsch
Level 3
Version 3

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte (LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102742</td>
<td>Bauökologie I</td>
<td>4,5</td>
</tr>
<tr>
<td>T-WIWI-102743</td>
<td>Bauökologie II</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- kennt die Grundlagen des nachhaltigen Planens, Bauens und Betreibens von Gebäuden mit einem Schwerpunkt im Themenbereich Bauökologie
- besitzt Kenntnisse über die bauökologischen Bewertungsmethoden sowie Hilfsmittel zur Planung und Bewertung von Gebäuden
- ist in der Lage, diese Kenntnisse zur Beurteilung der ökologischen Vorteilhaftigkeit sowie des Beitrages zu einer nachhaltigen Entwicklung von Immobilien einzusetzen.

Voraussetzungen
Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Inhalt

Zur Veranschaulichung der Lehrinhalte des Moduls werden Videos und Simulationstools eingesetzt.

Empfehlungen
Es wird eine Kombination mit dem Modul Real Estate Management empfohlen.
Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- Industrielle Produktion (Stoff- und Energieflüsse in der Ökonomie, Stoff- und Energiepolitik, Emissionen in die Umwelt)
- Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion)

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
4.19 Modul: Betriebssysteme [M-INFO-101177]

Verantwortung: Prof. Dr.-Ing. Frank Bellosa
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Praktische Informatik

Leistungspunkte
6

Turnus
Jedes Wintersemester

Dauer
1 Semester

Sprache
Deutsch

Level
3

Version
2

Pflichtbestandteile

T-INFO-101969 Betriebssysteme
6 LP Bellosa

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele

Voraussetzungen
Siehe Teilleistung

Inhalt
Studierende beschreiben Mechanismen, Verfahren und Kontrollstrukturen in folgenden Betriebssystemkomponenten:
• Prozessverwaltung
• Synchronisation
• Speicherverwaltung
• Dateisystem
• I/O Verwaltung

Empfehlungen
Siehe Teilleistung.

Anmerkungen
Die semesterbegleitenden Übungsaufgaben sind freiwillig.

Arbeitsaufwand
60 h 4 SWS * 15 Nachbearbeitung
60 h 4 h * 15 Nachbearbeitung
30 h 2 h * 15 Tutorium
30 h Klausurvorbereitung
180 h = 6 ECTS
4.20 Modul: Bildgebende Verfahren in der Medizin I [M-ETIT-100384]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile
- T-ETIT-101930 Bildgebende Verfahren in der Medizin I 3 LP Dössel

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Qualifikationsziele
Die Studierenden haben ein umfassendes Verständnis für alle Methoden der medizinischen Bildgebung mit ionisierender Strahlung. Sie kennen die physikalischen Grundlagen, die technischen Lösungen und die wesentlichen Aspekte bei der Anwendung der Bildgebung in der Medizin.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Inhalt
- Röntgen-Physik und Technik der Röntgen-Aufnahme
- Digitale Radiographie, Röntgen-Bildverstärker, Flache Röntgen-detektoren
- Theorie der bildgebenden Systeme, Modulations- Übertragungs-funktion
- und Quanten-Detektions-Effizienz
- Computer Tomographie CT
- Ionisierende Strahlung, Dosimetrie und Strahlenschutz
- SPECT und PET

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen: Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h
Selbststudium (3 h je 15 Termine) = 45 h
Vor-/Nachbereitung = 20 h
Gesamtaufwand ca. 95 Stunden = 3 LP
4.21 Modul: Bildverarbeitung [M-ETIT-102651]

Verantwortung: Prof. Dr.-Ing. Fernando Puente León
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>LP</th>
<th>Puente León</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Bildverarbeitung</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Qualifikationsziele

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Inhalt

Das Modul behandelt grundlegende und weiterführende Gebiete der Bildverarbeitung. Schwerpunkte des Moduls sind die folgenden Themen: Optische Abbildung, Farbe; Sensoren zur Bildgewinnung; Bildaufnahmeverfahren; Bildsignale; Vorverarbeitung und Bildverbesserung; Segmentierung; Texturanalyse; Detektion.

Hinweis: Der Dozent behält sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Empfehlungen

Arbeitsaufwand

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (1 h) der wöchentlichen Vorlesung sowie die Vorbereitung (40 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von ca. 80 h.
4.22 Modul: Computergrafik [M-INFO-100856]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Stammmodule)
Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrbeauftragter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101393</td>
<td>Computergrafik</td>
<td>6 LP</td>
<td>Dachsbacher</td>
</tr>
<tr>
<td>T-INFO-104313</td>
<td>Übungen zu Computergrafik</td>
<td>0 LP</td>
<td>Dachsbacher</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

Voraussetzungen
Siehe Teilleistung.

Inhalt
Diese Vorlesung vermittelt grundlegende Algorithmen der Computergrafik, Farbmodelle, Beleuchtungsmodelle, Bildsynthese-Verfahren (Ray Tracing, Rasterisierung), Transformationen und Abbildungen, Texturen und Texturierungs techniken, Grafik-Hardware und APIs (z.B. OpenGL), geometrisches Modellieren und Dreiecksnetze.

Empfehlungen
Siehe Teilleistung.

Arbeitsaufwand
Präsenzzeit = 60h
Vor-/Nachbereitung = 90h
Klausurvorbereitung = 30h
4.23 Modul: CRM und Servicemanagement [M-WIWI-101460]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

Leistungspunkte: 9
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 3
Version: 3

Wahlpflichtblock: Wahlpflichtangebot (2 Bestandteile)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102596</td>
<td>Analytisches CRM</td>
<td>4,5</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>T-WIWI-102595</td>
<td>Customer Relationship Management</td>
<td>4,5</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>T-WIWI-102597</td>
<td>Operatives CRM</td>
<td>4,5</td>
<td>Geyer-Schulz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele

Der/die Studierende

- versteht Servicemanagement als betriebswirtschaftliche Grundlage für Customer Relationship Management und kennt die sich daraus ergebenden Konsequenzen für die Unternehmensführung, Organisation und die einzelnen betrieblichen Teilbereiche,
- entwickelt und gestaltet Servicekonzepte und Servicesysteme auf konzeptueller Ebene,
- bearbeitet Fallstudien im Team unter Einhaltung von Zeitvorgaben und zieht dabei internationale Literatur aus dem Bereich heran,
- kennt die aktuellen Entwicklungen im CRM-Bereich in Wissenschaft und Praxis,
- versteht die wichtigsten wissenschaftlichen Methoden (BWL, Statistik, Informatik) des analytischen CRM und kann diese Methoden selbständig auf Standardfälle anwenden,
- gestaltet, implementiert und analysiert operative CRM-Prozesse in konkreten Anwendungsbereichen (wie Marketing Kampagnen Management, Call Center Management, ...).

Voraussetzungen

Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWLprüfbar.

Inhalt

Im Modul CRM und Servicemanagement werden die Grundlagen moderner kunden- und serviceorientierter Unternehmensführung und ihre praktische Unterstützung durch Systemarchitekturen und CRM-Softwarepakete vermittelt. Customer Relationship Management (CRM) als Unternehmensstrategie erfordert Servicemanagement und dessen konsequente Umsetzung in allen Unternehmensbereichen.

Im operativen CRM wird die Gestaltung kundenorientierter IT-gestützter Geschäftsprozesse auf der Basis der Geschäftsprozessmodellierung an konkreten Anwendungsszenarien erläutert (z.B. Kampagnenmanagement, Call Center Management, Sales Force Management, Field Services, ...).

Im analytischen CRM wird Wissen über Kunden auf aggregierter Ebene für betriebliche Entscheidungen (z.B. Sortimentsplanung, Kundenloyalität, Kundenwert, ...) und zur Verbesse rung von Services nutzbar gemacht. Voraussetzung dafür ist die enge Integration der operativen Systeme mit einem Datawarehouse, die Entwicklung eines kundenorientierten und flexiblen Reportings, sowie die Anwendung statistischer Analysemethoden (z.B. Clustering, Regression, stochastische Modelle, ...).

Anmerkungen

Die Lehrveranstaltung Customer Relationship Management [2540508] wird auf Englisch gehalten.
Arbeitsaufwand
4.24 Modul: Dosimetrie ionisierender Strahlung [M-ETIT-101847]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-104505 | Dosimetrie ionisierender Strahlung | 3 LP | Dössel |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten).

Qualifikationsziele
Die Studierenden können Strahlenexpositionen durch die verschiedenen Dosisgrößen beschreiben und charakterisieren und dabei die Dosisbegriffe im Strahlenschutz richtig anwenden. Sie können für ein gegebenes Szenario die adäquaten Methoden und Techniken der Dosimetrie ionisierender Strahlung auswählen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
keine

Inhalt
Dosimetrie ionisierender Strahlung
Die Vorlesung definiert die verschiedenen Dosisbegriffe zur Charakterisierung von Strahlenexpositionen und das zu Grunde liegende dosimetrische System. Sie beschreibt die Methoden und Techniken der Dosimetrie für ionisierende Strahlung für verschiedene Anwendungen. Die behandelten Themen sind:
- Ionisierende Strahlung und Wechselwirkungen mit Materie, Biologische Strahlenwirkungen
- Charakterisierung von Strahlenfeldern
- Dosisbegriffe und Ihre Anwendungen
- Methoden und Techniken für die Dosimetrie bei äußerer Exposition (externe Dosimetrie)
- Methoden und Techniken für die Dosimetrie bei innerer Exposition (interne Dosimetrie)
- Anwendungen der Dosimetrie in der Medizin
- Dosimetrische Labore im KIT

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:
- Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h
- Selbststudium (3 h je 15 Termine) = 45 h
- Vor-/Nachbereitung = 20 h
- Gesamtaufwand ca. 95 Stunden = 3 LP
4.25 Modul: eBusiness und Service Management [M-WIWI-101434]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

Wahlpflichtblock: Wahlpflichtangebot (9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109938</td>
<td>Digital Services</td>
<td>Jedes Semester</td>
<td>4,5 LP</td>
<td>Satzger, Weinhardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Informationssysteme für den Wertpapierhandel</td>
<td>Jedes Semester</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109816</td>
<td>Foundations of Interactive Systems</td>
<td>1 Semester</td>
<td>4,5 LP</td>
<td>Mädche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109936</td>
<td>Platform Economy</td>
<td></td>
<td>4,5 LP</td>
<td>Dorner, Weinhardt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-109940</td>
<td>Spezialveranstaltung Wirtschaftsinformatik</td>
<td></td>
<td>4,5 LP</td>
<td>Weinhardt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele
Die Studierenden
- verstehen die strategischen und operativen Gestaltungen von Informationen und Informationsprodukten,
- analysieren die Rolle von Informationen auf Märkten,
- evaluieren Fallbeispiele bzgl. Informationsprodukte,
- erarbeiten Lösungen in Teams.

Voraussetzungen
Keine

Inhalt

In "eServices" wird die zunehmende Entwicklung von elektronischen Dienstleistungen im Gegensatz zu den klassischen Dienstleistungen hervorgehoben. Die Informations- und Kommunikationstechnologie ermöglicht die Bereitstellung von Diensten, die durch Interaktivität und Individualität gekennzeichnet sind. In dieser Veranstaltung werden die Grundlagen für die Entwicklung und das Management IT-basierter Dienstleistungen gelegt.

Die Veranstaltung "Spezialveranstaltung Wirtschaftsinformatik" festigt die theoretischen Grundlagen und ermöglicht weitergehende praktische Erfahrungen im Bereich der Wirtschaftsinformatik. Seminarpraktika des IM können als Spezialveranstaltung Wirtschaftsinformatik belegt werden.
Anmerkungen

Arbeitsaufwand
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Prof. Dr.-Ing. Björn Hein
Prof. Dr.-Ing. Thomas Längle

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)
Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
Turnus
Dauer
Sprache
Level
Version

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101340 | Echtzeitsysteme | 6 LP | Asfour, Längle |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

- Der Student versteht grundlegende Verfahren, Modellierungen und Architekturen von Echtzeitsystemen am Beispiel der Automatisierungstechnik mit Messen, Steuern und Regeln und kann sie anwenden.
- Er kann einfache zeitkontinuierliche und zeitdiskrete PID-Regelungen modellieren und entwerfen sowie deren Übertragungsfunktion und deren Stabilität berechnen.
- Er versteht grundlegende Rechnerarchitekturen und Hardwaresysteme für Echtzeit- und Automatisierungssysteme.
- Er kann Rechnerarchitekturen für Echtzeitsysteme mit Mikrorechnersystemen und mit Analog- und Digitalschnittstellen zum Prozess entwerfen und analysieren.
- Der Student versteht die grundlegenden Problemstellungen wie Rechtzeitig, Gleichzeitig und Verfügbarkeit in der Echtzeitprogrammierung und Echtzeitkommunikation und kann die Verfahren synchrone, asynchrone Programmierung und zykliche zeitgesteuerte und unterbrechungsgesteuerte Steuerungsverfahren anwenden.
- Der Student versteht die grundlegenden Modelle und Methoden von Echtzeitbetriebssystemen wie Schichtenmodelle, Taskmodelle, Taskzustände, Zeitparameter, Echtzeit-scheduling, Synchronisation und Verklemmungen, Taskkommunikation, Modelle der Speicher- und Ausgabeverwaltung sowie die Klassifizierung und Beispiele von Echtzeitsystemen.
- Er kann kleine Echtzeitsoftware systeme mit mehreren synchronen und asynchronen Tasks verklemmungsfrei entwerfen.
- Er versteht die Grundkonzepte der Echtzeitmiddleware, sowie der 3 Echtzeitsysteme: speicherprogrammierbare Steuerung, Werkzeugmaschinensteuerung, Robotertechnologie.

Voraussetzungen
Siehe Teilleistung.

Inhalt

Arbeitsaufwand
(4 SWS + 1,5 h x 4 SWS) x 15 + 15 h Klausurvorbereitung = 165/30 = 5,5 LP ~ 6 LP.
4.27 Modul: eFinance [M-WIWI-101402]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

Leistungspunkte: 9
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch/Englisch
Level: 3
Version: 8

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Umfang</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110797</td>
<td>eFinance: Informationssysteme für den Wertpapierhandel</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (mind. 4,5 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Umfang</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate</td>
<td>4,5 LP</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung</td>
<td>3 LP</td>
<td>Uhrig-Homburg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Die Studierenden

- verstehen und analysieren die Wertschöpfungskette im Wertpapierhandel,
- bestimmen und gestalten Methoden und Systeme situationsangemessen und wenden diese zur Problemlösung im Bereich Finance an,
- beurteilen und kritisieren die Investitionsentscheidungen von Händlern,
- wenden theoretische Methoden aus der Ökonometrie an,
- erarbeiten Lösungen in Teams.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.
Die Lehrveranstaltung eFinance: Informationswirtschaft für den Wertpapierhandel [2540454] muss im Modul erfolgreich geprüft werden.

Inhalt

Anmerkungen

Das aktuelle Angebot an Seminaren passend zu diesem Modul ist auf der folgenden Webseite aufgelistet: http://www.iism.kit.edu/im/lehre
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden, für Lehrveranstaltungen mit 3 Leistungspunkten ca. 90 Stunden und für Lehrveranstaltungen mit 1,5 Leistungspunkten 45 Stunden.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.28 Modul: Einführung in das Operations Research [M-WIWI-101418]

Verantwortung: Prof. Dr. Stefan Nickel
 Prof. Dr. Steffen Rebennack
 Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Operations Research

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-WIWI-102758 | Einführung in das Operations Research I und II | 12 LP | Nickel, Rebennack, Stein |

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtklausur (120 min.) (nach §4(2), 1 SPO).
Die Klausur wird in jedem Semester (in der Regel im März und Juli) angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Qualifikationsziele
Der/die Studierende

- benennt und beschreibt die Grundbegriffe der entscheidenden Teilbereiche im Fach Operations Research (Lineare Optimierung, Graphen und Netzwerke, Ganzzahlige und kombinatorische Optimierung, Nichtlineare Optimierung, Dynamische Optimierung und stochastische Modelle),
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
- modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um einfache Optimierungsprobleme selbständig zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen.

Zusammensetzung der Modulnote
Die Modulnote entspricht der Klausurnote.

Voraussetzungen
Keine

Inhalt
Nach einer einführenden Thematisierung der Grundbegriffe des Operations Research werden insbesondere die lineare Optimierung, die Graphentheorie und Netzplantechnik, die ganzzahlige und kombinatorische Optimierung, die nichtlineare Optimierung, die deterministische und stochastische dynamische Optimierung, die Warteschlangentheorie sowie Heuristiken behandelt.
Dieses Modul bildet die Basis einer Reihe weiterführender Veranstaltungen zu theoretischen und praktischen Aspekten des Operations Research.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte).
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.29 Modul: Einführung in das Privatrecht [M-INFO-101190]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Recht

Leistungspunkte 5
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 3

Pflichtbestandteile
T-INFO-103339 BGB für Anfänger 5 LP Dreier

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele
Der/die Studierende

- kennt die Grundstruktur des deutschen Rechtssystems und versteht die Unterschiede von Privatrecht, öffentlichem Recht und Strafrecht.
- Kenntnisse über die Grundprinzipien (Privatautonomie, Abstraktions- und Trennungsprinzip) und Grundbegriffe des Bürgerlichen Rechts (Rechtssubjekte, Rechtsobjekte, Willenserklärung, Vertragsschluss, allgemeine Geschäftsbedingungen, Verbraucherschutz, Leistungsstörungen usw.).
- hat ein Grundverständnis für rechtliche Problemlagen und juristische Lösungsstrategien entwickelt.
- erkennt rechtlich relevante Sachverhalte und kann anhand der Gesetzestexte einfach gelagerte Fälle lösen.
- hat einen Eindruck davon, wie Juristen ihre Lösungen im Gutachtenstil darstellen und macht sich zunehmend mit der juristischen Arbeitsweise und Darstellungsform vertraut.

Voraussetzungen
Siehe Teilleistung.

Inhalt

Arbeitsaufwand
Der Arbeitsaufwand für dieses Modul beträgt ca. 150 Std., davon 45 Std. Präsenz, 50 Std. Vor und Nachbereitungszeit, 55 Std. Prüfungsvorbereitungs- und Prüfungszeit.
4.30 Modul: Einführung in die Algebra und Zahlentheorie [M-MATH-101314]

Verantwortung: Dr. Stefan Kühnlein
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-MATH-102251 Einführung in Algebra und Zahlentheorie 9 LP Herrlich, Kühnlein

Qualifikationsziele
Absolventinnen und Absolventen
- beherrschen die grundlegenden algebraischen und zahlentheoretischen Strukturen
- verstehen die Denkweise der modernen Algebra,
- sind in der Lage, an weiterführenden Vorlesungen und Seminaren teilzunehmen.

Voraussetzungen

Inhalt
- Zahlen: größter gemeinsamer Teiler, Euklidscher Algorithmus, Primzahlen, Fundamentalsatz der Arithmetik
- Gruppen: Satz von Lagrange, Normalteiler und Faktorgruppen, Freie Gruppen, Sylowsätze
- Ringe: Ideale und modulares Rechnen, Chinesischer Restsatz, quadratisches Reziprozitätsgesetz, Endliche Körper
4.31 Modul: Einführung in die Stochastik [M-MATH-101321]

Verantwortung: Prof. Dr. Günter Last
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MATH-102256</th>
<th>Einführung in die Stochastik</th>
<th>6 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bäuerle, Fasen-Hartmann, Henze, Hug, Klar, Last</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (120 Minuten). Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Qualifikationsziele
Die Studierenden
- können einfache stochastische Vorgänge modellieren,
- können Laplace-Wahrscheinlichkeiten mit Hilfe der kombinatorischen Grundformeln berechnen,
- wissen, in welchen Zusammenhängen (Urnenmodelle, Bernoulli-Kette) die wichtigsten diskreten Verteilungen auftreten,
- beherrschen die grundlegenden Rechenregeln im Umgang mit Wahrscheinlichkeiten,
- kennen die Begriffe Erwartungswert, Varianz, Kovarianz, Korrelation und Quantil und wissen mit ihnen umzugehen,
- können das schwache Gesetz großer Zahlen sowie den Zentralen Grenzwertsatz von de Moivre-Laplace formulieren und anwenden,
- sind mit den Begriffen Parameterschätzung und statistischer Test am Beispiel der Binomialverteilung vertraut,
- können mit den Begriffen Verteilungsfunktion und Dichte umgehen,
- kennen die stetige Gleichverteilung, die Exponentialverteilung und die ein- und mehrdimensionale Normalverteilung

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Das Modul Proseminar Mathematik muss geprüft werden.

Inhalt
Deskriptive Statistik, Diskrete Wahrscheinlichkeitsräume, Kombinatorik, bedingte Wahrscheinlichkeiten, stochastische Unabhängigkeit, Zufallsvariablen und ihre Verteilungen, Kenngrößen von Verteilungen, bedingte Erwartungswerte und bedingte Verteilungen, schwaches Gesetz großer Zahlen, Zentrale Grenzwertsätze, statistische Verfahren im Zusammenhang mit der Binomialverteilung, allgemeine Wahrscheinlichkeitsräume, Rechnen mit Verteilungsdichten, Quantile, multivariate Normalverteilung

Empfehlungen
Die Inhalte der Module Analysis sowie Lineare Algebra werden benötigt.
Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 90 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.32 Modul: Einführung in die Volkswirtschaftslehre [M-WIWI-101398]

Verantwortung: Prof. Dr. Clemens Puppe

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Volkswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul / Lehrveranstaltung</th>
<th>Kurzbeschreibung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102708</td>
<td>Volkswirtschaftslehre I: Mikroökonomie</td>
<td>6 LP</td>
<td>Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102709</td>
<td>Volkswirtschaftslehre II: Makroökonomie</td>
<td>6 LP</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele

Der/die Studierende

- kennt und versteht die grundsätzlichen volkswirtschaftlichen Fragestellungen,
- kann die aktuellen wirtschaftspolitischen Probleme der globalisierten Welt benennen,
- ist in der Lage, elementare Lösungsstrategien zu entwickeln.

Dabei ist der Fokus der beiden Lehrveranstaltungen des Moduls unterschiedlich. Während in der Vorlesung VWL I die ökonomischen Probleme hauptsächlich als Entscheidungsprobleme aufgefasst und gelöst werden, soll in VWL II das Verständnis des Studenten für die Dynamik wirtschaftlicher Prozesse gefördert werden.

Zusammensetzung der Modulnote

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen

Keine

Inhalt

Anmerkungen

Arbeitsaufwand

Gesamtaufwand bei 10 Leistungspunkten: ca. 300 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
4.33 Modul: Elektrische Maschinen und Stromrichter [M-ETIT-102124]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-ETIT-101954</th>
<th>Elektrische Maschinen und Stromrichter</th>
<th>6 LP</th>
<th>Becker</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Qualifikationsziele
Die Studierenden kennen die wesentlichen elektrischen Maschinen und Stromrichter.
Sie sind in der Lage, deren Verhalten durch Kennlinien und einfache Modelle zu beschreiben.
Sie analysieren die Netzrückwirkung und die Auswirkung von Stromrichtern auf die elektrische Maschine mit Hilfe der Beschreibung durch Fourierreihen.
Sie können die Bestandteile von Energieübertragungs- und Antriebssystemen erkennen und deren Verhalten durch Kopplung der Modelle von Stromrichter und Maschine berechnen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt
Grundlagenvorlesung der Antriebstechnik und Leistungselektronik. Es werden zunächst Wirkungsweise und Betriebsverhalten der wichtigsten elektrischen Maschinen erläutert.
Anschließend werden die Funktion und das Verhalten der wichtigsten Stromrichterschaltungen beschrieben.
Wirkungsweise und Einsatzgebiete von elektrischen Maschinen und leistungselektronischen Schaltungen werden an Beispielen vertieft.

Arbeitsaufwand
14x V und 14x U à 1,5 h: = 35 h
14x Nachbereitung V à 1 h = 14 h
13x Vorbereitung zu U à 2 h = 26 h
Prüfungsvorbereitung: = 80 h
Prüfungszeit = 2 h
Insgesamt ca. 157 h
(entspricht 6 Leistungspunkten)
4.34 Modul: Elektroenergiesysteme [M-ETIT-102156]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte: 5
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile
T-ETIT-101923 Elektroenergiesysteme 5 LP Leibfried

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung. Die Modulnote ist die Note der schriftlichen Prüfung.

Qualifikationsziele
Die Studierenden sind in der Lage elektrische Schaltungen (passive oder mit gesteuerten Quellen) im Zeit- und Frequenzbereich zu berechnen. Sie kennen ferner die wichtigsten Netzbetriebsmittel, ihre physikalische Wirkungsweise und ihre elektrische Ersatzschaltung.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Inhalt
Die Vorlesung behandelt im ersten Teil die Berechnung von Ausgleichsvorgängen in linearen elektrischen Netzwerken durch Differentialgleichungen und mit Hilfe der Laplace-Transformation. Im zweiten Teil der Vorlesung werden die elektrischen Netzbetriebsmittel behandelt.

Arbeitsaufwand
Präsenzstudienzeit Vorlesung: 30 h
Präsenzstudienzeit Übung: 15 h
Selbststudienzeit: 90 h
Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet
Insgesamt 135 h = 5 LP
4.35 Modul: Elektromagnetische Felder [M-ETIT-104428]

Verantwortung: Prof. Dr. Martin Doppelbauer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Elektrotechnik)

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile
T-ETIT-109078 Elektromagnetische Felder 6 LP Doppelbauer

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Qualifikationsziele

Voraussetzungen
keine

Inhalt
Diese Vorlesung ist eine Einführung in die elektromagnetische Feldtheorie auf Basis der Maxwell-Gleichungen. Behandelt werden elektrostatische Felder, elektrische Strömungsfelder, magnetische Felder und zeitlich langsam veränderliche Felder:

- Mathematische Grundlagen der Feldtheorie
- Grundlagen elektromagnetischer Felder
- Elektrostatische Felder
- Elektrische Strömungsfelder
- Magnetische Felder
- Quasistationäre (zeitlich langsam veränderliche) Felder

Begleitend zur Vorlesung werden Übungsaufgaben zum Vorlesungsstoff gestellt. Diese werden in einer großen Saalübung besprochen und die zugehörigen Lösungen detailliert vorgestellt.
Zusätzlich werden Tutorien in Kleingruppen angeboten.
Die Unterlagen zur Lehrveranstaltung (Skript und Formelsammlung) finden sich online auf der Webseite des Instituts. Das erforderliche Passwort wird in der ersten Vorlesungsstunde bekannt gegeben.

Empfehlungen
Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden vorausgesetzt.

Arbeitsaufwand
Für das gesamte Modul werden 6 Credit Points (ECTS) vergeben, die sich folgendermaßen aufteilen:
- Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h
- Präsenzzeit in Übungen (1 h je 15 Termine) = 15 h
- Präsenzzeit in Tutorien = 15 Wochen je 2 h = 30 h
- Vor-/Nachbereitung des Stoffes: 15 Wochen je 3 h = 45 h
- Klausurvorbereitung und Präsenz in der Klausur: 1,5 Wochen je 40 h = 60 h
Gesamtaufwand ca. 180 Stunden = 6 ECTS.
4.36 Modul: Elektromagnetische Wellen [M-ETIT-104515]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Elektrotechnik)

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

T-ETIT-109245

Elektromagnetische Wellen 6 LP Randel

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Qualifikationsziele

Die Studierenden sind in der Lage, Berechnungen elektromagnetischen Wellenphänomenen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Inhalt

Diese Vorlesung ist eine Einführung in die Theorie elektromagnetischer Wellen auf Basis der Maxwell-Gleichungen. Die Vorlesung basiert auf den Inhalten der Vorlesung elektromagnetische Felder. Behandelt werden die folgenden Themen:

- Verschiebungsstromdichte
- Die Wellengleichung
- Ebene Wellen im nichtleitenden Medium
- Reflexion und Brechung von ebenen Wellen
- Reflexion an einer Leiteroberfläche; der Skineffekt
- Harmonische Wellen
- Linear und zirkular polarisierte Wellen
- Lösungsmethoden zu Potentialproblemen
- Separation der skalaren Wellengleichung
- Wellenleiter (Hohlleiter, Glasfaser)
- Der Hertzsche Dipol

Empfehlungen

Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden vorausgesetzt.

Arbeitsaufwand

Für das gesamte Modul werden 6 Credit Points (ECTS) vergeben, die sich folgendermaßen aufteilen:

- Präsenzzeit in Vorlesungen (1,5 h je 13 Termine) und Übungen (1,5 h je 13 Termine) = 39 h
- Präsenzzeit in Tutorien = 13 Wochen je 2 h = 26 h
- Vor-/Nachbereitung des Stoffes: 13 Wochen je 3 h = 39 h
- Klausurvorbereitung und Präsenz in der Klausur: 2 Wochen je 40 h = 80 h

Gesamtaufwand ca. 180 Stunden = 6 ECTS.
4.37 Modul: Elektronische Schaltungen [M-ETIT-102164]

Verantwortung: Prof. Dr. Michael Siegel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Elektrotechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-101919 | Elektronische Schaltungen | 6 LP | Siegel |

Erfolgskontrolle(n)

Die Erfolgskontrolle findet im Rahmen einer schriftlichen Gesamtprüfung von 2 Stunden statt. Die Modulnote setzt sich zusammen aus der Note der schriftlichen Prüfung (90 %) und der Lösung von Tutoriumsaufgaben (10 %).

Qualifikationsziele

Zusammensetzung der Modulnote

Die Modulnote setzt sich zusammen aus der Note der schriftlichen Prüfung (90 %) und der Lösung von Tutoriumsaufgaben (10 %).

Voraussetzungen

Keine
Inhalt
Grundlagenvorlesung über passive und aktive elektronische Bauelemente und Schaltungen für analoge und digitale Anwendungen. Schwerpunkte sind der Aufbau und die schaltungstechnische Realisierung analoger Verstärkerschaltungen mit Bipolar- und Feldeffekttransistoren, der schaltungstechnische Aufbau von einfachen Logikelementen für komplexe logische Schaltkreise. Zudem werden die Grundlagen der Analog/Digital und Digital/Analog-Wandlung vermittelt. Im Einzelnen werden die nachfolgenden Themen behandelt:

- Einleitung (Bezeichnungen, Begriffe)
- Passive Bauelemente (R, C, L)
- Halbleiterbauelemente (Dioden, Transistoren)
- Dioden
- Bipolare Transistoren
- Feldeffekttransistoren (JFET, MOSFET, CMOS), Eigenschaften und Anwendungen
- Verstärkerschaltungen mit Transistoren
- Eigenschaften von Operationsverstärkern
- Anwendungsbeispiele von Operationsverstärkern
- Kippschaltungen
- Schaltkreisfamilien (bipolar, MOS)
- Sequentielle Logik (Flipflops, Zähler, Schieberegister)
- Codewandler und digitale Auswahlschaltungen

Empfehlungen
Der erfolgreiche Abschluss von LV „Lineare elektrische Netze“ ist erforderlich, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.

Anmerkungen
Die Modulnote setzt sich zusammen aus der Note der schriftlichen Prüfung (90 %) und der Lösung von Tutoriumsaufgaben (10 %).

Arbeitsaufwand
Der Arbeitsaufwand in Stunden ist nachfolgend aufgeschlüsselt:
1. Präsenzzeit in Vorlesungen im Sommersemester 18 h
2. Vor-/Nachbereitung derselben 12 h
3. Präsenzzeit in Saalübungen im Sommersemester 14 h
4. Vor-/Nachbereitung derselben 27 h
5. Präsenzzeit in Kleinstgruppenübungen im Sommersemester 9 h
6. Vor-/Nachbereitung derselben 12 h
7. Klausurvorbereitung und Präsenz in selbiger 88 h
4.38 Modul: Elektrotechnisches Grundlagenpraktikum [M-ETIT-102113]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr.-Ing. Armin Teltschik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)</td>
</tr>
</tbody>
</table>

Leistungspunkte
6 LP

Turnus
Jedes Sommersemester

Dauer
1 Semester

Sprache
Deutsch

Level
3

Version
1

Pflichtbestandteile

| T-ETIT-101943 | Elektrotechnisches Grundlagenpraktikum | 6 LP | Teltschik, Trommer |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines mündlichen Abschlusskolloquiums von 20min Dauer sowie während des Praktikums durch Überprüfung der absolvierten Versuchs-Aufgaben.

Für die Teilnahme am Abschlusskolloquium müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschlusskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Die Veranstaltung ist nicht benotet.

Qualifikationsziele

Zusammensetzung der Modulnote

Die Veranstaltung ist nicht benotet.

Voraussetzungen

Keine

Inhalt

Es werden Versuche aus folgenden Bereichen durchgeführt:

- Oszilloskopmesstechnik,
- Operationsverstärker: Grundschaltungen, Rechenschaltungen, Fourier-/ analyse & synthese
- Messtechnik mit LabVIEW
- Schaltungssimulation mit SPICE
- Kleinsignalverhalten bipolarer Transistoren
- Wechselspannung, Kleintransformatoren, Gleichrichter, Linearregler
- Digitaltechnik, Automatenentwurf, Detektion von Laufzeitfehlern
- Gleichstromsteller

Empfehlungen

Die LV „Digitaltechnik“ (23615) und „Elektronische Schaltungen“ (23655) müssen zuvor gehört worden sein bzw. anderweitig die Kenntnisse zum Inhalt der o.g. LV müssen erworben worden sein.

Anmerkungen

Für die Teilnahme am Abschlusskolloquium müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschlusskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.
Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

1. Präsenzzeit im Praktikum: 36 h
2. Vor-/Nachbereitung derselben: 63 / 36 h
3. Klausurvorbereitung und Präsenz in selber: 20 h
4.39 Modul: Elementare Geometrie [M-MATH-103152]

Verantwortung: Prof. Dr. Enrico Leuzinger
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-103464 | Elementare Geometrie - Prüfung | 9 LP | Grensing, Hartnick, Herrlich, Kühnlein, Leuzinger, Link, Sauer, Tuschmann |

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min.).

Qualifikationsziele
Absolventinnen und Absolventen
• verstehen grundlegende Strukturen und Techniken der Geometrie und der Topologie und können diese nennen, diskutieren und anwenden
• verstehen elementargeometrische Konzepte von einem höheren Standpunkt aus
• sind vorbereitet für weiterführende Seminare und Vorlesungen im Bereich Geometrie/Topologie

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt
• Axiomatik der ebenen Geometrie: euklidische und nichteuklidische Geometrie

• Topologische Grundbegriffe mit Beispielen: topologische und metrische Räume, Stetigkeit, Zusammenhang, Kompaktheit, Quotienten

• Beispielklassen von topologischen Räumen und eine topologische Invariante: Simplizialkomplexe, Polyeder, Platonische Körper, Mannigfaltigkeiten, Euler-Charakteristik

• Geometrie von Flächen: parametrisierte Kurven und Flächen, 1./2. Fundamentalform, Gauß-Krümmung, Satz von Gauß-Bonnet

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Lineare Algebra 1 und 2
Analysis 1 und 2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
4.40 Modul: Empirical Finance [M-WIWI-105035]

Verantwortung:	Prof. Dr Maxim Ulrich
Einrichtung:	KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:	Ergänzungsfach / Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Level</td>
<td>3</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Sprachlehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-110216</td>
<td>Empirical Finance</td>
<td>6 LP</td>
<td>Ulrich</td>
</tr>
<tr>
<td>T-WIWI-110217</td>
<td>Python for Empirical Finance</td>
<td>3 LP</td>
<td>Ulrich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4, 1-3 SPO) über

1. die Veranstaltung "Empirical Finance" (6 Leistungspunkte) und
2. die Veranstaltung "Python for Empirical Finance" (3 Leistungspunkte).

Die Gesamtnote des Moduls ergibt sich aus der mit dem Faktor 0.75 gewichteten Note der schriftlichen Prüfung und der mit dem Faktor 0.25 gewichteten Note der Python-Programmieraufgaben. Die Gesamtnote des Moduls wird nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der Studierende lernt die grundlegenden Konzepte der modernen Portfoliotheorie kennen und deren Umsetzung in Python. Das Augenmerk liegt auf der Umsetzung statistischer Konzepte in Python, mit denen der Studierende nach erfolgreichem Abschluss dieses Moduls in der Lage ist, Investitionsentscheidungen unter Unsicherheit zu treffen.

Voraussetzungen

Keine.

Inhalt

Das Modul beinhaltet unter anderem die folgenden Themen:

- Mean-Variance Portfolio Optimization
- Modeling Distribution of Asset Returns with Factor Models and ARMA-GARCH
- Monte-Carlo Simulation
- Parameter Estimation with Maximum Likelihood and Regressions?

Empfehlungen

Arbeitsaufwand

4.41 Modul: Energiewirtschaft [M-WIWI-101464]

Verantwortung: Prof. Dr. Wolf Fichtner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

Leistungspunkte 9
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 3
Version 3

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Einführung in die Energiewirtschaft</th>
<th>5,5 LP</th>
<th>Fichtner</th>
</tr>
</thead>
</table>

Wahlpflichtblock: Ergänzungsangebot (3,5 LP)

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Energiepolitik</th>
<th>3,5 LP</th>
<th>Wietschel</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-100806</td>
<td>Renewable Energy-Resources, Technologies and Economics</td>
<td>3,5 LP</td>
<td>Jochem, McKenna</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- ist in der Lage, energiewirtschaftliche Zusammenhänge zu benennen und ökologische Auswirkungen der Energieversorgung zu beurteilen,
- kann die verschiedenen Energieträger und deren Eigenheiten bewerten,
- kennt die energiepolitischen Rahmenvorgaben,
- besitzt Kenntnisse hinsichtlich der neuen marktwirtschaftlichen Gegebenheiten der Energiewirtschaft und insbesondere der Kosten und Potenziale Erneuerbarer Energien.

Voraussetzungen
Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Inhalt
Einführung in die Energiewirtschaft: Charakterisierung (Reserven, Anbieter, Kosten, Technologien) verschiedener Energieträger (Kohle, Gas, Erdöl, Elektrizität, Wärme etc.)

Renewable Energy - Resources, Technology and Economics: Charakterisierung der verschiedenen erneuerbaren Energieträger (Wind, Sonne, Wasser, Erdwärme etc.)

Energiepolitik: Energiestrommanagement, energiepolitische Ziele und Instrumente (Emissionshandel etc.)

Empfehlungen
Die Lehrveranstaltungen sind so konzipiert, dass sie unabhängig voneinander gehört werden können. Daher kann sowohl im Winter- als auch im Sommersemester mit dem Modul begonnen werden.

Anmerkungen
Auf Antrag beim Institut können auch zusätzliche Studienleistungen (z.B. von anderen Universitäten) im Modul angerechnet werden.
Arbeitsaufwand
Verantwortung: Dr.-Ing. Bernd Hoferer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-101924 | Erzeugung elektrischer Energie | 3 LP | Hoferer |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählte Lehrveranstaltung.

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
keine

Inhalt

Arbeitsaufwand
Präsenzstudienzeit: 30 h
Selbststudienzeit: 60 h
Insgesamt 90 h = 3 LP
4.43 Modul: Essentials of Finance [M-WIWI-101435]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102605</td>
<td>4,5 LP</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Financial Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- besitzt grundlegende Kenntnisse in moderner Finanzwirtschaft,
- besitzt grundlegende Kenntnisse zur Fundierung von Investitionsentscheidungen auf Aktien-, Renten- und Derivatemärkten,
- wendet konkrete Modelle zur Beurteilung von Investitionsentscheidungen auf Finanzmärkten sowie für Investitions- und Finanzierungsentscheidungen von Unternehmen an.

Voraussetzungen
Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.
Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWL [IN3WWBWL] prüfbar.

Inhalt

Arbeitsaufwand
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.44 Modul: Fertigungsmesstechnik [M-ETIT-103043]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-106057 | Fertigungsmesstechnik | 3 LP | Heizmann |

Erfolgskontrolle(n)

Qualifikationsziele

- Studierende haben fundiertes Wissen über Grundlagen, Methoden und Verfahren für das Messen und Prüfen in der industriellen Fertigung.
- Studierende können unterschiedliche Messprinzipien, -verfahren und -geräte hinsichtlich ihrer Voraussetzungen, Eigenschaften, Anwendungsbereiche und Ergebnisse beurteilen.

Studierende sind in der Lage, fertigungsmesstechnische Aufgaben zu analysieren, die daraus folgenden Anforderungen an eine geeignete messtechnische Umsetzung abzuleiten, passende messtechnische Umsetzungen zu finden und die daraus folgenden Eigenschaften des Messergebnisses zu aufzeigen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung

Voraussetzungen
keine
Inhalt
Die Fertigungsmesstechnik spielt eine wesentliche Rolle bei der Sicherstellung einer effizienten industriellen Fertigung. Sie stellt gewissenmaßen die Sinnesorgane für die Qualitätssicherung und die Automatisierungstechnik dar und umfasst alle mit dem Messen und Prüfen verbundenen Tätigkeiten.

Die Inhalte umfassen im Einzelnen:

· Grundlagen der FMT
 o Grundbegriffe, Definitionen
 o Maßverkörperungen
 o Messunsicherheiten
· Messtechnik im Betrieb und im Messraum
 o Koordinatenmesstechnik
 o Form- und Lagemesstechnik
 o Oberflächen- und Konturmesstechnik
 o Komparatoren
 o Mikro- und Nanomesstechnik
 o Messräume
· Fertigungsorientierte Messtechnik
 o Messmittel und Lehren
 o Messvorrichtungen
 o Messen in der Maschine
 o Sichtprüfung
 o Statistische Prozessregelung (SPC)
· Optische/berührungslose Messverfahren
 o Integrerbare optische Sensoren
 o Eigenständige optische Messsysteme
 o Optische 2,5D-Koordinatenmesstechnik
 o Optische 3D-Koordinatenmesstechnik
 o Computertomographie
 o Systemintegration und Standardisierung
· Prüfmittelmanagement
 o Bedeutung und Zusammenhänge
 o Beherrschte Prüfprozesse
Prüfplanung

Empfehlungen
Kenntnisse der Stochastik und von Grundlagen der Messtechnik sind hilfreich.

Arbeitsaufwand
Gesamt: ca. 90h, davon
1. Präsenzzeit in Vorlesungen: 23h
2. Vor-/Nachbereitung der Vorlesungen: 23h
3. Klausurvorbereitung und Präsenz in selbiger: 44h
4.45 Modul: Finanzwissenschaft [M-WIWI-101403]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Volkswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Leistungspunkt</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102877</td>
<td>Einführung in die Finanzwissenschaft</td>
<td>4,5</td>
<td>LP</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>4,5</td>
<td>LP</td>
<td>Gutekunst, Wigger</td>
</tr>
<tr>
<td>T-WIWI-102739</td>
<td>Öffentliche Einnahmen</td>
<td>4,5</td>
<td>LP</td>
<td>Wigger</td>
</tr>
<tr>
<td>T-WIWI-109590</td>
<td>Öffentliches Finanzwesen</td>
<td>4,5</td>
<td>LP</td>
<td>Wigger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Note der Teilprüfung entspricht jeweils der Note der bestandenen Klausur.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der Studierende

- besitzt weiterführende Kenntnisse in der Theorie und Politik der Besteuerung und der Staatsverschuldung.
- versteht Umfang, Struktur und Formen der staatlichen Kreditaufnahme.
- kennt die Ausgestaltung des deutschen sowie internationalen Steuerrechts
- ist in der Lage fiskalpolitische Fragestellungen zu interpretieren und zu motivieren.

Inhalt

Empfehlungen

Anmerkungen

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden

Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Modul: Flächen im CAD [M-INFO-101254]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte: 5
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-INFO-102073 | Flächen im CAD | 5 LP | Prautzsch |

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele

Voraussetzungen
Siehe Teilleistung

Inhalt
Bézier- und B-Spline-Techniken für Tensorprodukt- und Dreiecksflächen, de Casteljau-Algorithmus, konvexe Flächen, Unterteilung, differenzierbare Übergänge, Konstruktionen von Powell-Sabin, Clough-Tocher und Piper, Konstruktion glatter Freiformflächen, Punktumspannung, Boxsplines.

Arbeitsaufwand
150h davon etwa
30h für den Vorlesungsbesuch
30h für die Nachbearbeitung
15h für den Besuch der Übungen
45h für das Lösen der Aufgaben
30h für die Prüfungsvorbereitung
4.47 Modul: Formale Systeme [M-INFO-100799]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Stammmodule)
Wahlbereich Informatik (Wahlmodule)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-INFO-101336 | Formale Systeme | 6 LP | Beckert |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele
Nach Abschluss des Moduls verfügen Studierende über folgende Kompetenzen. Sie ...
- kennen und verstehen die vorgestellten logischen Grundkonzepte und Begriffe, insbesondere den Modellbegriff und die Unterscheidung von Syntax und Semantik,
- können natürlichsprachlich gegebene Sachverhalte in verschiedenen Logiken formalisieren sowie logische Formeln verstehen und ihre Bedeutung in natürliche Sprache übersetzen,
- können die vorgestellten Kalküle und Analyseverfahren auf gegebene Fragestellungen bzw. Probleme sowohl manuell als auch mittels interaktiver und automatischer Werkzeugunterstützung anwenden,
- kennen die grundlegenden Konzepte und Methoden der formalen Modellierung und Verifikation,
- können Programmeigenschaften in formalen Spezifikationssprachen formulieren, und kleine Beispiele mit Unterstützung von Softwarewerkzeugen verifizieren.
- können beurteilen, welcher logische Formalismus und welcher Kalkül sich zur Formalisierung und zum Beweis eines Sachverhalts eignet.

Voraussetzungen
Siehe Teilleistung.

Inhalt
Logikbasierte Methoden spielen in der Informatik in zwei Bereichen eine wesentliche Rolle: (1) zur Entwicklung, Beschreibung und Analyse von IT-Systemen und (2) als Komponente von IT-Systemen, die diesen die Fähigkeit verleiht, die umgebende Welt zu analysieren und Wissen darüber abzuleiten.
Dieses Modul
- führt in die Grundlagen formaler Logik ein und
- behandelt die Anwendung logikbasierter Methoden
 ◦ zur Modellierung und Formalisierung
 ◦ zur Ableitung (Deduktion),
 ◦ zum Beweisen und Analysieren
von Systemen und Strukturen bzw. deren Eigenschaften.
Mehrere verschiedene Logiken werden vorgestellt, ihre Syntax und Semantik besprochen sowie dazugehörige Kalküle und andere Analyseverfahren eingeführt. Zu den behandelten Logiken zählen insbesondere die klassische Aussagen- und Prädikatenlogik sowie Temporallogiken wie LTL oder CTL.
Die Frage der praktischen Anwendbarkeit der vorgestellten Logiken und Kalküle auf Probleme der Informatik spielt in dieser Vorlesung eine wichtige Rolle. Der Praxisbezug wird insbesondere auch durch praktische Übungen (Praxisaufgaben) hergestellt, im Rahmen derer Studierende die Anwendung aktueller Werkzeuge (z.B. des interaktiven Beweisers KeY) auf praxisrelevante Problemstellungen (z.B. den Nachweis von Programmeigenschaften) erproben können.

Empfehlungen
Siehe Teilleistungen.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt 180h.
Der Aufwand setzt sich zusammen aus:
34,5h = 23 * 1,5h Vorlesung (Präsenz)
10,5h = 7 * 1,5h Übungen (Präsenz)
60h Vor- und Nachbereitung, insbes. Bearbeitung der Übungsblätter
40h Bearbeitung der Praxisaufgaben
35h Klausurvorbereitung
4.48 Modul: Funktionalanalysis [M-MATH-101320]

Verantwortung: Prof. Dr. Roland Schnaubelt
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte: 9
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Level: 3
Version: 1

Pflichtbestandteile
T-MATH-102255 Funktionalanalysis 9 LP Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Inhalt
- Metrische Räume (topologische Grundbegriffe, Kompaktheit)
- Hilberträume, Orthonormalbasen, Sobolevräume
- Stetige lineare Operatoren auf Banachräumen (Prinzip der gleichmäßigen Beschränktheit, Homomorphiesatz)
- Dualräume mit Darstellungssätzen, Sätze von Hahn-Banach und Banach-Alaoglu, schwache Konvergenz, Reflexivität
- Spektralsatz für kompakte selbstadjungierte Operatoren.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Literatur
D. Werner, Funktionalanalysis
4.49 Modul: Geistiges Eigentum und Datenschutz [M/INFO-101253]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Recht

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T/INFO-109840 | Geistiges Eigentum und Datenschutz | 6 LP | Matz |

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende

- kennt und versteht die Grundzüge des Rechts des geistigen Eigentums sowie des Datenschutzes,
- definiert und differenziert die Grundbegriffe (Territorialität, Schutzvoraussetzungen, Ausschließlichkeitsrechte, Schrankenbestimmungen, Verletzungshandlungen und Rechtsfolgen), hat deren Bedeutung verinnerlicht und ist in der Lage, einfach gelagerte rechtlich relevante Sachverhalte zutreffend zu bewerten und zu lösen,
- kennt und versteht den Unterschied von Registerrechten und formlosen Schutzsystemen und findet sich in den internationalen, europäischen und nationalen Regelungsebenen des geistigen Eigentums zurecht,
- entwirft Lizenzverträge und löst einen Verletzungsfall in der Subsumtionsmethode gutachterlich,
- versteht die Grundprinzipien und systematischen Grundlagen des Bundesdatenschutzgesetzes,
- analysiert und bewertet Konzepte des Selbstdatenschutzes und des Systemdatenschutzes,
- besitzt differenzierte Kenntnisse hinsichtlich des bereichsspezifischen Datenschutzrechts, die er/sie insbesondere am Beispiel der Regelungen des Datenschutzes bei Tele- und Mediendiensten vertieft hat.

Voraussetzungen
Siehe Teilleistung

Inhalt
Aufbauend auf den in den ersten beiden Bachelorjahren erlernten Rechtskenntnissen dient das Modul Recht im 3. Bachelorjahr zum einen der Vertiefung der zuvor erworbenen Rechtskenntnisse und zum anderen der Spezialisierung in den Rechtsmaterien, denen in der informationswirtschaftlichen / wirtschaftsinformatischen Praxis die größte Bedeutung zukommt...

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfsessions und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studierenden für eine durchschnittliche Leistung erforderlich ist.
4.50 Modul: Geometrische Grundlagen der Geometrieverarbeitung [M-INFO-100756]

Verantwortung: Prof. Dr. Hartmut Prautzsch

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101293 | Geometrische Grundlagen der Geometrieverarbeitung | 5 LP | Prautzsch |

Erfolgskontrolle(n)

Siehe Teilleistung.

Qualifikationsziele

Die Hörer und Hörerinnen der Vorlesung beherrschen wichtige Konzepte, die zur Analyse und Bearbeitung von Problemen der Geometrieverarbeitung eingesetzt werden und sind in der Lage, aufbauenden, weiterführenden und speziellen Vorlesungen wie Vorlesungen zur Computergraphik oder der Konstruktion von Kurven und Flächen zu folgen.

Voraussetzungen

Siehe Teilleistung.

Inhalt

Arbeitsaufwand

150h davon etwa
30h für den Vorlesungsbesuch
30h für die Nachbearbeitung
15h für den Besuch der Übungen
45h für das Lösen der Aufgaben
30h für die Prüfungsvorbereitung
4.51 Modul: Geometrische Optimierung [M-INFO-100730]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101267 | Geometrische Optimierung | 3 LP | Prautzsch |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

Voraussetzungen
Siehe Teilleistung.

Inhalt
Grundlegende Methoden zur Optimierung wie die Methode der kleinsten Quadrate, Levenber-Marquardt-Algorithmus, Berechnung von Ausgleichsebenen, iterative Ist- und Sollwertanpassung von Punktwolken (iterated closest point), finite Element-Methoden.
Fragen zur numerischen Stabilität und Algorithmen zur exakten Berechnung einfacher geometrischer Operationen.
Verfahren der algorithmischen Geometrie etwa zur Bestimmung kleiner umhüllender Kugeln (Welz1-Algorithmus)

Arbeitsaufwand
90h davon etwa
30h für den Vorlesungsbesuch
30h für die Nachbearbeitung
30h für die Prüfungsvorbereitung Englische Version:
90h
4.52 Modul: Governance, Risk & Compliance [M-INFO-101242]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Recht

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101288</td>
<td>Regelkonformes Verhalten im Unternehmensbereich</td>
<td>3 LP</td>
<td>Dreier</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Governance, Risk & Compliance (mindestens 1 Bestandteil sowie mind. 6 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101316</td>
<td>Vertragsgestaltung</td>
<td>3 LP</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-108405</td>
<td>Datenschutz durch Technik</td>
<td>3 LP</td>
<td>Raabe</td>
</tr>
<tr>
<td>T-INFO-102047</td>
<td>Vertiefungs-Seminar Governance, Risk & Compliance</td>
<td>3 LP</td>
<td>Dreier</td>
</tr>
<tr>
<td>T-INFO-109910</td>
<td>IT-Sicherheitsrecht</td>
<td>3 LP</td>
<td>Raabe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Siehe Teilleistung

Qualifikationsziele

Voraussetzungen

Siehe Teilleistung

Inhalt

Arbeitsaufwand

Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
4.53 Modul: Graphentheorie [M-MATH-101336]

Verantwortung: Prof. Dr. Maria Aksenovich
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte: 9
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Englisch
Level: 3
Version: 1

Pflichtbestandteile
T-MATH-102273 Graphentheorie 9 LP Aksenovich

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h).
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist Note der Prüfung.

Voraussetzungen

Inhalt

Anmerkungen
• Turnus: jedes zweite Jahr im Wintersemester
• Unterrichtssprache: Englisch

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Verantwortung: Dr. Sebastian Stüker
Thomas Worsch

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Theoretische Informatik

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
- Die Studierenden kennen grundlegende Definitionsarten und sind in der Lage, entsprechende Definitionen zu lesen und zu verstehen.
- Sie kennen den Unterschied zwischen Syntax und Semantik.
- Die Studierenden kennen die grundlegenden Begriffe aus diskreter Mathematik und Informatik und sind in der Lage, sie richtig zu benutzen, sowohl bei der Beschreibung von Problemen als auch bei Beweisen

Voraussetzungen
Siehe Teilleistung

Inhalt
- Algorithmen informell, Grundlagen des Nachweises ihrer Korrektheit
- Berechnungskomplexität, „schwere“ Probleme
- O-Notation, Mastertheorem
- Alphabete, Wörter, formale Sprachen endliche Akzeptoren, kontextfreie Grammatiken
- induktive/rekursive Definitionen, vollständige und strukturelle Induktion Hüllenbildung
- Relationen und Funktionen
- Graphen
- Syntax für Aussagenlogik und Prädikatenlogik, Grundlagen ihrer Semantik

Anmerkungen
Siehe Teilleistung.

Arbeitsaufwand
Vorlesung: 15 x 1.5 h = 22.50 h
Übung: 15 x 0.75 h = 11.25 h
Tutorium: 15 x 1.5 h = 22.50 h
Nachbereitung: 15 x 2 h = 30.00 h
Bearbeitung von Aufgaben: 14 x 3 h = 42.00 h
Klausurvorbereitung: 1 x 49.75 h = 49.75 h
Klausur: 2 x 1 h = 2.00 h
Summe 180 h

Lehr- und Lernformen
2 SWS Vorlesung, 1 SWS Übung, 2 SWS Tutotium

4.55 Modul: Grundlagen der BWL [M-WIWI-101493]

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (12 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102816</td>
<td>Rechnungswesen</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102818</td>
<td>Betriebswirtschaftslehre: Produktionswirtschaft und Marketing</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102819</td>
<td>Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>4 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle wird in den Lehrveranstaltungsbeschreibungen erläutert.

Qualifikationsziele
Der/die Studierende

- hat fundierte Kenntnisse in den zentralen Fragestellungen der Allgemeinen Betriebswirtschaftslehre insbesondere mit Blick auf entscheidungsorientiertes Handeln und die modellhafte Betrachtung der Unternehmung,
- beherrscht die Grundlagen des betriebswirtschaftlichen Rechnungswesens und Grundlagen der Allgemeinen Betriebswirtschaftslehre,
- ist in der Lage, die zentralen Tätigkeitsbereiche, Funktionen und Entscheidungen in einer marktwirtschaftlichen Unternehmung zu analysieren und zu bewerten.

Mit dem Basiswissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Voraussetzungen
Keine

Inhalt
Es werden die Grundlagen des internen und externen Rechnungswesens und der Allgemeinen Betriebswirtschaftslehre als die Lehre vom Wirtschaften im Betrieb vermittelt. Darauf aufbauend werden schwerpunktartig die Bereiche Marketing, Produktionswirtschaft, Informationswirtschaft, Unternehmensführung und Organisation, Investition und Finanzierung sowie Controlling erörtert.

Anmerkungen
Dieses Modul ist Pflicht, wenn das Ergänzungsfach Wirtschaftswissenschaften, Fach BWL, abgelegt werden soll. Um das Fach abzuschließen, muss ein weiteres Modul aus dem Fach BWL geprüft werden.
Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird sowie durch die Bewertung von Hausübungen. Die Hausübungen können während des Semesters von den Studierenden bearbeitet und zur Korrektur abgegeben werden. Die Abgabe erfolgt in handschriftlicher Form.

Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

Voraussetzungen
Keine

Inhalt
Grundlagenvorlesung Hochfrequenztechnik: Schwerpunkte der Vorlesung sind die Vermittlung eines grundlegenden Verständnisses der Hochfrequenztechnik sowie der methodischen und mathematischen Grundlagen zum Entwurf von Mikrowellensystemen. Wesentliche Themengebiete sind dabei passive Bauelemente und lineare Schaltungen bei höheren Frequenzen, die Leitungstheorie, die Mikrowellennetzwerkanalyse, sowie ein Überblick über Mikrowellensysteme.

Zusätzlich zur Saalübung wird in einem Tutorium die selbstständige Bearbeitung von typischen Aufgabenstellungen der Hochfrequenz-technik geübt. Dazu bearbeiten die Studierenden die Aufgaben in Kleingruppen und erhalten Hilfestellung von einem studentischen Tutor.

Empfehlungen
Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

Informatik (Bachelor of Science (B.Sc.))
Modulhandbuch mit Stand vom 20.02.2020
Anmerkungen
Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Note (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben. Der einmal erworbe Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:
- Präsenzstudienzeit Vorlesung/Übung: 60 h
- Präsenzstudienzeit Tutorium: 15 h
- Selbststudienzeit inkl. Prüfungsvorbereitung: 105 h
Insgesamt: 180 h = 6 LP
4.57 Modul: Grundlagen der Physik [M-PHYS-101339]

Verantwortung: PD Dr. Roger Wolf
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Ergänzungsfach / Physik

Leistungspunkte: 12
Turnus: Jedes Sommersemester
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 1

Erfolgskontrolle(n)
Die Erfolgskontrolle besteht aus einer schriftlichen Prüfung nach §4, Abs.1, Nr. 1 SPO im Umfang von 180 Minuten.

Qualifikationsziele

Voraussetzungen
Dieses Modul muss zusammen mit dem Modul Moderne Physik für Informatiker geprüft werden.

Inhalt
Die Veranstaltung bietet eine Einführung in die Grundlagen der klassischen und modernen Physik im Nebenfach. Sie bietet in Beispielen Einblicke in die physikalische Grundlagenforschung an Teilchenbeschleunigern. Folgende Themenschwerpunkte werden behandelt:

- Dimensionen, Messgenauigkeit und Fehleranalyse
- Mechanik: Kinematik, Dynamik, Verhalten starrer Körper, Gravitation und Relativitätstheorie
- Elektrodynamik: Elektrische und magnetische Wechselwirkungen, zeitabhängige elektromagnetische Felder
- Schwingungen, harmonischer Oszillator
- Wellen: Wellenausbreitung und Wellengleichung, Interferenz und Beugung
- Experimentelle Grundlagen der Quantenphysik: Photonen, Teilchen und Felder
- Quantenmechanik, Schrödingergleichung

Literatur
- Physik: Lehr und Übungsbuch, Douglas C. Giancoli, Pearson Studium
- Physik, Paul A. Tipler, Spektrum Akademischer Verlag
- Moderne Physik, P.A. Tipler, R.A. Llewellyn, Oldenbourg
4.58 Modul: Grundlagen des Marketing [M-WIWI-101424]

Verantwortung: Prof. Dr. Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102805</td>
<td>Marketing Mix</td>
<td>4,5</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (mind. 4,5 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102806</td>
<td>Dienstleistungs- und B2B Marketing</td>
<td>3</td>
<td>Klarmann</td>
</tr>
<tr>
<td>T-WIWI-102807</td>
<td>International Marketing</td>
<td>1,5</td>
<td>Feurer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Ziel dieses Moduls ist es, Studierende auf eine Tätigkeit in Marketing oder Vertrieb vorzubereiten. Gerade in technisch orientierten Unternehmen werden hierfür gerne Mitarbeiter eingesetzt, die als Wirtschaftsingenieure oder Wirtschaftsinformatiker auch selbst einen gewissen technischen Hintergrund haben.

Studierende

- kennen die wichtigsten Konzepte, Verfahren und Theorien der vier Instrumente des Marketing Mix (Produktmanagement, Preismangement, Kommunikationsmanagement und Vertriebsmanagement)
- verfügen über das Wissen, Entscheidungen bezüglich der gegenwärtigen und zukünftigen Produkte (Produktinnovationen) zu treffen (z.B. mittels Conjoint-Analyse)
- wissen, wie Kunden Marken wahrnehmen und wie diese Wahrnehmung durch das Unternehmen beeinflusst werden kann
- verstehen, wie Kunden auf Preise reagieren (z.B. mittels Preis-Absatz-Funktionen)
- können Preise auf Basis konzeptioneller und quantitativer Überlegungen bestimmen
- kennen die Grundlagen der Preisdifferenzierung
- sind mit verschiedenen Instrumenten der Kommunikation vertraut (z.B. TV-Werbung) und können diese treffsicher gestalten
- treffen Kommunikationsentscheidungen systematisch (z.B. mittels Mediapanplanung)
- können den Markt segmentieren und das Produkt positionieren
- wissen, wie die Wichtigkeit und Zufriedenheit von Kunden beurteilt werden können
- können die Beziehung zu Kunden und Vertriebspartnern gestalten
- wissen um Besonderheiten des Marketing im Dienstleistungs- und B2B-Bereich
- kennen die Besonderheiten des Marketing im internationalen Kontext

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWL [IN3WWBWWL] prüfbar.

Die Lehrveranstaltung Marketing Mix [2571152] (Kernveranstaltung) muss besucht werden.
Inhalt
Kernelement des Moduls ist die Veranstaltung "Marketing Mix", die als Pflichtelement auch immer absolviert werden muss. In dieser Veranstaltung werden Instrumente und Methoden vermittelt, die es Ihnen erlauben, zügig Verantwortung im operativen Marketingmanagement (Produktmanagement, Pricing, Kommunikationsmanagement und Vertrieb) zu übernehmen.

Anmerkungen
Nähere Informationen erhalten Sie direkt bei der Forschungsgruppe Marketing & Vertrieb (marketing.iism.kit.edu).

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
4.59 Modul: Grundlagen und Technologie supraleitender Magnete [M-ETIT-101970]

Verantwortung: Prof. Dr. Bernhard Holzapfel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte 3
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile
T-ETIT-104470 Grundlagen und Technologie supraleitender Magnete 3 LP Holzapfel

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (30 Minuten).

Qualifikationsziele
Die Studierenden sind in der Lage die Grundlagen der Supraleitung (Phänomene, Materialien, Verluste, Stabilität) zu verstehen und für verschiedene Magnetanwendungen anzuwenden. Weiterhin sind Sie in der Lage den Stand der Entwicklung für die wichtigsten Magnetanwendungen einzuordnen und grundlegende Punkte zur Auslegung der Magnete (Grundlegendes Design, Stromeinkopplung, Schutz, Kryotechnik) selbständig zu bearbeiten.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
keine

Inhalt

· Grundlagen der Supraleitung f. Magnetanwendungen
· Supraleiterstabilität
· Grundlegender Entwurf supraleitender Magnete
· NMR und MRI Magnete
· Magnetanwendungen
· Fusionsmagnettechnologie
· Hochfeldmagnettechnologie
· Supraleitende Permanentmagnete u. supraleitende Levitation
· Auslegung von Stromzuführungen
· Exkursion
Der Dozent behält sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Anmerkungen
Wahlfach in anderen Vertiefungsrichtungen.

Arbeitsaufwand
Der Arbeitsaufwand in Stunden ist nachfolgend aufgeschlüsselt (Einschätzung gem. Vorschlag im Eckpunktepapier):
1. Präsenzzeit in Vorlesung 30 h (2 SWS)
2. Vor-/Nachbereitung derselben, Exkursion 30 h
3. Klausurvorbereitung und Präsenz in selbiger 30 h
4.60 Modul: Höhere Mathematik [M-MATH-101305]

Verantwortung: Dr. Christoph Schmoeger
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik (Wahlpflichtmodule)

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Übungen (mindestens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung im Umfang von 240 Minuten nach § 4 Abs. 2 Nr. 1 SPO und einer Erfolgskontrolle anderer Art nach § 4 Abs. 2 Nr. 3 SPO (mindestens ein Übungsschein aus den Lehrveranstaltungen Höhere Mathematik I [1330] oder Höhere Mathematik II [1868]).

Qualifikationsziele
Die Studierenden sollen am Ende des Moduls
- den Übergang von Schule zu Universität bewältigt haben,
- mit logischem Denken und strengen Beweisen vertraut sein,
- die Methoden und grundlegenden Strukturen der (reellen) Analysis beherrschen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt
HM I:
- Reelle Zahlen (Körpereigenschaften, natürliche Zahlen, Induktion)
- Konvergenz in \(R \) (Folgen, Reihen, Potenzreihen, elementare Funktionen, q-adische Entwicklung reeller Zahlen)
- Funktionen (Grenzwerte bei Funktionen, Stetigkeit, Funktionenfolgen und -reihen)
- Differentialrechnung (Ableitungen, Mittelwertsätze, Regel v. de l'Hospital, Satz von Taylor)
- Integralrechnung (Riemann- Integral, Hauptsätze, Substitution, part. Integration, uneigentliche Integrale)
- Fourierreihen

HM II:
- Der Raum \(R^n \) (Konvergenz, Grenzwerte bei Funktionen, Stetigkeit)
- Differentialrechnung im \(R^n \) (partielle Ableitungen, (totale) Ableitung, Taylorentwicklung, Extremwertberechnungen)
- Das mehrdimensionale Riemann- Integral (Fubini, Volumenberechnung mit Cavalieri, Substitution, Polar-, Zylinder-, Kugelkoordinaten)
- Differentialgleichungen (Trennung der Ver., lineare DGL 1. Ordnung, Bernoulli-DGL, Riccati-DGL, lineare Systeme, lineare DGL höherer Ordnung)
- Fouriertransformation

Anmerkungen
Die Übungsscheine zu den Lehrveranstaltungen der Module Analytis und 2 [MATHANA], Höhere Mathematik [HMInfo] sind äquivalent. Eine Übertragung von einem auf das andere Modul ist möglich, hierzu ist ein Umbuchungsantrag notwendig.
4.61 Modul: Hybride und elektrische Fahrzeuge [M-ETIT-100514]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Inhalt

- Hybride Fahrzeugantriebe
- Elektrische Fahrzeugantriebe
- Fahrwiderstände und Energieverbrauch
- Betriebsstrategie
- Energiespeicher
- Grundlagen elektrischer Maschinen
- Asynchronmaschinen
- Synchronmaschinen
- Sondermaschinen
- Leistungselektronik
- Laden
- Umwelt
- Fahrzeugbeispiele

Anforderungen und Spezifikationen

Empfehlungen
Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbaingenieure").
Arbeitsaufwand
14x V und 7x U à 1,5 h: = 31,5 h
14x Nachbereitung V à 1 h = 14 h
6x Vorbereitung zu U à 2 h = 12 h
Prüfungsvorbereitung: = 50 h
Prüfungszeit = 2 h
Insgesamt = 109,5 h
(entspricht 4 Leistungspunkten)
4.62 Modul: Industrielle Produktion I [M-WIWI-101437]

Verantwortung: Prof. Dr. Frank Schultmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102606 Grundlagen der Produktionswirtschaft</td>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (3,5 LP)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102870 Logistics and Supply Chain Management</td>
<td>3.5</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>T-WIWI-102820 Produktion und Nachhaltigkeit</td>
<td>3.5</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1 SPO) über die Kernvorlesung *Grundlagen der Produktionswirtschaft* [2581950] und eine weitere Lehrveranstaltung des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

- Die Studierenden beschreiben das Gebiet der industriellen Produktion und Logistik und erkennen deren Bedeutung für Industriebetriebe und die darin tätigen Wirtschaftsingenieure/Wirtschaftsinformatiker und Volkswirtschaftler.
- Die Studierenden verwenden wesentliche Begriffe aus der Produktionswirtschaft und Logistik korrekt.
- Die Studierenden geben produktionswirtschaftlich relevante Entscheidungen im Unternehmen und dafür wesentliche Rahmenbedingungen wieder.
- Die Studierenden kennen die wesentlichen Planungsaufgaben, -probleme und Lösungsstrategien des strategischen Produktionsmanagements sowie der Logistik.
- Die Studierenden kennen wesentliche Ansätze zur Modellierung von Produktions- und Logistiksystemen.
- Die Studierenden kennen die Bedeutung von Stoff- und Energieflüssen in der Produktion.

Voraussetzungen

Nur prüfbar in Kombination mit dem Modul *Grundlagen der BWL*.

Das Modul ist nur zusammen mit dem Pflichtmodul *Grundlagen der BWL* prüfbar.

Inhalt

Empfehlungen

Die Lehrveranstaltungen sind so konzipiert, dass sie voneinander unabhängig gehört werden können.

Mit Blick auf den konsekutiven Masterstudienstand empfiehlt es sich, das Modul mit den Modulen *Industrielle Produktion II* und/oder *Industrielle Produktion III* zu kombinieren.
Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 LP). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 3,5 LP ca. 105h, für Lehrveranstaltungen mit 5,5 LP ca. 165h.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfsungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.63 Modul: Informationsmanagement im Ingenieurwesen [M-MACH-102399]

Verantwortung:
Dipl.-Ing. Thomas Maier
Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von:
Ergänzungsfach / Informationsmanagement im Ingenieurwesen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Informationsmanagement im Ingenieurwesen - Bachelor Informatik (Kern) (1 Bestandteil)

| T-MACH-105147 | Product Lifecycle Management | 4 LP | Ovtcharova |

Wahlpflichtblock: Informationsmanagement im Ingenieurwesen -- Bachelor Informatik (mind. 17 LP)

T-MACH-102149	Virtual Reality Praktikum	4 LP	Ovtcharova
T-MACH-102083	Technische Informationssysteme	4 LP	Ovtcharova
T-MACH-102155	Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung	4 LP	Mbang
T-MACH-102187	CAD-Praktikum NX	2 LP	Ovtcharova
T-MACH-102209	Information Engineering	3 LP	Ovtcharova
T-MACH-106457	IT-Systemplattform I4.0	4 LP	Maier, Ovtcharova
T-MACH-106744	Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte	4 LP	Kläger
T-MACH-102153	PLM-CAD Workshop	4 LP	Ovtcharova
T-MACH-102181	PLM für mechatronische Produktentwicklung	4 LP	Eigner

Erfolgskontrolle(n)
Eine Erfolgskontrolle muss stattfinden und kann schriftlich, mündlich oder anderer Art sein.

Qualifikationsziele
Der / die Studierende:
besitzt grundlegende Kenntnisse über in Bezug auf Produkt- und Prozessdatenmanagement über den gesamten Produktlebenszyklus,
versteht Herausforderungen und Funktionskonzept des Product Lifecycle Managements,
ist in der Lage ansatzweise mit gängigen PLM/CAx/VR-Systemen zu arbeiten.
können in domänenübergreifenden Teams prototypische Lösungen erarbeiten und präsentieren.

Voraussetzungen
keine

Inhalt
Product Lifecycle Management (PLM), Generierung und Management von Informationen, Aufbau und Funktionsweise von Informationssystemen, Industrie 4.0, CAx und VR-Systeme

Arbeitsaufwand
315 Stunden
Modul: Informationstechnik I [M-ETIT-104539]

Verantwortung: Prof. Dr.-Ing. Eric Sax
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Informationstechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

- T-ETIT-109300 Informationstechnik I 4 LP Sax
- T-ETIT-109301 Informationstechnik I - Praktikum 2 LP Sax

Erfolgskontrolle(n)

Die Erfolgskontrolle des Moduls besteht aus:

1. Einer "schriftlichen Prüfung" im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung, Übung (4 LP)
2. Einer Erfolgskontrolle in Form von Projektdokumentationen und Kontrolle des Quellcodes im Rahmen der Lehrveranstaltung Praktikum (2 LP)

Qualifikationsziele

Die Studierenden lernen Aufbau und Funktionsweise informationstechnischer Systeme und deren Verwendung kennen. Die Studierenden können

- die Charakteristika von eingebetteten Systemen abgrenzen.
- verschiedene Programmiersprachen und -paradigmen nennen und deren Unterschiede gegenüberstellen.
- die Grundbestandteile der Programmiersprache C++ erläutern sowie Programme in dieser Sprache anfertigen.
- die zur Erstellung eines ausführbaren Programms notwendigen Komponenten aufzählen und deren Interaktion beschreiben.
- Programmstrukturen mit Hilfe grafischer Beschreibungsmittel darstellen.
- das objektorientierte Programmierparadigma gegenüber traditioneller Herangehensweise abgrenzen sowie objektorientierte Programme erstellen.
- die Struktur objektorientierter Programme grafisch abbilden
- generelle Rechnerarchitekturen beschreiben, deren Vor- und Nachteile gegenüberstellen, sowie Möglichkeiten zur Performanzsteigerung erläutern.
- unterschiedliche Abstraktionsebenen der Datenspeicherung beschreiben. Sie können verschiedene Möglichkeiten, Daten strukturiert abzuspeichern und zu organisieren, nennen und bewerten.
- die Aufgaben eines Betriebssystems beschreiben, sowie die grundlegenden Funktionen von Prozessen und Threads wiedergeben.
- die Phasen und Prozesse des Projektmanagements erläutern und die Planung kleiner Projekte skizzieren.

Durch die Teilnahme am Praktikum Informationstechnik können die Studierenden komplexe programmiertechnische Probleme in einfache und übersichtliche Module zerlegen und dazu passende Algorithmen und Datenstrukturen entwickeln, sowie diese mit Hilfe einer Programmiersprache in ein ausführbares Programm umsetzen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung. Das erfolgreiche Ablegen des Praktikums ist Voraussetzung für das Bestehen des Moduls.

Voraussetzungen

Keine
Inhalt

Vorlesung Informationstechnik I:
Grundlagenvorlesung Informationstechnik. Schwerpunkte der Veranstaltung sind:

- Programmiersprachen, Programmerstellung und Programmstrukturen
- Objektorientierung
- Rechnerarchitekturen und eingebettete Systeme
- Datenstrukturen und Datenbanken
- Projektmanagement
- Betriebssysteme und Prozesse

Übung Informationstechnik I:

Praktikum Informationstechnik:
Bei der Umsetzung in einen strukturierten und lauffähigen Quellcode, unter Einhaltung von vorgegebenen Qualitätskriterien, wird das Schreiben komplexer C/C++-Codeabschnitte und der Umgang mit einer integrierten Entwicklungsumgebung trainiert. Die Implementierung erfolgt auf einem Microcontrollerboard, welches bereits aus anderen Lehrveranstaltungen bekannt ist.

Empfehlungen

- Kenntnisse in den Grundlagen der Programmierung sind empfohlen (Besuch des MINT-Kurs C++).
- Die Inhalte des Moduls Digitaltechnik sind hilfreich.

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

1. Präsenzzeit in 14 Vorlesungen und 7 Übungen (21,5 Stunden)
2. Vor-/Nachbereitung von Vorlesung und Übung (41 Stunden)
3. Klausurvorbereitung und Präsenz in selbiger (40 Stunden)
4. Praktikum Informationstechnik 5 Termine (7,5 Stunden)
5. Vor-/Nachbereitung des Praktikums (40 Stunden)
4.65 Modul: Informationstechnik II und Automatisierungstechnik [M-ETIT-104547]

Verantwortung: Prof. Dr.-Ing. Eric Sax
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte: 4
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile
| T-ETIT-109319 | Informationstechnik II und Automatisierungstechnik | 4 LP | Sax |

Erfolgskontrolle(n)
Schriftliche Prüfung im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung und Übung.

Qualifikationsziele
Die Studierenden lernen aktuelle Problemstellungen der Informationstechnik und die Werkzeuge für deren Lösung kennen, beginnend bei einfachen Algorithmen bis hin zu selbstlernenden Systemen.

Die Studierenden können

- die Merkmale, Eigenschaften und Klassen von Algorithmen benennen und einordnen, sowie die Laufzeitkomplexität bestimmen.
- bekannte Sortier-, Such- und Optimierungsalgorithmen gegenüberstellen und demonstrieren.
- die Merkmale, Eigenschaften und Komponenten von selbstlernenden Systemen benennen und abgrenzen.
- Methoden des maschinellen Lernens einordnen, beschreiben und bewerten.
- Die Charakteristika sowie die Notwendigkeit und Vorgehensweise zur Analyse großer Datenbestände beschreiben.
- Ansätze zur Verwaltung und Analyse großer Datenbestände hinsichtlich ihrer Anwendbarkeit und Wirksamkeit einschätzen.
- Methoden zur Anomalieerkennung wiedergeben.
- Begriffe der IT-Sicherheit angeben und typische Schutzmechanismen einordnen.
- die grundlegenden Komponenten, Funktionen und Aufgaben der Automatisierungstechnik in verschiedenen Einsatzbereichen gegenüberstellen und anhand ihres Automatisierungsgrades einordnen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt
Vorlesung Informationstechnik II und Automatisierungstechnik:
Grundlagenvorlesung Informationstechnik. Schwerpunkte der Veranstaltung sind:

- Grundlagen und Eigenschaften verschiedener Klassen von Algorithmen
- Selbstlernende Systeme und maschinelles Lernen, beispielsweise Clusteringverfahren und Neuronale Netze
- Grundlagen und Verfahren zur Analyse großer Datenbestände
- Verfahren zur Anomalieerkennung als Anwendungsfeld von selbstlernenden Systemen auf große Datenmengen
- Grundlagenbegriffe und Prozesse zur Entwicklung sicherer Software
- Bedeutung, grundlegende Begriffe und Komponenten der Automatisierungstechnik sowie deren informationstechnische Realisierung

Übung Informationstechnik II und Automatisierungstechnik:
Begleitend zur Vorlesung werden in der Übung die Grundlagen der in der Vorlesung vorgestellten Methoden erläutert und deren Anwendung aufgezeigt. Hierzu werden Übungsaufgaben mit Bezug zum Vorlesungsstoff gestellt sowie die Lösungen dazu detailliert erläutert.

Empfehlungen
Grundlagen der Programmierung (MINT-Kurs) und die Inhalte des Moduls Informationstechnik I sind hilfreich.
Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

1. Präsenzzeit in 14 Vorlesungen und 7 Übungen (31,5 Stunden)
2. Vor-/Nachbereitung von Vorlesung und Übung (28,5 Stunden)
3. Klausurvorbereitung und Präsenz in selbiger (40 Stunden)
4.66 Modul: Kognitive Systeme [M-INFO-100819]

Verantwortung: Prof. Dr. Gerhard Neumann
 Prof. Dr. Alexander Waibel

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)
 Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101356 | Kognitive Systeme | 6 LP | Neumann, Waibel |

Erfolgskontrolle(n)

Siehe Teilleistung.

Qualifikationsziele

Studierende beherrschen

- Die relevanten Elemente eines technischen kognitiven Systems und deren Aufgaben.
- Die Problemstellungen dieser verschiedenen Bereiche können erkannt und bearbeitet werden.
- Weiterführende Verfahren können selbständig erschlossen und erfolgreich bearbeitet werden.
- Variationen der Problemstellung können erfolgreich gelöst werden.
- Die Lernziele sollen mit dem Besuch der zugehörigen Übung erreicht sein.

Voraussetzungen

Siehe Teilleistung.

Inhalt

Empfehlungen

Siehe Teilleistung.
Arbeitsaufwand

154h
1. Präsenzzeit in Vorlesungen/Übungen: 30 + 9
2. Vor-/Nachbereitung derselben: 20 + 24
3. Klausurvorbereitung/Präsenz in selbiger: 70 + 1
4.67 Modul: Kombinatorik [M-MATH-102950]

Verantwortung: Prof. Dr. Maria Aksenovich
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte: 9
Turnus: Unregelmäßig
Dauer: 1 Semester
Level: 4
Version: 1

Pflichtbestandteile
T-MATH-105916 Kombinatorik 9 LP Aksenovich

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Prüfung (3h).
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4).

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt

Empfehlungen
Grundkenntnisse in lineare Algebra und Analysis sind empfohlen.

Anmerkungen
- Turnus: jedes zweite Jahr im Sommersemester
- Unterrichtssprache: Englisch

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.68 Modul: Kommunikation und Datenhaltung [M-INFO-101178]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Prof. Dr. Martina Zitterbart

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Praktische Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101497</td>
<td>Datenbanksysteme</td>
<td>4 LP</td>
<td>Böhm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-INFO-102015</td>
<td>Einführung in Rechnernetze</td>
<td>4 LP</td>
<td>Zitterbart</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele

Der/die Studierende

- kennt die Grundlagen der Datenübertragung sowie den Aufbau von Kommunikationssystemen,
- ist mit der Zusammensetzung von Protokollen aus einzelnen Protokollmechanismen vertraut und konzipiert einfache Protokolle eigenständig,
- kennt und versteht das Zusammenspiel einzelner Kommunikationsschichten und Anwendungen,
- stellt den Nutzen von Datenbank-Technologie dar,
- deiniert die Modelle und Methoden bei der Entwicklung von funktionalen Datenbank-Anwendungen, legt selbstständig einfache Datenbanken an und tätigt Zugriffe auf diese,
- kennt und versteht die entsprechenden Begrifflichkeiten und die Grundlagen der zugrundeliegenden Theorie.

Voraussetzungen
Siehe Teilleistung

Inhalt

Verteilte Informationssysteme sind nichts anderes als zu jeder Zeit von jedem Ort durch jedermann zugängliche, weltweite Informationsbestände. Den räumlich verteilten Zugang regelt die Telekommunikation, die Bestandsführung über beliebige Zeiträume und das koordinierte Zusammenführen besorgt die Datenhaltung. Wer global ablaufende Prozesse verstehen will, muss also sowohl die Datenübertragungstechnik als auch die Datenbanktechnik beherrschen, und dies sowohl einzeln als auch in ihrem Zusammenspiel.

Empfehlungen

Kenntnisse aus der Vorlesung *Softwaretechnik I* werden empfohlen.

Anmerkungen

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 240 Stunden (8 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfungszeit und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Modul: Kurven im CAD [M-INFO-101248]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-102067 | Kurven im CAD | 5 LP | Prautzsch |

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele

Voraussetzungen
Siehe Teilleistung

Inhalt
Bézier- und B-Spline-Techniken, Polarformen, Algorithmen von de Casteljau, de Boor und Boehm, Oslo-Algorithmus, Stärks Anschlusskonstruktion, Unterteilung, Übergang zu anderen Darstellungen, Algorithmen zum Erzeugen und Schneiden von Kurven, Interpolationssplines, sowie etwas zu Tensorproduktflächen (=Kurven mit Kontrollkurven.)

Arbeitsaufwand
150h davon etwa
30h für den Vorlesungsbesuch
30h für die Nachbearbeitung
15h für den Besuch der Übungen
45h für das Lösen der Aufgaben
30h für die Prüfungsvorbereitung
4.70 Modul: Labor für angewandte Machine Learning Algorithmen [M-ETIT-104823]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker
 Prof. Dr.-Ing. Eric Sax
 Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th></th>
<th>T-ETIT-109839</th>
<th>Labor für angewandte Machine Learning Algorithmen</th>
<th>6 LP</th>
<th>Becker, Sax, Stork</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von Prüfungsleistungen anderer Art.

- Protokolle (Labordokumentation) und kontinuierliche Bewertung der Teamarbeit während der Präsenzzeit
- Vortrag in Form einer Präsentation

Abfrage nach Ende der Veranstaltung zu den Inhalten des Labors.

Qualifikationsziele

- Die Studierenden sind in der Lage aktuelle komplexe Probleme des modernen Elektro- und Informationstechnik-Ingenieurs zu analysieren und die Notwendigkeit für Verfahren des maschinellen Lernens zu beurteilen.
- Die Studierenden können verschiedene moderne Verfahren des maschinellen Lernens nennen und deren Funktionsweise erklären.
- Die Studierenden sind in der Lage diese hinsichtlich ihrer Anforderungen (u.a. Trainingszeit, Datenverfügbarkeit, Effizienz, Performance) auszuwählen und erfolgreich mit aktuellen Programmiersprachen und typischen Software-Frameworks umzusetzen.
- Die Studierenden sind in der Lage passende Implementierungsalternativen (HW/SW-Codesign) im gesamten Prozess zu wählen und umzusetzen.
- Die Studierenden sind in der Lage für eine gegebene Problemstellung systematisch ein geeignetes praxistaugliches Konzept basierend auf Verfahren des maschinellen Lernens zu entwickeln oder gegebene Konzepte zu evaluieren, vergleichen und zu beurteilen.
- Die Studierenden beherrschen die Analyse und Lösung entsprechender Problemstellungen im Team.

Die Studierenden können ihre Konzepte und Ergebnisse evaluieren und dokumentieren.

Zusammensetzung der Modulnote

Die Modulnote setzt sich zusammen aus:
- Protokolle (30%)
- kontinuierliche Bewertung (10%)
- Vortrag (30%)
- Abfrage (30%)

Voraussetzungen
keine
Inhalt

Ein Teil der Versuche ist in Ablauf und Struktur vorgegeben. In einem freien Teil des Labors werden die Studierenden mit ihren bereits gewonnenen Erfahrungen kreativ und selbstständig den Lösungsraum einer realen Problemstellung explorieren.

Empfehlungen
Vorausgesetzt werden Kenntnisse in den Grundlagen der Informationstechnik (z.B. M-ETIT-102098), Signal- und Systemtheorie (z.B. M-ETIT-102123) sowie Wahrscheinlichkeitstheorie (z.B. M-ETIT-102104)
Außerdem: Programmierkenntnisse (z.B. C++ oder Python) sind zwingend erforderlich.

Anmerkungen

Arbeitsaufwand
1. Teilnahme an den Laborterminen: 52h
 13 Termine á 4h
2. Vor- und Nachbereitung, Anfertigung von Berichten: 84h
3. Vorbereitung des Vortrags: 16h
4. Vorbereitung und Teilnahme an der mündlichen Abfrage: 28h
4.71 Modul: Labor Schaltungsdesign [M-ETIT-100518]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker
Dr.-Ing. Oliver Sander

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100788</td>
<td>Labor Schaltungsdesign</td>
<td>6</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung, sowie einer mündlichen Gesamtprüfung (30 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Qualifikationsziele

Zusammensetzung der Modulnote

Notenbildung ergibt sich aus der mündlichen Prüfung (50%), den während des Praktikums gegebenen Präsentationen und Versuchen (25%) und der Mitarbeit (25%) während des Praktikums.

Voraussetzungen

keine

Inhalt

Empfehlungen

Grundlegende Kenntnisse von elektronischen Basisschaltungen (z.B. Lehrveranstaltungen LEN, Nr. 23256, ES, Nr. 23655 und EMS, Nr. 23307)

Anmerkungen

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung, sowie einer mündlichen Gesamtprüfung (30 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

1. Präsenzzeit im Labor
 1. 15 Tage á 8h = 120h
2. Vor-/Nachbereitung deselbigen
 1. 15 Tage á 1h = 15h
3. Prüfungsvorbereitung und Präsenz in selbiger
 1. 15h
4.72 Modul: Lego Mindstorms - Basispraktikum [M-INFO-102557]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-107502 | Praktikum: Lego Mindstorms | 4 LP | Asfour |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

Voraussetzungen
Siehe Teilleistung.

Inhalt

Empfehlungen

Grundlegende Kenntnisse in Java sind zur erfolgreichen Teilnahme erforderlich.

Arbeitsaufwand

- Wöchentliche Anwesenheit: 12 x 4h
- Wöchentliche Vorbereitung: 12 x 5h
- Vorbereitung Abschlussrennen: 2 x 5h

Summe: **118h**
4.73 Modul: Lineare Algebra 1 und 2 [M-MATH-101309]

Verantwortung: Prof. Dr. Enrico Leuzinger
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik (Wahlpflichtmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-106338</td>
<td>Lineare Algebra 1 - Klausur</td>
<td>9 LP</td>
<td>Hartnick, Herrlich, Leuzinger, Sauer, Tuschmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-106339</td>
<td>Lineare Algebra 2 - Klausur</td>
<td>9 LP</td>
<td>Hartnick, Herrlich, Leuzinger, Sauer, Tuschmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-102249</td>
<td>Lineare Algebra 1 - Übungsschein</td>
<td>0 LP</td>
<td>Hartnick, Herrlich, Leuzinger, Sauer, Tuschmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-102259</td>
<td>Lineare Algebra 2 - Übungsschein</td>
<td>0 LP</td>
<td>Hartnick, Herrlich, Leuzinger, Sauer, Tuschmann</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form von zwei schriftlichen Prüfungen von jeweils 120 Minuten Dauer sowie den beiden bestandenen Studienleistungen aus den Übungen.

Qualifikationsziele

Die Studierenden

- kennen grundlegende mathematische Beweisverfahren und sind in der Lage, eine mathematische Argumentation formal korrekt auszuführen,
- kennen die algebraischen Strukturen Gruppe, Ring, Körper, Vektorraum und deren Beziehungen untereinander,
- beherrschen Lösungstechniken für lineare Gleichungssysteme, insbesondere das Gauß'sche Eliminationsverfahren,
- sind in der Lage, lineare Abbildungen durch Matrizen darzustellen und zugeordnete Größen wie Determinanten oder Eigenwerte mithilfe des Matrizenkalküls zu berechnen,
- können geometrische Eigenschaften wie Orthogonalität, Abstände, Isometrien durch Konzepte der linearen Algebra (Skalarprodukte, Normen) beschreiben und bestimmen.

Zusammensetzung der Modulnote

Die Modulnote ist die Durchschnittsnote der beiden Teilprüfungen.
Beide Teilprüfungen sind getrennt zu bestehen.

Voraussetzungen

Keine

Inhalt

- Grundbegriffe (Mengen, Abbildungen, Relationen, Gruppen, Ringe, Körper, Matrizen, Polynome)
- Lineare Gleichungssysteme (Gauß’sches Eliminationsverfahren, Lösungstheorie)
- Vektorräume (Beispiele, Unterräume, Quotientenräume, Basis und Dimension)
- Lineare Abbildungen (Kern, Bild, Rang, Homomorphiesatz, Vektorräume von Abbildungen, Dualraum, Darstellungsmatrizen, Basiswechsel, Endomorphismenalgebra, Automorphismengruppe)
- Determinanten
- Eigenwerttheorie (Eigenwerte, Eigenvektoren, charakteristisches Polynom, Normalformen)
- Vektorräume mit Skalarprodukt (bilineare Abbildungen, Skalarprodukt, Norm, Orthogonalität, adjungierte Abbildung, normale und selbstadjungierte Endomorphismen, Spektalsatz, Isometrien und Normalformen)
- Grundlagen der multilinearen Algebra
- Euklidische Räume (Unterräume, Bewegungen, Klassifikation, Ähnlichkeitsabbildungen)
- Optional: Affine Geometrie, Quadriken
Arbeitsaufwand
Gesamter Arbeitsaufwand: 540 Stunden
Präsenzzeit: 240 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 300 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.74 Modul: Lineare Algebra für die Fachrichtung Informatik [M-MATH-101307]

Verantwortung: Dr. Stefan Kühnlein
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik (Wahlpflichtmodule)

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103215</td>
<td>Lineare Algebra I für die Fachrichtung Informatik</td>
</tr>
<tr>
<td>T-MATH-102241</td>
<td>Lineare Algebra II für die Fachrichtung Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Übungen (mindestens 1 Bestandteil)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102238</td>
<td>Lineare Algebra I für die Fachrichtung Informatik - Übungsschein</td>
</tr>
<tr>
<td>T-MATH-102240</td>
<td>Lineare Algebra II für die Fachrichtung Informatik - Übungsschein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form von zwei schriftlichen Prüfungen von 120 Minuten (Lineare Algebra 1 für die Fachrichtung Informatik) beziehungsweise 90 Minuten (Lineare Algebra 2 für die Fachrichtung Informatik) Dauer sowie einem der beiden Leistungsnachweise aus den Übungen.

Qualifikationsziele
Die Studierenden sollen am Ende des Moduls
- den Übergang von der Schule zur Universität bewältigt haben,
- mit logischem Denken und strengen Beweisen vertraut sein,
- die Methoden und grundlegenden Strukturen der Linearen Algebra beherrschen.

Zusammensetzung der Modulnote
Die Modulnote ist die nach Leistungspunkten gewichtete Durchschnittsnote der beiden Teilprüfungen. Beide Teilprüfungen sind getrennt zu bestehen.

Voraussetzungen
Keine

Inhalt
- Grundbegriffe (Mengen, Abbildungen, Relationen, Gruppen, Ringe, Körper, Matrizen, Polynome)
- Lineare Gleichungssysteme (Gauß sches Eliminationsverfahren, Lösungstheorie)
- Vektorräume (Beispiele, Unterräume, Quotientenräume, Basis und Dimension)
- Lineare Abbildungen (Kern, Bild, Rang, Homomorphiesatz, Vektorräume von Abbildungen, Dualraum, Darstellungsmatrizen, Basiswechsel)
- Determinanten
- Eigenwerttheorie (Eigenwerte, Eigenvektoren, charakteristisches Polynom, Normalformen)
- Vektorräume mit Skalarprodukt (bilineare Abbildungen, Skalarprodukt, Norm, Orthogonalität, adjungierte Abbildung, selbstadjungierte Endomorphismen, Spektralsatz, Isometrien)

Anmerkungen
Arbeitsaufwand
Gesamter Arbeitsaufwand: 420 Stunden
Präsenzzeit: 180 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 240 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Elektrotechnik)

Leistungspunkte 7
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101917</td>
</tr>
<tr>
<td>Lineare Elektrische Netze</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten).
Die Modulnote ist die Note der schriftlichen Prüfung und der Projektarbeit.

Qualifikationsziele
Kompetenzen bei der Analyse und dem Design von elektrischen Schaltungen mit linearen Bauelementen mit Gleichstrom und Wechselstrom.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung und der Projektarbeit.

Voraussetzungen
keine

Inhalt
Methoden zur Analyse komplexer linearer elektrischer Schaltungen
Definitionen von U, I, R, L, C, unabhängige Quellen, abhängige Quellen
Kirchhoffsche Gleichungen, Knotenpunkt-Potential-Methode, Maschenstrom-Methode
Ersatz-Stromquelle, Ersatz-Spannungsquelle, Stern-Dreiecks-Transformation, Leistungsanpassung
Operationsverstärker, invertierender Verstärker, Addierer, Spannungsfolger, nicht-invertierender Verstärker, Differenzverstärker
Sinusförmige Ströme und Spannungen, Differentialgleichungen für L und C, komplexe Zahlen
Beschreibung von RLC-Schaltungen mit komplexen Zahlen, Impedanz, komplexe Leistung, Leistungsanpassung
Brückenschaltungen, Wheatstone-, Maxwell-Wien- und Wien-Brückenschaltungen
Serien- und Parallel-Schwingkreise
Vierpoltheorie, Z, Y und A-Matrix, Impedanztransformation, Ortskurven und Bodediagramm
Transformer, Gegeninduktivität, Transformer-Gleichungen, Ersatzschaltbilder des Transformers
Drehstrom, Leistungsübertragung und symmetrische Last.

Anmerkungen
Die Modulnote ist die Note der schriftlichen Prüfung und der Projektarbeit.

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:
Präsenzzeit in Vorlesungen (5 h je 15 Termine) =75 h
Selbststudium (8 h je 15 Termine) = 120 h
Vor-/Nachbereitung = 20 h
Gesamtaufwand ca. 215 Stunden = 7 LP
4.76 Modul: Markovsche Ketten [M-MATH-101323]

Verantwortung: Prof. Dr. Günter Last
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-102258 | Markovsche Ketten | 6 LP | Bäuerle, Fasen-Hartmann, Henze, Hug, Klar, Last |

Erfolgskontrolle(n)

Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Qualifikationsziele

Die Studierenden

- kennen ausgewählte Methoden der Konstruktion, der mathematischen Modellierung und der Analyse zeitdiskreter und zeitstetiger zufälliger Vorgänge und wenden diese an,
- können einfache Berechnungen von Wahrscheinlichkeiten und Mittelwerten im Rahmen dieser Modelle durchführen,
- kennen Prinzipien der Klassifikation Markovscher Ketten und können diese anwenden,
- können invariante Maße (stationäre Verteilungen) bestimmen und das Langzeitverhalten von Markov-Ketten analysieren,
- können selbstorganisiert und reflexiv arbeiten.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Inhalt

- Markov-Eigenschaft
- Übergangswahrscheinlichkeiten
- Simulationsdarstellung
- Irreduzibilität und Aperiodizität
- Stationäre Verteilungen
- Ergodensätze
- Reversible Markovsche Ketten
- Warteschlangen
- Jackson-Netzwerke
- Irrfahrten
- Markov Chain Monte Carlo
- Markovsche Ketten in stetiger Zeit
- Übergangsintensitäten
- Geburts-und Todesprozesse
- Poissonscher Prozess

Empfehlungen

Folgende Module sollten bereits belegt worden sein:
Einführung in die Stochastik
Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche

Vorbereitung auf die studienbegleitende Modulprüfung
Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte: 4
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Lehrstunde</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102053</td>
<td>MARS-Basispraktikum</td>
<td>4</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Nach erfolgreichem Besuch des MARS-Basispraktikum beherrschen die Studierenden grundlegende Algorithmen des CAGD, können sie in C++ implementieren und in kleineren Anwendungsaufgaben einsetzen. Sie haben gelernt, in kleinen Teams zusammenzuarbeiten und Aufgaben projektorientiert zu lösen.

Voraussetzungen
Siehe Teilleistung

Inhalt
Einführung in die Modellierung, Analyse, Rekonstruktion und Simulation geometrischer Daten (MARS-Geometrie :-) anhand kleiner praktischer Beispielprobleme mit klassischen Techniken des Kurven- und Flächenentwurfs, die in zahlreichen CAD-Systemen Anwendung finden. Im Rahmen des Praktikums wird mit einer C++-Klassenbibliothek gearbeitet, die um Methoden und Klassen erweitert zu erweitern ist.

Empfehlungen
Siehe Teilleistung

Arbeitsaufwand
120 h
4.78 Modul: Mechano-Informatik in der Robotik [M-INFO-100757]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

Leistungspunkte: 4
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkt</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

Voraussetzungen
Siehe Teilleistung.

Inhalt

Arbeitsaufwand
2h Präsenz + 2*2h = 4h Vor/Nachbereitung + 30h Prüfungsvorbereitung
=120h
Modul: Mensch-Maschine-Interaktion [M-INFO-100729]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Stammmodule)
Wahlbereich Informatik (Wahlmodule)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-INFO-101266</th>
<th>Mensch-Maschine-Interaktion</th>
<th>6 LP</th>
<th>Beigl</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-106257</td>
<td>Übungsschein Mensch-Maschine-Interaktion</td>
<td>0 LP</td>
<td>Beigl</td>
</tr>
</tbody>
</table>

Erfolgskontrollen:
Siehe Teilleistung

Qualifikationsziele
Lernziele: Nach Abschluss der Veranstaltung können die Studierenden

- grundlegende Kenntnisse über das Gebiet Mensch-Maschine Interaktion wiedergeben
- grundlegende Techniken zur Analyse von Benutzerschnittstellen nennen und anwenden
- grundlegende Regeln und Techniken zur Gestaltung von Benutzerschnittstellen anwenden
- existierende Benutzerschnittstellen und deren Funktion analysieren und bewerten

Voraussetzungen:
Siehe Teilleistung

Inhalt
Themenbereiche sind:
1. Informationsverarbeitung des Menschen (Modelle, physiologische und psychologische Grundlagen, menschliche Sinne, Handlungsprozesse),
2. Designgrundlagen und Designmethoden, Ein- und Ausgabeeinheiten für Computer, eingebettete Systeme und mobile Geräte,
3. Prinzipien, Richtlinien und Standards für den Entwurf von Benutzerschnittstellen
4. Technische Grundlagen und Beispiele für den Entwurf von Benutzungsschnittstellen (Textdialoge und Formulare, Menüsysteme, graphische Schnittstellen, Schnittstellen im WWW, Audio-Dialogsysteme, haptische Interaktion, Gesten),
5. Methoden zur Modellierung von Benutzungsschnittstellen (abstrakte Beschreibung der Interaktion, Einbettung in die Anforderungsanalyse und den Softwareentwurfsprozess),
7. Übung der oben genannten Grundlagen anhand praktischer Beispiele und Entwicklung eigenständiger, neuer und alternativer Benutzungsschnittstellen.

Empfehlungen:
Siehe Teilleistung
Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 180 Stunden (6.0 Credits).

Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min

Präsenzzeit: Besuch der Übung
8 x 90 min
12 h 00 min

Vor- / Nachbereitung der Vorlesung
15 x 150 min
37 h 30 min

Vor- / Nachbereitung der Übung
8 x 360 min
48 h 00 min

Foliensatz/Skriptum 2x durchgehen
2 x 12 h
24 h 00 min

Prüfung vorbereiten
36 h 00 min

SUMME

180 h 00 min

Arbeitsaufwand für die Lerneinheit "Mensch-Maschine-Interaktion"
Modul: Methodische Grundlagen des OR [M-WIWI-101414]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Operations Research

Leistungspunkte: 9
Turnus: Jedes Semester
Dauer: 1 Semester
Level: 3
Version: 9

Wahlpflichtblock: Wahlpflichtangebot (mindestens 1 Bestandteil sowie zwischen 4,5 und 9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102726</td>
<td>Globale Optimierung I</td>
<td>4,5 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-103638</td>
<td>Globale Optimierung I und II</td>
<td>9 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I</td>
<td>4,5 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-103637</td>
<td>Nichtlineare Optimierung I und II</td>
<td>9 LP</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot ()**

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>4,5 LP</td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-102727</td>
<td>Globale Optimierung II</td>
<td>4,5 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102725</td>
<td>Nichtlineare Optimierung II</td>
<td>4,5 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management</td>
<td>4,5 LP</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele
Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren, insbesondere aus der nichtlinearen und aus der globalen Optimierung,
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
- modelliert und klassifiziert Optimierungsprobleme und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen.

Voraussetzungen
Nur prüfbar in Kombination mit dem Modul Grundlagen des OR.
Mindestens eine der Teilleistungen Nichtlineare Optimierung I und Globale Optimierung I muss absolviert werden.

Inhalt
Der Schwerpunkt des Moduls liegt auf der Vermittlung sowohl theoretischer Grundlagen als auch von Lösungsverfahren für Optimierungsprobleme mit kontinuierlichen Entscheidungsvariablen. Die Vorlesungen zur nichtlinearen Optimierung behandeln lokale Lösungskonzepte, die Vorlesungen zur globalen Optimierung die Möglichkeiten zur globalen Lösung.

Empfehlungen

Anmerkungen
Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet unter http://www.ior.kit.edu nachgelesen werden.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.81 Modul: Microwave Laboratory I [M-ETIT-100425]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
KIT-Fakultät für Informatik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-100734 | Microwave Laboratory I | 6 LP | Zwick |

Erfolgskontrolle(n)

Qualifikationsziele

Zusammensetzung der Modulnote
Die Note für die Versuchs durchführung setzt sich aus der Vorbereitung (20%), aus dem Protokoll (40%) und der schriftlichen oder mündlichen Lernzielkontrolle (40%) zum jeweiligen Versuch zusammen. Die Endnote für das gesamte Labor ergibt sich aus dem arithmetischen Mittelwert aller vier Laborversuche. Studierende, die unvorbereitet zum jeweiligen Versuch erscheinen, dürfen an der Versuchs durchführung nicht teilnehmen. Der Versuch muss zu einem anderen Zeitpunkt wiederholt werden.

Voraussetzungen
keine

Inhalt

Empfehlungen
Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

Anmerkungen
Die Note für die Versuchs durchführung setzt sich aus der Vorbereitung (20%), aus dem Protokoll (40%) und der schriftlichen oder mündlichen Lernzielkontrolle (40%) zum jeweiligen Versuch zusammen. Die Endnote für das gesamte Labor ergibt sich aus dem arithmetischen Mittelwert aller vier Laborversuche. Studierende, die unvorbereitet zum jeweiligen Versuch erscheinen, dürfen an der Versuchs durchführung nicht teilnehmen. Der Versuch muss zu einem anderen Zeitpunkt wiederholt werden.

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist von durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:
Präsenzstudienzeit Labor: 45 h
Versuchsvorbereitung, Protokolle, Prüfungsvorbereitung: 135 h
Insgesamt 180 h = 6 LP
4.82 Modul: Mikroprozessoren I [M-INFO-101183]

Verantwortung: Prof. Dr. Wolfgang Karl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101972 | Mikroprozessoren I | 3 LP | Karl |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden sollen detaillierte Kenntnisse über den Aufbau und die Organisation von Mikroprozessorsystemen in den verschiedenen Einsatzgebieten erwerben.
- Die Studierenden sollen die Fähigkeit erwerben, Mikroprozessoren für verschiedene Einsatzgebiete bewerten und auswählen zu können.
- Die Studierenden sollen die Fähigkeit erwerben, systemnahe Funktionen programmieren zu können.
- Die Studierenden sollen Architekturmerkmale von Mikroprozessoren zur Beschleunigung von Anwendungen und Systemfunktionen ableiten, bewerten und entwerfen können.
- Die Studierenden sollen die Fähigkeiten erwerben, Mikroprozessorsysteme in strukturierter und systematischer Weise entwerfen zu können.

Voraussetzungen
Siehe Teilleistung.

Inhalt

Arbeitsaufwand
2 SWS + (1,5 x 2 SWS) x 15 + 15 h Vorbereitung auf mündliche Prüfung = 90 h = 3 ECTS
4.83 Modul: Mobile Computing und Internet der Dinge [M-INFO-101249]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-102061 | Mobile Computing und Internet der Dinge | 5 LP | Beigl |

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele

Ziel der Vorlesung ist es, Kenntnisse über Grundlagen, weitergehende Methoden und Techniken des Mobile Computing und des Internet der Dinge zu erwerben.

Nach Abschluss der Vorlesung können die Studierenden

- Techniken zur Gestaltung von Mobile Computing Software und Benutzerschnittstellen für Mobile Computing Anwendungen benennen, beschreiben und erklären und bewerten
- Software- und Kommunikationsschnittstellen für das Internet der Dinge und Basiskenntnisse zu Personal Area Networks (PAN) benennen, beschreiben, vergleichen und bewerten
- selbständig Systeme für Mobile Computing und das Internet der Dinge entwerfen, Entwürfe analysieren und bewerten
- eine adaptive Webseite entwerfen, implementieren und auf ihre Usability hin untersuchen
- eine eigene App konzipieren und implementieren, die über Bluetooth mit einem Gerät kommuniziert

Voraussetzungen
siehe Teilleistung

Inhalt

Die Vorlesung gliedert sich in folgende Themenbereiche:

Mobile Computing:

- Plattformen: SmartPhones, Tablets, Glasses
- Mensch-Maschine-Interaktion für Mobile Computing
- Software Engineering, -Projekte und Programmierung für mobile Plattformen (native Apps, HTML5)
- Sensoren und deren Einsatz
- Plattformen und Software Engineering für das Internet der Dinge: Raspberry Pi und Arduino
- Personal Area Networks: Bluetooth (4.0), ANT
- Home Networks: ZigBee/IEEE 802.15.4, CEBus, m-bus
- Technologien des Internet der Dinge, IoT: RFID, NFC, Auto-ID, EPC, Web of Things
Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 150 Stunden (5.0 Credits).

Aktivität

Arbeitsaufwand

Präsenzzeit: Besuch der Vorlesung
15 x 90 min
22 h 30 min

Präsenzzeit: Besuch der Übung
15 x 45 min
11 h 15 min

Vor- / Nachbereitung der Vorlesung und Übung
15 x 60 min
15 h 00 min

Entwicklung einer adaptiven Webseite und einer mobilen App
41 h 15 min

Foliensatz 2x durchgehen
2 x 12 h
24 h 00 min

Prüfung vorbereiten
36 h 00 min

SUMME
150 h 00 min

Arbeitsaufwand für die Lerneinheit "Mobile Computing und Internet der Dinge"
4.84 Modul: Moderne Physik für Informatiker [M-PHYS-101340]

Verantwortung: Dr. Stefan Gieseke
 Prof. Dr. Milada Margarete Mühlleitner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Ergänzungsfach / Physik

Leistungspunkte
Jedes Sommersemester
Dauer
Level
Version

Pflichtbestandteile
T-PHYS-102323 Moderne Physik für Informatiker 9 LP Gieseke, Mühlleitner

Erfolgskontrolle(n)
Die Erfolgskontrolle besteht aus einer schriftlichen Klausur im Umfang von i.d.R. 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.
Die Modulnote ist die Note der schriftlichen Prüfung.

Qualifikationsziele
Probleme der Klassischen Physik und deren Lösung in der Modernen Physik/Konzepte der Modernen Physik.
Die Studierenden sollen lernen physikalische Probleme im Rahmen der Lagrangemechanik, speziellen Relativitätstheorie und Quantenmechanik zu lösen.

Voraussetzungen
Dieses Modul muss zusammen mit dem Modul Grundlagen der Physik geprüft werden.

Inhalt
Wiederholung Newton-Mechanik; Lagrangeformalismus; Variationsprinzipien in der Mechanik; Hamiltonformalismus;
Spezielle Relativitätstheorie (Michelson-Morley Experiment, Einstein Postulate, Lorentztransformation, Relativistische Mechanik);
Quantenmechanik (historische Experimente und Widersprüche, Schrödinger-Gleichung, eindimensionale Rechteckpotentiale, Grundpostulate der Quantenmechanik)

Empfehlungen
Grundkenntnisse Physik (Newton Mechanik, Elektrodynamik); Grundkenntnisse Analysis und Lineare Algebra

Literatur
Mechanik
- T. Fließbach, Lehrbuch zur Theoretischen Physik 1 - Mechanik, Spektrum
- W. Nolting, Grundkurs Theoretische Physik 1+2, Springer
- H. Goldstein, C. P. Poole, J. L. Safko, Klassische Mechanik, Wiley-VCH
- L. D. Landau, E. M. Lifschitz, Lehrbuch der Theoretischen Physik I (Mechanik), Harri Deutsch

Spezielle Relativitätstheorie
- Walter Greiner, Spezielle Relativitätstheorie, Verlag Harri Deutsch, 1992

Quantenmechanik
- C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantenmechanik, de Gruyter, 1999
- A. Messiah, Quantenmechanik, de Gruyter, 1991
- J.J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, 1994
- F. Schwabl, Quantenmechanik, Springer, 2002
- L. Landau, E. Lifschitz, Theoretische Physik III, Verlag Harri Deutsch
- W. Nolting, Quantenmechanik I/II, Springer, 2001
4.85 Modul: Modul Bachelorarbeit [M-INFO-101721]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Bachelorarbeit

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-INFO-103336</th>
<th>Bachelorarbeit</th>
<th>15 LP</th>
<th>Beckert</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele

- Studierende können planvoll, zielgerichtet und selbständig ein Thema der Informatik wissenschaftlich bearbeiten. Dabei werden die Ziele i.d.R. vorgegeben.
- Dabei sind sie in der Lage, für ihr Problem eine Literaturrecherche nach wissenschaftlichen Quellen durchzuführen.
- Studierende können dazu geeignete wissenschaftliche Verfahren und Methoden auswählen und sie systematisch anzuwenden. Wenn notwendig, passen sie an bzw. entwickeln sie weiter.
- Studierende können ihre Ergebnisse mit dem Stand der Forschung vergleichen und evaluieren.
- Studierende kommunizieren ihre Ergebnisse klar und akademisch angemessen in schriftlicher und mündlicher Form.

Voraussetzungen
Siehe Teilleistung

Inhalt

- Die Bachelorarbeit ist eine schriftliche Arbeit, die zeigt, dass die Studierenden selbständig in der Lage sind, ein Problem aus ihrem Fach wissenschaftlich zu bearbeiten.
- Soll die Bachelorarbeit außerhalb der Fakultät angefertigt werden, bedarf dies der Zustimmung des Prüfungsausschusses.
- Die Bachelorarbeit kann auch in Form einer Gruppenarbeit zugelassen werden, wenn der als Prüfungsleistung zu bewertende Beitrag des einzelnen Studierenden deutlich unterscheidbar ist.
- Bei der Abgabe der Bachelorarbeit haben die Studierende schriftlich zu versichern, dass sie die Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittelbenutzt haben, die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet haben.
- Der Zeitpunkt der Ausgabe des Themas der Bachelorarbeit ist durch den verantwortlichen Prüfer und die/den Studierenden festzuhalten und dies beim Prüfungsausschuss (Informatik Studiengangservice ISS) aktenkundig zu machen.

Arbeitsaufwand
Der Arbeitsaufwand für das Modul beträgt i.d.R. 450 Stunden.
4.86 Modul: Nachrichtentechnik I [M-ETIT-102103]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Informationstechnik)

Leistungspunkte	Turnus	Dauer	Sprache	Level	Version
6 | Jedes Sommersemester | 1 Semester | Deutsch | 2 | 1

Pflichtbestandteile

| T-ETIT-101936 | Nachrichtentechnik I | 6 LP | Schmalen |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 180 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Qualifikationsziele
Die Studentinnen und Studenten können Probleme im Bereich der Nachrichtentechnik beschreiben und analysieren. Durch Anwendung der erlernten Methoden können Studierende die Vorgänge in nachrichtentechnischen Systemen erfassen, beurteilen und verwendete Algorithmen und Techniken bzgl. ihrer Leistungsfähigkeit vergleichen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Inhalt
Die Vorlesung stellt eine Einführung in die Nachrichtentechnik auf der Basis mathematischer und systemtheoretischer Grundkenntnisse dar. Das erste Kapitel behandelt Signale und Systeme im komplexen Basisband und zeigt, dass wesentliche Teile der Signalverarbeitung in der (rechentechnisch oft günstigen) äquivalenten Tiefpassdarstellung ausgeführt werden können. Im zweiten Kapitel werden die Grundbegriffe der Schannonschen Informationstheorie eingeführt, wobei besonderer Wert auf die Definitionen der Information und der Kanalkapazität gelegt wird. Im dritten Kapitel werden Übertragungskanäle der Funkkommunikation besprochen.

Das vierte Kapitel stellt die Aufgaben der Quellencodierung vor und beschreibt deren praktischen Einsatz am Beispiel der Fax-Übertragung. Die Kapitel fünf und sechs sind der Kanalcodierung gewidmet. Im ersten Teil werden, nach allgemeinen Aussagen über die Kanalcodierung, Blockcodes und im zweiten Teil Faltungscodes mit dem zu ihrer Decodierung benutzten Viterbi-Algorithmen behandelt.

Kapitel zehn zeigt auf, welche Kompetenzen die Schüler von einer Nachrichtenübertragungssysteme erwerben muss, wenn er praktisch einsetzbare Lösungen zu erarbeiten hat. Eine besondere Rolle spielen dabei die Shannon-Grenze, bis zu der prinzipiell eine Übertragung mit beliebig kleiner Fehlerrate möglich ist, und die Bandbreiteeffizienz, bei den bekannten Lizenzkosten natürlich ein wichtiges Gütekriterium für eine Übertragung. Das Kapitel elf behandelt Multiple Input Multiple Output (MIMO). Die MIMO-Verfahren, die ein Mittel zur Kapazitätssteigerung in Mobilfunknetzen darstellen, sind seit einigen Jahren ein wichtiges Thema der Forschungsvorhaben. Sie befinden sich jetzt an der Schwelle zum praktischen Einsatz. Im zwölften Kapitel werden die grundsätzlichen Vielfachzugsverfahren in Frequenz, Zeit und Code (FDMA, TDMA und CDMA) diskutiert.

Empfehlungen
Inhalte der Höheren Mathematik I und II, Wahrscheinlichkeitstheorie und Signale und Systeme werden benötigt.

Arbeit aufwand
1. Präsenzzeit Vorlesung: 15 * 3 h = 45 h
2. Vor-/Nachbereitung Vorlesung: 15 * 6 h = 90 h
3. Präsenzzeit Übung: 15 * 1 h = 15 h
4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet

Insgesamt: 180 h = 6 LP
4.87 Modul: Nachrichtentechnik II [M-ETIT-100440]

Verantwortung: Dr.-Ing. Holger Jäkel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte: 4
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 2

Pflichtbestandteile
T-ETIT-100745 Nachrichtentechnik II 4 LP Jäkel

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Qualifikationsziele
Die Studierenden sind in der Lage, auch komplexere Problemstellungen der Nachrichtentechnik zu analysieren. Sie können selbstständig Lösungsansätze erarbeiten und deren Gültigkeit überprüfen sowie Software zur Problemlösung einsetzen.
Die Übertragung der erlerneten Methoden ermöglicht den Studierenden, auch andere Themenstellungen schnell zu erfassen und mit dem angeeigneten Methodenwissen zu bearbeiten.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt
Die Lehrveranstaltung erweitert die in der Vorlesung Nachrichtentechnik I behandelten Fragestellungen. Der Fokus liegt hierbei auf der detaillierten Analyse bekannter Algorithmen und der Einführung neuer Verfahren, die nicht in der Vorlesung Nachrichtentechnik I besprochen wurden, insbesondere aus den Bereichen System- und Kanal-Modellierung, Entzerrung und Synchronisation.

Empfehlungen
Vorheriger Besuch der Vorlesung „Nachrichtentechnik I“ wird empfohlen.

Arbeitsaufwand
1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
2. Vor-/Nachbereitung Vorlesung: 15 * 4 h = 60 h
3. Präsenzzeit Übung: 15 * 1 h = 15 h
4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet
Insgesamt: 135 h = 4 LP
4.88 Modul: Nachrichtentechnik II / Communications Engineering II [M-ETIT-105274]

Verantwortung: Dr.-Ing. Holger Jäkel
Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-110697 | Nachrichtentechnik II / Communications Engineering II | 4 LP | Jäkel, Schmalen |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Kenntnis der grundlegenden Ingenieurmathematik inklusive Integraltransformationen und Wahrscheinlichkeitstheorie sowie Grundlagenwissen über die Nachrichtentechnik.

Inhalt
Die Lehrveranstaltung erweitert die in der Vorlesung Nachrichtentechnik I behandelten Fragestellungen. Der Fokus liegt hierbei auf der detaillierten Analyse bekannter Algorithmen und der Einführung neuer Verfahren, die nicht in der Vorlesung Nachrichtentechnik I besprochen wurden, insbesondere aus den Bereichen System- und Kanal-Modellierung, Entzerrung und Synchronisation.

Empfehlungen
Vorheriger Besuch der Vorlesung "Nachrichtentechnik I", "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" wird empfohlen.

Anmerkungen

Arbeitsaufwand
1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
2. Vor-/Nachbereitung Vorlesung: 15 * 4 h = 60 h
3. Präsenzzeit Übung: 15 * 1 h = 15 h
4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet
Insgesamt: 135 h = 4 LP
4.89 Modul: Optik und Festkörperelektronik [M-ETIT-105005]

Verantwortung: Prof. Dr. Ulrich Lemmer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Elektrotechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-ETIT-110275</th>
<th>Optik und Festkörperelektronik</th>
<th>6 LP</th>
</tr>
</thead>
</table>
4.90 Modul: Optimierung unter Unsicherheit [M-WIWI-103278]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Operations Research

Leistungspunkte	Turnus	Dauer	Sprache	Level	Version
9 | Jedes Semester | 1 Semester | Deutsch | 3 | 4

Wahlpflichtblock: Wahlpflichtangebot (zwischen 1 und 2 Bestandteilen)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-106546</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>4,5 LP</td>
<td>Rebennack</td>
</tr>
<tr>
<td>T-WIWI-106545</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td>4,5 LP</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (höchstens 1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102724</td>
<td>Nichtlineare Optimierung I</td>
<td>4,5 LP</td>
<td>Stein</td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management</td>
<td>4,5 LP</td>
<td>Nickel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele

Der/die Studierende

- benennt und beschreibt die Grundbegriffe von Optimierungsverfahren unter Unsicherheit, insbesondere aus der stochastischen Optimierung,
- kennt die für eine quantitative Analyse unverzichtbaren Methoden und Modelle,
- modelliert und klassifiziert Optimierungsprobleme unter Unsicherheit und wählt geeignete Lösungsverfahren aus, um auch anspruchsvolle Optimierungsprobleme selbständig und gegebenenfalls mit Computerhilfe zu lösen,
- validiert, illustriert und interpretiert erhaltene Lösungen, insbesondere von stochastischen Optimierungsproblemen.

Voraussetzungen

Mindestens eine der beiden Teilleistungen "Optimierungsansätze unter Unsicherheit" und "Einführung in die Stochastische Optimierung" ist Pflicht.

Inhalt

Empfehlungen

Anmerkungen

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 5 Credits ca. 150h und für Lehrveranstaltungen mit 4,5 Credits ca. 135h. Die Gesamtsstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.91 Modul: Optoelectronic Components [M-ETIT-100509]

Verantwortung: Prof. Dr. Wolfgang Freude
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte: 4
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 3
Version: 1

Pflichtbestandteile

| T-ETIT-101907 | Optoelectronic Components | 4 LP | Freude |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten). Die individuellen Termine für die mündliche Prüfung werden regelmäßig angeboten.

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
keine

Inhalt

In den Übungen werden die Vorlesungsinhalte auf Problemstellungen mit Praxisbezug angewendet, um das Verständnis zu vertiefen. Die Übungsaufgaben sind im Voraus elektronisch verfügbar.

Empfehlungen
Kenntnisse in folgenden Bereichen: Elemente der Wellenausbreitung, Physik des pn-Übergangs.

Arbeitsaufwand
Ca. 120 h Arbeitsaufwand des Studierenden. Unter den Arbeitsaufwand fallen:
30 h - Präsenzzeiten in Vorlesungen
15 h - Übungen
75 h - Vor-/Nachbereitung
Modul: Photovoltaische Systemtechnik [M-ETIT-100411]

Verantwortung: Robin Grab
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Lehrveranstaltung</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-100724</td>
<td>3</td>
<td>Photovoltaische Systemtechnik</td>
<td>Grab</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Qualifikationsziele
Die Studenten kennen die theoretischer Grundlagen der Photovoltaik-Systemtechnik.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Inhalt
Es werden die Grundlagen der Photovoltaik-Systemtechnik vermittelt.

Arbeitsaufwand
Präsenzstudienzeit: 30 h
Selbststudienzeit: 60 h
Insgesamt 90 h = 3 LP
4.93 Modul: Physiologie und Anatomie I [M-ETIT-100390]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte: 3
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-ETIT-101932</th>
<th>Physiologie und Anatomie I</th>
<th>3 LP</th>
<th>Dössel</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Qualifikationsziele
Grundverständnis über die Funktionen des menschlichen Körpers und der dabei ablaufenden Prozesse.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Inhalt
Die Vorlesung vermittelt Basiswissen über die wesentlichen Organsysteme des Menschen und die medizinische Terminologie. Sie wendet sich an Studierende technischer Studiengänge, die an physiologischen Fragestellungen interessiert sind.
- Themenblöcke des ersten Teils (Wintersemester)
 - Einführung- Organisationsebenen im Körper
 - Grundlagen der Biochemie im Körper
 - Zellaufbau, Zellphysiologie, Gewebe
 - Transportmechanismen im Körper
 - Neurophysiologie I (Nervenzielle, Muskelzelle, das autonome Nervensystem)
 - Herz und Kreislaufsystem mit Blut und Lymphpe
 - Atmung

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:
- Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h
- Selbststudium (3 h je 15 Termine) = 45 h
- Vor-/Nachbereitung = 20 h
- Gesamtaufwand ca. 95 Stunden = 3 LP
Verantwortung: Prof. Dr. Michael Siegel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

4.94 Modul: Praktikum Adaptive Sensorelektronik [M-ETIT-100469]

Leistungspunkte: 6
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile
T-ETIT-100758 Praktikum Adaptive Sensorelektronik 6 LP Siegel

Erfolgskontrolle(n)
Das Praktikum schlüsselt sich in 6 eigenständige Versuche auf. Vor jedem Versuch geben die Studierenden ein ausgefülltes Übungblatt ab und werden nach erfolgreicheh Versuchsende zum Versuch abgefragt. Die Endnote ergibt ich aus diesen absolvierten 6 Versuchen.

Qualifikationsziele
Die Studierenden sind befähigt die vermittelten Kenntnisse beim Einsatz programmierbarer Mixed-Signal Bausteine als Vorstufe der Entwicklung integrierter System-on-Chip Lösungen experimentell anzuwenden. Dabei können sie die vorgegebenen Problemstellungen analysieren und die, zur Lösung notwendigen, Abläufe kategorisieren sowie deren Umsetzung mittels unterschiedlicher Entwicklungswerkzeuge realisieren.

Zusammensetzung der Modulnote
Die Modulnote ergibt sich aus den 6 zu bearbeitenden Projekten. Dabei wird für jedes Projekt zu Beginn ein Vorbereitungssblatt abgegeben (schriftliche Teilnote) und am Ende des Projektes eine mündliche Abfrage durchgeführt.

Voraussetzungen
keine

Inhalt

Mit dem Programm Loxone Config wird eine Bedienoberfläche und Visualisierung der von den programmierbaren Mixed-Signal Bausteinen erfassten Daten und logischen Verknüpfungen mit den Aktoren erstellt, die mit einem Webinterface oder einer App für Mobilgeräte einen vernetzten Zugriff auf die Sensordaten erlaubt.

Empfehlungen
keine

Anmerkungen
Die Modulnote ergibt sich durch die Mittelwertbildung aus Vorbereitung, Durchführung und Kurzabfrage aller Teilprojekte (I bis VI).
Arbeitsaufwand
Der Arbeitsaufwand in Stunden ist nachfolgend aufgeschlüsselt:

1. Präsenzzeit im Praktikum 48 h
2. Vor-/Nachbereitung 120 h
3. Erstellen der Lösungsblätter 12 h
Modul: Praktikum Hard- und Software in leistungselektronischen Systemen [M-ETIT-103263]

Verantwortung: Prof. Dr.-Ing. Marc Hiller
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung.

Qualifikationsziele
Die Studierenden kennen die für den Entwurf, den Aufbau, die Regelung und die Inbetriebnahme einer leistungselektronischen Schaltung notwendigen Entwicklungsschritte. Sie sind in der Lage, eine einfache leistungselektronische Schaltung selbstständig zu entwickeln. Sie können die Software mit den notwendigen Funktionen für einen sicheren Betrieb einer einfachen leistungselektronischen Schaltung entwerfen. Sie sind in der Lage, die Funktion zu beurteilen und zu dokumentieren.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der Prüfungsleistung anderer Art.
Die Notenbildung ergibt sich aus der Versuchsdurchführung, -dokumentation und Abfrage zum Verständnis der Lerninhalte

Voraussetzungen

Inhalt
Die Teilnehmer sollen den Aufbau einer Schaltung vom Design über die Inbetriebnahme bis zur Regelung an einem praktischen Beispiel selbst durchführen. Ziel ist die schrittweise Entwicklung (Schaltplanentwurf, Simulation, Regelung, Parameterbestimmung und Aufbau) eines einfachen funktionsfähigen Geräts durch jeden Teilnehmer nach Vorgaben des Dozenten. An mehreren Nachmittagen werden die einzelnen Schritte bis zur Fertigstellung des Geräts unter Betreuung durchgeführt.

Arbeitsaufwand
Präsenzzeit (14 x 4 h): 60 h
Häusliche Vorbereitungszeit: 42 h
Erstellen des Abschlussberichts: 55 h
Insgesamt: 157 h (entspricht 6 LP)
4.96 Modul: Praktische Mathematik [M-MATH-101308]

Verantwortung:
Prof. Dr. Norbert Henze
Prof. Dr. Christian Wieners

Einrichtung:
KIT-Fakultät für Mathematik

Bestandteil von:
Mathematik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Unterrichtstitel</th>
<th>Leistungspunkte</th>
<th>Lehrer/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102244</td>
<td>Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik</td>
<td>4,5 LP</td>
<td>Henze</td>
</tr>
<tr>
<td>T-MATH-102242</td>
<td>Numerische Mathematik für die Fachrichtung Informatik</td>
<td>4,5 LP</td>
<td>Rieder, Weiß, Wieners</td>
</tr>
<tr>
<td>T-MATH-102243</td>
<td>Numerische Mathematik für die Fachrichtung Informatik, Übungsschein</td>
<td>0 LP</td>
<td>Rieder, Weiß, Wieners</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle wird in den jeweiligen Lehrveranstaltungsbeschreibungen erläutert.

Qualifikationsziele

Die Lernziele werden in der Lehrveranstaltungsbeschreibung näher erläutert.

Zusammensetzung der Modulnote

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Kommastelle abgeschnitten.

Voraussetzungen

Inhalt

Die Inhalte werden in den Lehrveranstaltungsbeschreibungen erläutert.
4.97 Modul: Praktischer Entwurf Regelungstechnischer Systeme [M-ETIT-103814]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-107702</td>
<td>Praktischer Entwurf Regelungstechnischer Systeme</td>
<td>6 LP</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>Hohmann</td>
</tr>
<tr>
<td>T-ETIT-108117</td>
<td>Workshop Praktischer Entwurf Regelungstechnischer Systeme</td>
<td>0 LP</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>2</td>
<td>Hohmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.
- Bei weniger als 30 Studierenden erfolgt die Erfolgskontrolle in Form einer mündlichen Prüfung (ca. 20 Minuten). Die Modulnote ist die Note der mündlichen Prüfung.
- **Achtung:** Die erfolgreiche Teilnahme am Workshop ist Voraussetzung für die Zulassung zur Prüfung.

Die Teilnahme am Workshop verpflichtet nicht zur Teilnahme an der Prüfung. Der Workshop ist aus Kapazitätsgründen auf eine Teilnehmerzahl von 60 Studierende begrenzt. Sofern erforderlich wird ein Auswahlverfahren durchgeführt dessen Details in der ersten Vorlesung und auf der Homepage der Veranstaltung bekanntgegeben werden.

Qualifikationsziele

- Die Studentinnen und Studenten können das Vorgehen eines modellbasierten (hier Schwerpunkt Regelungstechnischen) Entwicklungsprozess wiedergeben und diesen Prozess auf eine gegebene neue Problemstellung übertragen.
- Die Studentinnen und Studenten kennen den Aufbau, die einzelnen Elemente und die Unterschiede zwischen einem Lasten- und Pflichtenheft. Außerdem sind die Studentinnen und Studenten mit den Grundlagen der Realisierung von Regelsysteme sowie deren Validierung vertraut.
- Für ein gegebenes System und Regelkonzept können die Studentinnen und Studenten ein geeignetes Modell ableiten und modellbasiert die Parameter der Regelung ermitteln sowie die Regelgüte des resultierenden Regelkreises beurteilen.
- Die Studentinnen und Studenten können das Nichols Diagramm interpretieren und auf dessen Basis die Methode des Loop-Shaping durchführen.
- Die Studentinnen und Studenten kennen praxisrelevante erweiterte Reglerstrukturen und Konzepte (Anti-Wind-Up, Zwei-Freiheitsgrade-Struktur, Internal Model Control, adaptive Regelung, Gain-Scheduling und schaltende Regler) und können deren Funktionsweisen erklären. Die Studentinnen und Studenten sind sich deren jeweiligen Einsatzbereichen und den damit verbundenen Grenzen bewusst und können diese praktisch anwenden.
- Für eine reale gegebene Problemstellung sind die Studentinnen und Studenten in der Lage ein geeignetes Regelkonzept auszuwählen oder sollte bereits ein Konzept vorgegeben sein, dieses eigenständig zu beurteilen, zu hinterfragen und mit anderen geeigneten Konzepten kritisch zu vergleichen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen/mündlichen Prüfung.

Voraussetzungen

Die erfolgreiche Teilnahme am Workshop der Vorlesung ist Voraussetzung für die Zulassung zur Prüfung.
Inhalt
Dieses Modul soll Studierenden die theoretischen und praktischen Aspekte der Lösung regelungstechnischer Problemstellungen unter industriellen Randbedingungen vermitteln. Dafür wird zunächst das grundlegende und strukturierte Vorgehen für die Systementwicklung gelehrt. Dabei wird auf die einzelnen Entwurfsphasen (Lasten- und Pflichtenheft, Realisierung des Reglers, Validierung, etc.), die im allgemeinen Vorgehensmodell eines modellbasierten Entwicklungsverfahrens definiert sind, eingegangen. Im Rahmen der Reglerrealisierung behandelt die Vorlesung Erweiterungen der klassischen PID-Reglerstruktur, wie z.B. Anti-Wind-Up und Zwei-Freiheitsgrade-Struktur, sowie über die klassischen Regler hinausgehende für den industriellen Einsatz relevante Regelungskonzepte, wie z.B. Internal Model Control, adaptive Regelung, Gain-Scheduling und schaltende Regler. Um die Lerninhalte zu veranschaulichen, stellen ausgewählte Entwicklungsingenieure ergänzend zum klassischen Vorlesungskonzept unterschiedliche, reale Problemstellung und deren Lösungsansätze aus deren industriellen Umfeld vor.

Empfehlungen

Anmerkungen
Achtung: Die erfolgreiche Teilnahme am Workshop ist Voraussetzung für die Zulassung zur Prüfung.
Die Teilnahme am Workshop verpflichtet nicht zur Teilnahme an der Prüfung.

Der Workshop ist aus Kapazitätsgründen auf eine Teilnehmerzahl von 60 Studierende begrenzt. Sofern erforderlich wird ein Auswahlverfahren durchgeführt dessen Details in der ersten Vorlesung und auf der Homepage der Veranstaltung bekanntgegeben werden.

Arbeitsaufwand
1. Präsenzzeit in Vorlesung/Übung und Workshop (verpflichtend) (2+1 SWS (Übung) +1 SWS (Workshop): 45h)
2. Vor-/Nachbereitung von Vorlesung/Übung/Workshop (120h)
3. Vorbereitung/Präsenz Prüfung (15h)
4.98 Modul: Praxis der Software-Entwicklung [M-INFO-101176]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Praktische Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-102031 | Praxis der Software-Entwicklung | 7 LP | Snelting |

Erfolgskontrolle(n)

Siehe Teilleistung

Qualifikationsziele

Die Studierenden lernen, ein vollständiges Softwareprojekt nach dem Stand der Softwaretechnik in Teams von 4-6 Teilnehmern durchzuführen. Ziel ist es insbesondere, Verfahren des objektorientierten Software-Entwurfs und der Qualitätssicherung praktisch einzusetzen, Implementierungskompetenz umzusetzen, und arbeitsteilig im Team zu kooperieren. Die Teilnehmer erstellen ein Pflichtenheft von ca. 30 Seiten, ein Entwurfsmodell mit ca. 75 Klassen, eine Entwurfsdokumentation von ca. 80 Seiten, eine validierte Implementierung mit ca. 10000 Zeilen Quelltext, eine Implementierungs-dokumentation von ca. 15 Seiten, und eine Qualitätssicherungsdokumentation von ca. 25 Seiten. Die Teilnehmer stellen ihr Projekt in einer Abschlusspräsentation (ca 15 min) vor.

Dazu werden von den betreuenden Lehrstühlen Aufgabenstellungen vorbereitet, die einen ähnlichen Umfang und ein objektorientiertes Prozessmodell gemeinsam haben, jedoch inhaltlich die Forschungsinteressen des Lehrstuhls widerspiegeln („forschungsorientiertes Lernen“). Erfolgliche Teilnehmer beherrschen die Erstellung eines Pflichtenheftes incl. GUI-Beispielen und Use Cases (Testfallszenarien), sowie Unterscheidung nach Muss- und Wunschfunktionalität. Sie beherrschen objektorientierten Entwurf mit UML, insbesondere Klassendiagramm und Sequenzdiagramm; sowie die Darstellung der Systemarchitektur, der Methoden-spezifikationen und die Umsetzung der Testfallszenarien im Entwurfsdokument. Sie beherrschen Techniken der Modularisierung (Kohäsion, Kopplung, Lokalitätsprinzip etc) sowie den Ersatz von Fallunterscheidung durch dynamische Bindung. Sie können Techniken der informellen und evtl. formalen Spezifikation anwenden und beurteilen, und Entwurf/Klassendiagramm anhand softwaretechnischer Kriterien begründen.

Die Teilnehmer präsentieren zum Schluss ihr Projekt so, dass sowohl ein einprägsamer Gesamteindruck des erstellten Systems entsteht, als auch softwaretechnische Details nebst Erfahrungen der Teamarbeit sichtbar werden.

Voraussetzungen

Siehe Teilleistung

Inhalt

Empfehlungen

Siehe Teilleistung.

Arbeitsaufwand

6 SWS entspricht ca 180 Arbeitsstunden pro Teilnehmer, davon
ca 25 Std Erstellung des Pflichtenheftes
ca 50 Std Erstellung des Entwurfsdokument
ca 50 Std Implementierung
ca 50 Std integrierte Qualitätssicherung
ca 5 Std Erstellung/Vorbereitung der Abschlusspräsentation.
Der gesamte Projektaufwand ist incl. TSE für ein 5-er Team also ca. 1200 Arbeitsstunden

Lehr- und Lernformen

Modul: Programmieren [M-INFO-101174]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr.-Ing. Gregor Snelting

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Praktische Informatik

Leistungspunkte: 5
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 1
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>KURSE</th>
<th>T-INFO-101967 Programmieren Übungsschein</th>
<th>0 LP</th>
<th>Koziolek, Reussner</th>
</tr>
</thead>
<tbody>
<tr>
<td>KURSE</td>
<td>T-INFO-101531 Programmieren</td>
<td>5 LP</td>
<td>Koziolek, Reussner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

Studierende

- beherrschen grundlegende Strukturen und Details der Programmiersprache Java, insbesondere Kontrollstrukturen, einfache Datenstrukturen, Umgang mit Objekten;
- beherrschen die Implementierung nichttrivialer Algorithmen sowie grundlegende Programmiermethodik und elementare Softwaretechnik;
- haben die Fähigkeit zur eigenständigen Erstellung mittelgroßer, lauffähiger Java-Programme, die einer automatisierten Qualitätssicherung (automatisches Testen anhand einer Sammlung geheimer Testfälle, Einhaltung der Java Code Conventions, Plagiatsprüfung) standhalten.

Studierende beherrschen grundlegende Kompetenzen zur Arbeitsstrukturierung und Lösungsplanung von Programmieraufgaben.

Voraussetzungen

Siehe Teilleistung.

Inhalt

- Objekte und Klassen
- Typen, Werte und Variablen
- Methoden
- Kontrollstrukturen
- Rekursion
- Referenzen, Listen
- Vererbung
- Ein-/Ausgabe
- Exceptions
- Programmiermethodik
- Implementierung elementarer Algorithmen (z.B. Sortierverfahren) in Java

Anmerkungen

Siehe Teilleistung.

Informatik (Bachelor of Science (B.Sc.))
Modulhandbuch mit Stand vom 20.02.2020
Arbeitsaufwand
Vorlesung mit 2 SWS und Übung 2 SWS, plus zwei Abschlussaufgaben, 5 LP.
5 LP entspricht ca. 150 Arbeitsstunden, davon
da ca. 30 Std. Vorlesungsbesuch,
da ca. 30 Std. Übungsbesuch,
da ca. 30 Std. Bearbeitung der Übungsaufgaben,
da ca. 30 Std für jede der beiden Abschlussaufgaben.
4.100 Modul: Programmierparadigmen [M-INFO-101179]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Praktische Informatik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101530 | Programmierparadigmen | 6 LP | Snelting |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

Studierende beherrschen

- Grundlagen und Anwendung von funktionaler Programmierung, Logischer Programmierung, Parallelprogrammierung;
- elementare Grundlagen des Übersetzerbaus.

Insbesondere beherrschen die Studierenden das Entwickeln kleiner bis mittelgroßer Haskell-Programme (incl. Funktionen höherer Ordnung, Kombinatoren, Polymorphismus, unendlichen Listen, Monaden), ebenso das Entwickeln kleiner bis mittelgroßer Prolog-Programme (insbesondere einfache regelbasierte Systeme sowie kombinatorische Suchaufgaben).

Studierende verstehen Unifikation und das Resolutionsprinzip, und können den Robinson-Unifikationsalgorithmus anwenden.

Studierende verstehen die polymorphe Typinferenz nach Milner (incl. Typisierungsregeln, Typabstraktion nebst Implementierung in Prolog) und können einfache funktionale Programme mit den Typinferenzregeln analysieren.

In der Parallelprogrammierung beherrschen Studierende verschiedene Konzepte wie Fäden (Threads), Nachrichtenaustausch (Message-Passing), um Algorithmen selbstständig zu parallelisieren und zu implementieren.

Studierende verstehen Konzepte der Synchronität und Asynchronität und deren Umsetzung in verschiedenen Sprachen und Standards.

Studierende können, aufbauend auf Java-Kenntnissen C-Programme lesen und verstehen, und beherrschen Zeiger-Arithmetik und C-Typdeklarationen.

Studierende lernen Verträge gemäß "Design-by-contract" für Methoden zu spezifizieren und verstehen die Vorteile und Grenzen dieses Entwurfsprinzips.

Studierende können die Relevanz der verschiedenen vorgestellten Programmiersprachen und -techniken beurteilen.

Voraussetzungen
Siehe Teilleistung.
Inhalt
Die Teilnehmer sollen nichtimperative Programmierung und ihre Anwendungsgebiete kennenlernen. Im einzelnen werden behandelt:
2. Logische Programmierung - Terme, Hornklauseln, Unifikation, Resolution, regelbasierte Programmierung, constraint logic programming, Anwendungen.
4. Design-by-Contract: Konzept, Anwendung und Grenzen
5. Elementare Grundlagen des Compilerbaus.
Es werden folgende Programmiersprachen (teils nur kurz) vorgestellt: Haskell, Scala, Prolog, CLP, C++, X10, Java Byte Code

Empfehlungen
Siehe Teilleistung.

Arbeitsaufwand
Vorlesung 3 SWS und Übung 1 SWS, plus Nachbereitung/Prüfungsvorbereitung, 6 LP.
6 LP entspricht ca. 180 Arbeitsstunden, davon
ca. 45 Std. Vorlesungsbesuch
ca. 15 Std. Nachbearbeitung
ca. 15 Std. Übungsbesuch
ca. 15 Std. Tutoriumsbesuch
ca. 45 Std. Bearbeitung Übungsaufgaben
ca. 2 Std. schriftliche Prüfung (120 Minuten)
ca. 43 Std. Prüfungsvorbereitung
4.101 Modul: Proseminar [M-INFO-101181]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Pflichtbestandteil)

Leistungspunkte: 3
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101971</td>
<td>Proseminar</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele

- Studierende können grundlegende Themen der Informatik (in einem speziellen Fachgebiet) wissenschaftlich behandeln.
- Dabei können Studierende die Schritte von der einfachen Literaturrecherche bis auf die Aufbereitung der Ergebnisse in schriftlicher und mündlicher Form anwenden.
- Studierende sind in der Lage Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Zusammenhänge in kurzer Form zu kommunizieren.
- Studierende können wissenschaftliche Ergebnisse schriftlich und mündlich wiedergeben.

Voraussetzungen

Siehe Teilleistung

Inhalt

Das Proseminarmodul behandelt in den angebotenen Proseminaren spezifische Themen, die teilweise in entsprechenden Vorlesungen angesprochen wurden und vertieft diese.
Das Proseminar bereitet für die Bachelorarbeit vor.

Empfehlungen

Siehe Teilleistung.

Arbeitsaufwand

Der Arbeitsaufwand beträgt i.d.R. 90 Stunden. Davon sind ca. 30 Stunden zur Vor- und Nachbereitung der Präsenzveranstaltungen, ca. 20 Stunden für die schriftliche Ausarbeitung, ca. 20 Stunden für die Literaturrecherche und ca. 20 Stunden für den eigenen Vortrag.
4.102 Modul: Proseminar Mathematik [M-MATH-101313]

Verantwortung: Dr. Stefan Kühnlein
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Pflichtbestandteil)

Leistungspunkte: 3
Turnus: Jedes Semester
Dauer: 1 Semester
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103404</td>
<td>Proseminar Mathematik</td>
<td>3 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt unbenotet als Erfolgskontrolle anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Qualifikationsziele
- Die Studierenden erhalten eine erste Einführung in das wissenschaftliche Arbeiten auf einem speziellen Fachgebiet.
- Die Bearbeitung der Proseminar-/Seminrarbeit bereitet zudem auf die Abfassung der Bachelorarbeit vor.
- Mit dem Besuch der Proseminar-/Seminrarveranstaltungen werden neben Techniken des wissenschaftlichen Arbeiten auch Schlüsselqualifikationen integrativ vermittelt.

Voraussetzungen
Das Modul Proseminar Mathematik [IN3MATHPS] muss im Ergänzungsfach Mathematik geprüft werden.

Inhalt
Das Modul behandelt in den angebotenen Proseminaren/Seminarren spezifische Themen, die teilweise in entsprechenden Vorlesungen angesprochen wurden und vertieft diese.

Arbeitsaufwand
Arbeitsaufwand insgesamt: 90 h
Präsenztudium: 30 h
Eigenstudium: 60 h
4.103 Modul: Radiation Protection [M-ETIT-100562]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-100825 Radiation Protection | 3 LP | Dössel |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten).

Qualifikationsziele
Grundsätzliches Verständnis von Strahlung und Strahlenwirkungen und der Grundprinzipien des Strahlenschutzes bei ionisierender Strahlung.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlich Prüfung.

Voraussetzungen
keine

Inhalt
Einführung in den Strahlenschutz
Die Vorlesung behandelt die Grundlagen des Strahlenschutzes (für ionisierende Strahlung) und gibt einen Überblick über das Fachgebiet. Die behandelten Themen sind:

- Strahlung und Strahlenanwendungen,
- Wechselwirkung von Strahlung mit Materie,
- Messung von Strahlung – Prinzipien und Detektoren,
- Biologische Strahlenwirkungen,
- Dosimetrie (äußere und innere Expositionen),
- Rechtliche Aspekte (Gesetzl. Regelwerke, Ethik) und
- Strahlenschutz – Grundsätze und Anwendungen

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

- Präsenzzeit in Vorlesungen (2 h je 15 Termine) = 30 h
- Selbststudium (3 h je 15 Termine) = 45 h
- Vor-/Nachbereitung = 20 h
- Gesamtaufwand ca. 95 Stunden = 3 LP
4.104 Modul: Real Estate Management [M-WIWI-101466]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Kernveranstaltung und weitere Lehrveranstaltungen des Moduls im Umfang von insgesamt mindestens 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- besitzt einen Überblick über die verschiedenen Facetten und Zusammenhänge innerhalb der Immobilienwirtschaft, über die wesentlichen Entscheidungen im Lebenszyklus von Immobilien und über die Sichten und Interessen der am Bau Beteiligten,
- kann die im bisherigen Studium erlernten Verfahren und Methoden der Betriebswirtschaftslehre auf Problemstellungen aus dem Bereich der Immobilienwirtschaft übertragen und anwenden.

Voraussetzungen
Nur prüfbar in Kombination mit dem Modul *Grundlagen der BWL*.

Inhalt

Empfehlungen
Es wird eine Kombination mit dem Modul *Bauökologie* empfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- Finanzwirtschaft und Banken
- Versicherungen
- Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion, Facility Management)

Arbeitsaufwand
Gesamtaufwand bei 9 Leistungspunkten: ca. 270 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
4.105 Modul: Rechnerstrukturen [M-INFO-100818]

Verantwortung: Prof. Dr.-Ing. Jörg Henkel
 Prof. Dr. Wolfgang Karl

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Wahlbereich Informatik (Stammmodule)
 Wahlbereich Informatik (Wahlmodule)

Leistungspunkte Turnus Dauer Sprache Level Version
6 Jedes Sommersemester 1 Semester Deutsch 3 1

Pflichtbestandteile

| T-INF-101355 | Rechnerstrukturen | 6 LP | Henkel, Karl |

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende ist in der Lage,

- grundlegendes Verständnis über den Aufbau, die Organisation und das Operationsprinzip von Rechnersystemen zu erwerben,
- aus dem Verständnis über die Wechselwirkungen von Technologie, Rechnerkonzepten und Anwendungen die grundlegenden Prinzipien des Entwurfs nachvollziehen und anwenden zu können,
- Verfahren und Methoden zur Bewertung und Vergleich von Rechensystemen anwenden zu können,
- grundlegendes Verständnis über die verschiedenen Formen der Parallelverarbeitung in Rechnerstrukturen zu erwerben.

Insbesondere soll die Lehrveranstaltung die Voraussetzung liefern, vertiefende Veranstaltungen über eingebettete Systeme, moderne Mikroprozessorarchitekturen, Parallelrechner, Fehlertoleranz und Leistungsbewertung zu besuchen und aktuelle Forschungsthemen zu verstehen.

Voraussetzungen
Siehe Teilleistung

Inhalt
Der Inhalt umfasst:

- Einführung in die Rechnerarchitektur
- Grundprinzipien des Rechnerentwurfs: Kompromissfindung zwischen Zielsetzungen, Randbedingungen, Gestaltungsgrundsätzen und Anforderungen
- Leistungsbewertung von Rechensystemen
- Parallelismus auf Maschinenbefehlsebene: Superskalartechnik, spekulative Ausführung, Sprungvorfahrt, VLIW-Prinzip, mehrfädelige Befehlsausführung
- Parallelrechnerkonzepte, speichergekoppelte Parallelrechner (symmetrische Multiprozessoren, Multiprozessoren mit verteiltem gemeinsamem Speicher), nachrichtenorientierte Parallelrechner, Multicore-Architekturen, parallele Programmiermodelle
- Verbindungsnetze (Topologien, Routing)
- Grundlagen der Vektorverarbeitung, SIMD, Multimedia-Verarbeitung
- Energie-effizienter Entwurf
- Grundlagen der Fehlertoleranz, Zuverlässigkeit, Verfügbarkeit, Sicherheit

Empfehlungen
Siehe Teilleistung

Arbeitsaufwand

\[
\frac{(4 \times 1,5 \times 4) + 15 + 15}{30} = 165 / 30 = 5,5 = 6 \text{ ECTS}
\]
Modul: Risk and Insurance Management [M-WIWI-101436]

Verantwortung: Prof. Dr. Ute Werner

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-WIWI-102603</th>
<th>Principles of Insurance Management</th>
<th>4,5 LP</th>
<th>Werner</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102608</td>
<td>Enterprise Risk Management</td>
<td>4,5 LP</td>
<td>Werner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Das Modul kann ab 01.10.2017 (Wintersemester 2017/2018) nicht mehr neu begonnen werden.

Die Note der jeweiligen Teilprüfung setzt sich je zu 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und zu 50% aus der mündlichen Prüfung zusammen. Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- kann unternehmerische Risiken identifizieren, analysieren und bewerten.
- ist in der Lage, geeignete Strategien und Maßnahmenbündel für das operationale Risikomanagement zu entwerfen.
- kann die Funktion von Versicherungsschutz als risikopolitisches Mittel auf einzel- und gesamtwirtschaftlicher Ebene einschätzen,
- kennt und versteht die rechtlichen Rahmenbedingungen und Techniken der Produktion von Versicherungsschutz sowie weiterer Leistungen von Versicherungsunternehmen (Risikoberatung, Schadenmanagement).

Voraussetzungen

Nur in Kombination mit dem Modul Grundlagen der BWL prüfbar.

Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWL [IN3WWBWL] prüfbar.

Inhalt

Anmerkungen

Bitte beachten Sie:

Arbeitsaufwand

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.107 Modul: Robotik I - Einführung in die Robotik [M/INFO-100893]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Stammmodule)
Wahlbereich Informatik (Wahlmodule)

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 3

Pflichtbestandteile
T/INFO-108014 Robotik I - Einführung in die Robotik 6 LP Asfour

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele
Studierende sind in der Lage die vorgestellten Konzepte auf einfache und realistische Aufgaben aus dem Bereich der Robotik anzuwenden.
Dazu zählt die Beherrschung Herleitung der für die Robotermodellierung relevanten mathematischen Modelle.
Weiterhin beherrschten Studierende die kinematische und dynamische Modellierung von Robotersystemen, sowie die Modellierung und den Entwurf einfacher Positions- und Kraftbasiert Regler.
Die Studierenden sind in der Lage für reale Aufgaben in der Robotik, beispielsweise der Greif- oder Bewegungsplanung, geeignete geometrische Umweltmodelle auszuwählen.
Die Studierenden kennen die algorithmischen Grundlagen der Pfad-, Bewegungs- und Greifplanung und können diese Algorithmen auf Problemstellungen im Bereich der Robotik anwenden.
Sie kennen Algorithmen aus dem Bereich der maschinellen Bildverarbeitung und sind in der Lage, diese auf einfache Problemstellungen der Bildverarbeitung anzuwenden.
Die Studierenden besitzen Kenntnisse über den Entwurf passender Datenverarbeitungsarchitekturen und können gegebene, einfache Aufgabenstellungen als symbolisches Planungsproblem modellieren und lösen.

Voraussetzungen
Siehe Teilleistung.

Inhalt
Die Vorlesung vermittelt einen Überblick über die Grundlagen der Robotik am Beispiel von Industrierobotern, Service-Robotern und automatischen humanoiden Robotern. Im Mittelpunkt stehen die Modellierung von Robotern, sowie Methoden zur Steuerung und Planung von Roboteraktionen.

Empfehlungen
Siehe Teilleistung.

Anmerkungen
Dieses Modul darf nicht gerüft werden, wenn im Bachelor-Studiengang Informatik SPO 2008 die Lehrveranstaltung Robotik I mit 3 LP im Rahmen des Moduls Grundlagen der Robotik geprüft wurde.

Arbeitsaufwand
Vorlesung mit 3 SWS + 1 SWS Übung. 6 LP entspricht ca. 180 Stunden
ca. 45 Std. Vorlesungsbesuch,
ca. 15 Std. Übungsbesuch,
ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter ca. 30 Std. Prüfungsvorbereitung 120 h
4.108 Modul: Schlüsselqualifikationen [M-INFO-101723]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Überfachliche Qualifikationen

Wahlpflichtblock: SQ- Bachelor (mind. 4 LP)

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbezeichnung</th>
<th>LP</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-102068</td>
<td>Teamarbeit im Bereich Web-Anwendungen</td>
<td>2</td>
<td>Abeck</td>
</tr>
<tr>
<td>T-INFO-104385</td>
<td>Teamarbeit im Bereich Serviceorientierte Architekturen</td>
<td>2</td>
<td>Abeck</td>
</tr>
<tr>
<td>T-INFO-102060</td>
<td>Selbstdirektion, Innen- und Außenkommunikation</td>
<td>2</td>
<td>Tichy</td>
</tr>
<tr>
<td>T-INFO-101976</td>
<td>Projektmanagement aus der Praxis</td>
<td>1,5</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-101975</td>
<td>Praxis der Unternehmensberatung</td>
<td>1,5</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-101977</td>
<td>Praxis des Lösungsvertriebs</td>
<td>1,5</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-100795</td>
<td>Projektmanagement in der Produktentwicklung</td>
<td>3</td>
<td>Kaiser, Kröger</td>
</tr>
<tr>
<td>T-INFO-109862</td>
<td>Eine Einführung zum Informatikstudium am KIT (eezi)</td>
<td>1</td>
<td>Beckert, Glaubitz, Koziolek, Reussner, Worsch</td>
</tr>
<tr>
<td>T-INFO-105802</td>
<td>Platzhalter Überfachliche Qualifikation 4 LP - unbenotet</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>T-INFO-105803</td>
<td>Platzhalter Überfachliche Qualifikation 3 LP - unbenotet</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>T-INFO-105804</td>
<td>Platzhalter Überfachliche Qualifikation 2 LP - unbenotet</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>T-INFO-105805</td>
<td>Platzhalter Überfachliche Qualifikation 2 LP - unbenotet</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Teilleistungen

Qualifikationsziele
Lernziele lassen sich in in drei Hauptkategorien einteilen, die sich wechselseitig ergänzen:

1. Orientierungswissen
 - Die Studierenden werden sich der kulturellen Prägung ihrer Position bewusst und sind in der Lage, die Sichtweisen und Interessen anderer (über Fach-, Kultur- und Sprachgrenzen hinweg) zu berücksichtigen.
 - Sie erweitern ihre Fähigkeiten, sich an wissenschaftlichen oder öffentlichen Diskussionen sachgerecht und angemessen zu beteiligen.

2. Praxisorientierung
 - Studierende erhalten Einsicht in die Routinen professionellen Handelns.
 - Sie entwickeln ihre Lernfähigkeit weiter.
 - Sie erweitern durch Ausbau ihrer Fremdsprachenkenntnisse ihre Handlungsfähigkeit.
 - Sie können grundlegende betriebswirtschaftliche und rechtliche Sachverhalte mit ihrem Erfahrungsfeld verbinden.

3. Basiskompetenzen
 - Die Studierenden können geplant und zielgerichtet sowie methodisch fundiert selbständig neues Wissen erwerben und dieses bei der Lösung von Aufgaben und Problemen einsetzen.
 - Sie können die eigene Arbeit auswerten.
 - Sie verfügen über effiziente Arbeitstechniken, können Prioritäten setzen, Entscheidungen treffen und Verantwortung übernehmen.

Voraussetzungen
Siehe Teilleistungen
Inhalt
Das House of Competence (HoC) ist die zentrale, forschungsbasierte Einrichtung im Bereich fachübergreifender Kompetenzentwicklung am KIT und bietet Studierenden aller Fachrichtungen ein breites Lernportfolio. Das HoC-Seminarprogramm ist in Schwerpunkte gegliedert, die auf die Entwicklung fachübergreifender Kompetenzen für Studium und Beruf abzielen. Die Schwerpunkte werden maßgeblich von den drei HoC-Laboren verantwortet: dem MethodenLABOR, LernLABOR und SchreibLABOR.

Anmerkungen
Als Schlüsselqualifikationen dürfen keine Deutschkurse oder Sprachkurse in der Muttersprache.

Es können nur solche Prüfungs- und Studienleistungen angerechnet werden, die nicht in den Informatik- oder Ergänzungsfächern belegt werden können. Teilnahmebescheinigungen werden nicht akzeptiert.

Arbeitsaufwand
Jeder Leistungspunkt (Credit) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen für eine Vorlesung:
1. Präsenzzeit in Vorlesungen, Übungen
2. Vor-/Nachbereitung derselben
4.109 Modul: Seminar Batterien I [M-ETIT-105319]

Verantwortung: Dr.-Ing. Andre Weber
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektrotechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-110800 | Seminar Batterien I | 3 LP |

Voraussetzungen
keine
Modul: Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung [M-ETIT-100397]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Leistungspunkte: 4
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-ETIT-100714 | Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung | 4 LP | Becker |

Erfolgskontrolle(n)
Endvortrag, ca. 20-30 min mit anschließender Fragerunde.
Bewertet werden:
- Folienqualität (Form und Inhalt)
- Vortrag (Aufbau, Stil, Inhalt)
- Verhalten bei der Fragerunde

Qualifikationsziele

Zusammensetzung der Modulnote

Voraussetzungen
keine

Inhalt
Die Teilnehmer des Seminars sollen eigenständig Recherchen zu aktuellen Themen der Wissenschaft und Forschung durchführen. Neben der Recherche ist die Auswahl der relevanten Ergebnisse und deren Präsentation vor Fachpublikum Hauptbestandteil des Seminars.
Der Schwerpunkt liegt auf Leistungselektronik in Systemen der regenerativen Energieerzeugung.
Das genaue Thema wird in jedem Semester neu definiert. Vergangene Seminare hatten beispielsweise folgende Themen:
- Off-Shore-Windparks: Projekte, Technik, Netzanbindung
- Gewinnung elektrischer Energie aus dem Meer
- Solaranlagen
- Windkraftanlagen: Modern Ausführungen und Netzanbindung
- „Private“ Energiewende (Mögliche Maßnahmen zuhause)
Der Dozent behält sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.
Anmerkungen
Teilnahme an insgesamt 7 vorbereitenden Treffen (ca. alle 14 Tage mit durchschnittlich 3 h Dauer) mit den Themen:
- Infoveranstaltung
- Besprechung und Verteilung der Themen
- Vortrags- und Präsentationstechniken
- Präsentation der Materialsammlungen
- Vorstellung von Struktur und Aufbau der Vorträge
- Vorstellung der fertigen Folienpräsentation
- Probevorträge

Arbeitsaufwand
Anwesenheit an vorbereitenden Treffen: = 21 h
4x Vorbereitung à 20 h = 80 h
Insgesamt ca: 101 h (entspricht 4 LP)
4.111 Modul: Seminar über ausgewählte Kapitel der Biomedizinischen Technik [M-ETIT-100383]

Verantwortung: Dr.-Ing. Axel Loewe
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages mit nachfolgender Diskussion.

Qualifikationsziele
Die Studierenden sind in der Lage, ein wissenschaftliches Thema aus der biomedizinische Technik zu recherchieren, Wesentliches herauszuarbeiten, den Inhalt aufzuarbeiten, einen Vortrag auszuarbeiten und schließlich zu präsentieren.

Zusammensetzung der Modulnote
Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages mit nachfolgender Diskussion.

Voraussetzungen
keine

Inhalt

Arbeitsaufwand
Präsenzzeit: 15 Wochen * 2SWS = 30h
Erarbeitung des Themas, Austausch mit Betreuer, Vorbereitung des Vortrags: 60h
4.112 Modul: Seminar: Informatik TECO [M-INFO-105328]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-110808 | Seminar: Informatik TECO | 3 LP | Beigl |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele
Aktuelle Forschungsergebnisse aus dem Bereich ubiquitärer Systeme sollen erarbeitet und kritisch diskutiert werden. Nach Abschluss des Seminars können die Studierenden

- selbständig eine strukturierte Literaturrecherche zu einem gegebenen Thema durchführen und geeignete Literatur selbständig suchen, identifizieren, analysieren und bewerten
- den Stand der Technik bzw. Wissenschaft zu einem Themenbereich darstellen, differenziert bewerten und Schlüsse draus ziehen
- wissenschaftliche Ergebnisse zu einem Thema strukturiert darstellen und einem Fachpublikum im Rahmen eines Vortrags präsentieren
- Techniken des wissenschaftlichen Schreibens dazu anwenden, einen wissenschaftlichen Übersichtsartikel zu einem Thema zu verfassen
- Wissenschaftliche Texte anderer kritisch bewerten und einordnen

Voraussetzungen
Siehe Teilleistung.

Inhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für diese Lerneinheit beträgt ca. 90 Stunden (3.0 Credits).

Aktivität
Arbeitsaufwand

Präsenzzzeit: Kickoff, Präsentation und Diskussion und Treffen mit Betreuern
10 h 00 min
Literaturrecherche, Studienplanung, Durchführung, Analyse und Dokumentation
76 h 00 min
Vorbereiten der Präsentation
4 h 00 min
SUMME
90 h 00 min
4.113 Modul: Seminarmodul Recht [M-INFO-101218]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Recht

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile
T-INFO-101997 Seminar aus Rechtswissenschaften I 3 LP Dreier

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende

- setzt sich mit einem abgegrenzten Problem im Bereich der Rechtswissenschaften auseinander,
- analysiert und diskutiert Problemstellungen im Rahmen der Veranstaltungen und in den abschließenden Seminararbeiten,
- erörtert, präsentiert und verteidigt fachspezifische Argumente innerhalb einer vorgegebenen Aufgabenstellung,
- organisiert die Erarbeitung der abschließenden Seminararbeiten weitestgehend selbstständig.

Die im Rahmen des Seminarmoduls erworbenen Kompetenzen dienen im Besonderen der Vorbereitung auf die Bachelorarbeit. Begleitet durch die entsprechenden Prüfer übt sich der Studierende beim Verfassen der abschließenden Seminararbeiten und bei der Präsentation derselben im selbstständigen wissenschaftlichen Arbeiten.

Voraussetzungen
Siehe Teilleistung

Inhalt
Das Modul besteht aus einem Seminar, das thematisch den Rechtswissenschaften zuzuordnen ist. Eine Liste der zugelassenen Lehrveranstaltungen wird im Internet bekannt gegeben.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits) für Präsenzzeit, Vor- und Nachbearbeitung sowie die Prüfungsleistung der Veranstaltung.
Der konkrete Arbeitsaufwand variiert je nach dem konkret gewählten Seminar und wird bei der einzelnen Veranstaltung beschrieben.
Verantwortung: Studiendekan der KIT-Fakultät für Wirtschaftswissenschaften

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

Leistungspunkte: 3
Sprache: Deutsch
Level: 3
Version: 1

Wahlpflichtblock: Wahlpflichtangebot (1 Bestandteil)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Seminar/Profil (Bachelor)</th>
<th>LP</th>
<th>Professoren/Lehrbeibehörte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-103486</td>
<td>Seminar Betriebswirtschaftslehre</td>
<td>3</td>
<td>Professoren/Lehrbeibehörte</td>
</tr>
<tr>
<td>T-WIWI-103488</td>
<td>Seminar Operations Research</td>
<td>3</td>
<td>Nickel, Rebennack, Stein</td>
</tr>
<tr>
<td>T-WIWI-103489</td>
<td>Seminar Statistik (Bachelor)</td>
<td>3</td>
<td>Grothe, Schienle</td>
</tr>
<tr>
<td>T-WIWI-103487</td>
<td>Seminar Volkswirtschaftslehre (Bachelor)</td>
<td>3</td>
<td>Professoren/Lehrbeibehörte</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele

- Die Studierenden können sich weitgehend selbständig mit einem abgegrenzten Problem in einem spezifischen Fachgebiet nach wissenschaftlichen Kriterien auseinandersetzen.
- Sie sind in der Lage zu recherchieren, die Informationen zu analysieren, zu abstrahieren sowie grundsätzliche Prinzipien und Gesetzmäßigkeiten aus wenig strukturierten Informationen zusammenzutragen.
- Die Probleme können sie strukturiert und unter Einbeziehung ihres interdisziplinären Wissens lösen.
- Die daraus abgeleiteten Ergebnisse wissen sie zu validieren.
- Anschließend können sie diese unter Berücksichtigung der wissenschaftlichen Arbeitsweise (Strukturierung, Fachterminologie, Quellenangabe) logisch und systematisch in schriftlicher und mündlicher Form präsentieren. Dabei können sie fachlich argumentieren und die Ergebnisse in der Diskussion verteidigen.

Voraussetzungen
Keine.

Inhalt
Das Modul besteht aus einem Seminar, das thematisch den Wirtschaftswissenschaften zuzuordnen ist. Eine Liste der zugelassenen Lehrveranstaltungen wird im Internet bekannt gegeben.

Anmerkungen

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 90 Stunden (3 Credits) für Präsenzzeit, Vor- und Nachbearbeitung sowie die Prüfungsleistung der Veranstaltung. Der konkrete Arbeitsaufwand variiert je nach dem konkret gewählten Seminar und wird bei der einzelnen Veranstaltung beschrieben.
4.115 Modul: Sicherheit [M-INFO-100834]

Verantwortung: Prof. Dr. Jörn Müller-Quade
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Stammmodule)
Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-101371 | Sicherheit | 6 LP | Hofheinz, Müller-Quade |

Erfolgskontrolle(n)

Siehe Teilleistung.

Qualifikationsziele

Der / die Studierende

- kennt die theoretischen Grundlagen sowie grundlegende Sicherheitsmechanismen aus der Computersicherheit und der Kryptographie,
- versteht die Mechanismen der Computersicherheit und kann sie erklären,
- liest und versteht aktuelle wissenschaftliche Artikel,
- beurteilt die Sicherheit gegebener Verfahren und erkennt Gefahren,
- wendet Mechanismen der Computersicherheit in neuem Umfeld an.

Voraussetzungen

Siehe Teilleistung.

Inhalt

- Theoretische und praktische Aspekte der Computersicherheit
- Erarbeitung von Schutzzieilen und Klassifikation von Bedrohungen
- Vorstellung und Vergleich verschiedener formaler Access-Control-Modelle
- Formale Beschreibung von Authentifikationssystemen, Vorstellung und Vergleich verschiedener Authentifikationsmethoden (Kennworte, Biometrie, Challenge-Response-Protokolle)
- Analyse typischer Schwachstellen in Programmen und Web-Applikationen sowie Erarbeitung geeigneter Schutzmassnahmen/Vermeidungsstrategien
- Einführung in Schlüsselmanagement und Public-Key-Infrastrukturen
- Vorstellung und Vergleich gängiger Sicherheitszertifizierungen
- Blockchiffren, Hashfunktionen, elektronische Signatur, Public-Key-Verschlüsselung bzw. digitale Signatur (RSA, ElGamal) sowie verschiedene Methoden des Schlüsselaustauschs (z.B. Diffie-Hellman)
- Einführung in beweisbare Sicherheit mit einer Vorstellung der grundlegenden Sicherheitsbegriffe (wie IND-CCA)
- Darstellung von Kombinationen kryptographischer Bausteine anhand aktuell eingesetzter Protokolle wie Secure Shell (SSH) und Transport Layer Security (TLS)

Arbeitsaufwand

Präsenzzeit in der Vorlesung: 36 h
Präsenzzeit in der Übung: 12 h
Vor-/Nachbereitung der Vorlesung, Bearbeiten der Übungsblätter: 44 h
Prüfungsvorbereitung und Präsenz in selbiger: 68 h
4.116 Modul: Signale und Systeme [M-ETIT-102123]

Verantwortung: Prof. Dr.-Ing. Fernando Puente León
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Informationstechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-101922 | Signale und Systeme | 6 LP Puente León |

Erfolgskontrolle(n)
Die Erfolgskontrolle des Moduls besteht aus einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Signale und Systeme.

Qualifikationsziele
Die Studenten sind nach Abschluss des Moduls vertraut mit der Darstellung von Signalen und beherrschen die Grundlagen der Systemtheorie.

Durch Anwendung von Transformationen auf Signale und Systeme sind Sie in der Lage Lösungsansätze für zeitkontinuierliche sowie zeitdiskrete Problemstellungen der Signalverarbeitung zu beschreiben und zu bewerten. Die erlernten mathematischen Methoden können auf Fragestellungen aus anderen Bereichen des Studiums übertragen werden.

Zusammensetzung der Modulnote
Notenbildung ergibt sich aus der schriftlichen Prüfung.

Voraussetzungen
keine

Inhalt
Das Modul stellt eine Grundlagenvorlesung zur Signalverarbeitung dar. Schwerpunkte der Vorlesung sind die Betrachtung und Beschreibung von Signalen (zeitlicher Verlauf einer beobachteten Größe) und Systemen. Für den zeitkontinuierlichen und den zeitdiskreten Fall werden die unterschiedlichen Eigenschaften und Beschreibungsformen hergeleitet und analysiert.

Empfehlungen
Höhere Mathematik I + II

Arbeitsaufwand
Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (2 h) der wöchentlichen Vorlesung und der 14-tägig stattfindenden Übung sowie die Vorbereitung (50-60 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von 150-160 h.
Modul: Softwaretechnik I [M-INFO-101175]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Praktische Informatik

Leistungspunkte: 6

Turnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Deutsch

Level: 3

Version: 1

Pflichtbestandteile

| T-INFO-101968 | Softwaretechnik I | 6 LP | Koziolek, Reussner, Tichy |
| T-INFO-101995 | Softwaretechnik I Übungsschein | 0 LP | Tichy |

Erfolgskontrolle(n)

Siehe Teilleistung

Qualifikationsziele

Der/die Studierende definiert und vergleicht die in der Vorlesung besprochenen Konzepte und Methoden und wendet diese erfolgreich an.

Voraussetzungen

Siehe Teilleistung

Inhalt

Anmerkungen

Ab Sommersemester 2015 ist im Studiengang Bachelor Informationswirtschaft / Wirtschaftsinformatik das Modul Softwaretechnik I im Pflichtbereich zu prüfen.

Arbeitsaufwand

Vor- und Nachbereitungszeiten 1,5 h / 1 SWS

Gesamtaufwand:

\[(4 \text{ SWS} + 1,5 \times 4 \text{ SWS}) \times 15 + 30 \text{ h Klausurvorbereitung} = 180 \text{ h} = 6 \text{ ECTS} \]
4.118 Modul: Softwaretechnik II [M-INFO-100833]

Verantwortung:
- Prof. Dr.-Ing. Anne Koziolek
- Prof. Dr. Ralf Reussner
- Prof. Dr. Walter Tichy

Einrichtung:
KIT-Fakultät für Informatik

Bestandteil von:
- Wahlbereich Informatik (Stammmodule)
- Wahlbereich Informatik (Wahlmodule)

Leistungspunkte
6

Turnus
Jedes Wintersemester

Dauer
1 Semester

Sprache
Deutsch

Level
3

Version
1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Sprache</th>
<th>Level</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101370</td>
<td>Deutsch</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Siehe Teilleistung
Qualifikationsziele

Enterprise Software Patterns: Die Studierenden können Unternehmensanwendungen charakterisieren und für eine beschriebene Anwendung entscheiden, welche Eigenschaften sie erfüllt. Sie kennen Muster für die Strukturierung der Domänenlogik, architecturelle Muster für den Datenzugriff und objektorientationale Strukturmuster. Sie können für ein Entwurfspoblem ein geeignetes Muster auswählen und die Auswahl anhand der Vor- und Nachteile der Muster begründen.

Software-Entwurf: Die Studierenden können die Verantwortlichkeiten, die sich aus Systemoperationen ergeben, den Klassen bzw. Objekten im objektorientierten Entwurf anhand der GRASP-Muster zuweisen und damit objektorientierte Software entwerfen.

Software-Qualität: Die Studierenden kennen die Prinzipien für gut lesbaren Programmcode, können Verletzungen dieser Prinzipien identifizieren und Vorschläge zur Lösung entwickeln.

Voraussetzungen
Siehe Teilleistung

Inhalt
Die Studierenden erlernen Vorgehensweisen und Techniken für systematische Softwareentwicklung, indem fortgeschrittene Themen der Softwareentwicklung behandelt werden.

Themen sind Requirements Engineering, Softwareprozesse, Software-Qualität, Software-Architekturen, MDD, Enterprise Software Patterns, Software-Entwurf, Software-Wartbarkeit, Sicherheit, Verlässlichkeit (Dependability), eingebettete Software, Middleware, und statistisches Testen

Empfehlungen
Siehe Teilleistung

Anmerkungen
Das Modul Softwareentwicklung II ist ein Stammmodul.
Arbeitssaufwand
Vor- und Nachbereitungszeiten 1,5 h / 1 SWS

Gesamtaufwand:
(4 SWS + 1,5 x 4 SWS) x 15 + 30 h Klausurvorbereitung = 180 h = 6 ECTS
4.119 Modul: Strategie und Organisation [M-WIWI-101425]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Betriebswirtschaftslehre

Wahlpflichtblock: Strategie und Organisation (mind. 9 LP)

<table>
<thead>
<tr>
<th>Modul / Unterrichtseinheit</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102630 Organisationsmanagement</td>
<td>3,5 LP</td>
<td>Lindstädt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102871 Problemlösung, Kommunikation und Leadership</td>
<td>2 LP</td>
<td>Lindstädt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102629 Unternehmensführung und Strategisches Management</td>
<td>3,5 LP</td>
<td>Lindstädt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele
- Der/die Studierende beschreibt sowohl zentrale Konzepte des strategischen Managements als auch Konzepte und Modelle für die Gestaltung organisationaler Strukturen.
- Er/sie bewertet die Stärken und Schwächen existierender organisationaler Strukturen und Regelungen anhand systematischer Kriterien.
- Die Steuerung organisationaler Veränderungen diskutieren und überprüfen die Studierenden anhand von Fallbeispielen, inwieweit sich die Modelle in der Praxis einsetzen lassen und welche Bedingungen dafür gelten müssen.
- Zudem planen die Studierenden den Einsatz von IT zur Unterstützung der Unternehmensführung.

Voraussetzungen
Nur prüfbar in Kombination mit dem Modul Grundlagen der BWL.

Das Modul ist nur zusammen mit dem Pflichtmodul Grundlagen der BWL [IN3WWBWL] prüfbar.

Inhalt

Arbeitsaufwand
4.120 Modul: Supply Chain Management [M-WIWI-101421]

Verantwortung
Prof. Dr. Stefan Nickel

Einrichtung
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von
Ergänzungsfach / Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-109936</td>
<td>Platform Economy</td>
<td>4,5 LP</td>
<td>Dorner, Weinhardt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Ergänzungsangebot (1 Bestandteil)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102704</td>
<td>Standortplanung und strategisches Supply Chain Management</td>
<td>4,5 LP</td>
<td>Nickell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102714</td>
<td>Taktisches und operatives Supply Chain Management</td>
<td>4,5 LP</td>
<td>Nickell</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form von Teilprüfungen (nach §4(2), 1-3 SPO) über die Lehrveranstaltungen des Moduls im Umfang von insgesamt 9 LP. Die Erfolgskontrolle wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Die Studierenden

- verstehen und bewerten aus strategischer und operativer Sicht die Steuerung von unternehmensübergreifenden Lieferketten,
- analysieren die Koordinationsprobleme innerhalb der Lieferketten,
- identifizieren und integrieren geeignete Informationssystemlandschaften zur Unterstützung der Lieferketten,
- wenden theoretische Methoden aus dem Operations Research und dem Informationsmanagement an,
- erarbeiten Lösungen in Teams.

Voraussetzungen

Inhalt

Das Teilmodul wird durch ein Wahlfach abgerundet, welches geeignete Optimierungsmethoden für das Supply Chain Management bzw. moderne Logistikansätze adressiert.

Anmerkungen

Das geplante Vorlesungsangebot in den nächsten Semestern finden Sie auf den Webseiten der einzelnen Institute IISM, IFL und IOR.

Arbeitsaufwand

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.121 Modul: Systemdynamik und Regelungstechnik [M-ETIT-102181]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Ergänzungsfach / Elektro- und Informationstechnik (Wahlbereich)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-101921 | Systemdynamik und Regelungstechnik | 6 LP | Hohmann |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Qualifikationsziele

- Ziel ist die Vermittlung theoretischer Grundlagen der Regelungstechnik, daher können die Studierenden grundsätzliche regelungstechnische Problemstellungen erkennen und bearbeiten.
- Die Studierenden sind in der Lage, reale Prozesse formal zu beschreiben und Anforderungen an Regelungsstrukturen abzuleiten.
- Sie können die Dynamik von Systemen mit Hilfe graphischer und algebraischer Methoden analysieren.
- Die Studierenden können Reglerentwurfstechniken für Eingrößensysteme benennen, anhand von Kriterien auswählen, sowie die Entwurfsrahmen durchführen und die entworfene Regelung beurteilen, ferner können Sie Störungen durch geeignete Regeldynamikstrukturen kompensieren.
- Die Studierenden kennen relevante Fachbegriffe der Regelungstechnik und können vorgeschlagene Lösungen beurteilen und zielorientiert diskutieren.
- Sie kennen computergestützte Hilfsmittel zur Bearbeitung systemtheoretischer Fragestellungen und können diese einsetzen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Inhalt

Anmerkungen

wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht 30h Arbeitsaufwand (des Studierenden). Unter den Arbeitsaufwand fallen

1. Präsenzzeit in Vorlesung/Übung (2*2 SWS: 60h2 LP)
2. Vor-/Nachbereitung von Vorlesung/Übung/Tutorium(optional) (105h3.5 LP)
3. Vorbereitung/Präsenzzeit schriftliche Prüfung (15h0.5 LP)

Informatik (Bachelor of Science (B.Sc.))

Modulhandbuch mit Stand vom 20.02.2020
4.122 Modul: Teamarbeit in der Softwareentwicklung [M-INFO-101225]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Überfachliche Qualifikationen

Leistungspunkte
- 2 LP

Turnus
- Einmalig

Dauer
- 1 Semester

Sprache
- Deutsch

Level
- 3

Version
- 1

Pflichtbestandteile

| T-INFO-102018 | Teamarbeit und Präsentation in der Softwareentwicklung | 2 LP | Snelting |

Erfolgskontrolle(n)

Siehe Teilleistung

Qualifikationsziele

Voraussetzungen

Siehe Teilleistung

Inhalt

Auseinandersetzung mit der Arbeit im Team, Kommunikations-, Organisations- und Konfliktbehandlungsstrategien; Erarbeitung von Präsentationen zu Pflichtenheft, Entwurf, Implementierung, Qualitätssicherung, Abschlusspräsentation; Projektplanungstechniken (z.B. Netzplantechnik, Phasenbeauftragte).

Empfehlungen

Die Veranstaltung sollte erst belegt werden, wenn alle Module aus den ersten beiden Semestern abgeschlossen sind.

Anmerkungen

Dieses Modul ergänzt das Pflichtmodul Praxis der Software-Entwicklung. Es ist ein Pflichtmodul.

Arbeitsaufwand

- 2 SWS entsprechen ca 60 Arbeitsstunden, davon
- ca 15 Std Treffen mit den Betreuern
- ca 5 Std Teilnahme an Phasenkolloquien
- ca 15 Std Vorbereitung von Präsentationen/Dokumenten
- ca 10 Std. für Implementierungs- und Testplanung/management
- ca 15 Std. Kommunikation/Organisation im Team
Module: Technische Informatik [M-INFO-101180]

Verantwortung: Prof. Dr. Wolfgang Karl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Technische Informatik

Leistungspunkte: 12
Turnus: Jährlich
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile
T-INFO-101970 Technische Informatik 12 LP Asfour

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Studierende sollen durch dieses Modul folgende Kompetenzen erwerben:
• Verständnis der verschiedenen Darstellungsformen von Zahlen und Alphabeten in Rechnern,
• Fähigkeiten der formalen und programmiersprachlichen Schaltungsbeschreibung,
• Kenntnisse der technischen Realisierungsformen von Schaltungen,
• basierend auf dem Verständnis für Aufbau und Funktion aller wichtigen Grundschaltungen und Rechenwerke die Fähigkeit, unbekannte Schaltungen zu analysieren und zu verstehen, sowie eigene Schaltungen zu entwickeln,
• Kenntnisse der relevanten Speichertechnologien,
• Verständnis verschiedener Realisierungsformen komplexer Schaltungen,
• Verständnis über den Aufbau, die Organisation und das Operationsprinzip von Rechnersystemen,
• den Zusammenhang zwischen Hardware-Konzepten und den Auswirkungen auf die Software zu verstehen, um effiziente Programme erstellen zu können,
• aus dem Verständnis über die Wechselwirkungen von Technologie, Rechnerkonzepten und Anwendungen die grundlegenden Prinzipien des Entwurfs nachvollziehen und anwenden zu können,
• einen Rechner aus Grundkomponenten aufbauen zu können.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der Klausur.

Voraussetzungen
Siehe Teilleistung.

Inhalt
Das Modul vermittelt eine systematische Heranführung an die Technische Informatik. Sie beinhalten neben den Grundlagen der Mikroelektronik den Entwurf und den Aufbau von einfachen informationsverarbeitenden Systemen, logischen Schaltnetzen und Schaltwerken bis hin zum funktionalen Aufbau digitaler Rechenanlagen. Die Inhalte umfassen:
• Informationsdarstellung, Zahlensysteme, Binärdarstellungen negativer Zahlen, Gleitkomma-Zahlen, Alphabete, Codes
• Rechnertechnologie: MOS-Transistoren, CMOS-Schaltungen
• Formale Schaltungsbeschreibungen, boolesche Algebra, Normalformen, Schaltungsoptimierung
• Realisierungsformen von digitalen Schaltungen: Gatter, PlDs, FPGAs, ASICS
• Einfache Grundschaltungen: FlipFlop-Typen, Multiplexer, Halb/Voll-Addierer
• Rechenwerke: Addierer-Varianten, Multiplizier-Schaltungen Divisionsschaltungen
• Mikroprogrammierung
• Grundlagen des Aufbaus und der Organisation von Rechnern
• Befehlssatzarchitektur, Diskussion RISC – CISC
• Pipelining des Maschinenbefehlszyklus, Pipeline-Hemmnisse, Methoden zur Auflösung von Pipeline-Konflikten
• Speicherkomponenten, Speicherorganisation, Cache-Speicher
• Ein-/Ausgabe-System, Schnittstellen, Interrupt-Verarbeitung
• Bus-Systeme
• Unterstützung von Betriebssystemfunktionen: virtuelle Speicherverwaltung, Schutzfunktionen

Empfehlungen
Siehe Teilleistung.
Arbeitsaufwand
1. Präsenzzeit in Vorlesungen, Übungen: 240 h
2. Vor-/Nachbereitung derselben: 60 h
3. Klausurvorbereitung und Präsenz in selbiger: 60 h
4.124 Modul: Telematik [M-INFO-100801]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Stammmodule)
Wahlbereich Informatik (Wahlmodule)

Leistungspunkte

- Pflichtbestandteile
 - T-INFO-101338 Telematik 6 LP Zitterbart

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Studierende

- beherrschen Protokolle, Architekturen, sowie Verfahren und Algorithmen, die im Internet für die Wegewahl und für das Zustandekommen einer zuverlässigen Ende-zu-Ende-Verbindung zum Einsatz kommen, sowie verschiedenen Medienzuteilungsverfahren in lokalen Netzen und weitere Kommunikationssysteme wie das leitungsvermittelte ISDN.
- besitzen ein Systemverständnis sowie Verständnis für die in einem weltumspannenden, dynamischen Netz auftretenden Probleme und der zur Abhilfe eingesetzten Mechanismen.
- sind mit aktuellen Entwicklungen wie z.B. SDN und Datacenter-Networking vertraut.
- kennen Möglichkeiten zur Verwaltung und Administration von Netzen.
- Studierende kennen die Funktion von Medienzuteilung und können Medienzuteilungsverfahren klassifizieren und analysich bewerten. Studierende besitzen vertiefte Kenntnisse zu Ethernet und kennen verschiedene Ethernet-Ausprägungen und deren Unterschiede, insbesondere auch aktuelle Entwicklungen wie Echtzeit-Ethernet und Datacenter-Ethernet. Studierende können das Spanning-Tree-Protocol wiedergeben und anwenden. Studierende kennen die grundlegende Funktionsweise der Hilfsprotokolle LLC und PPP.
- Studierende kennen die physikalischen Grundlagen, die bei dem Entwurf und die Bewertung von digitalen Leitungs codes relevant sind. Studierende können verbreitete Kodierungen anwenden und kennen deren Eigenschaften.

Voraussetzungen
Siehe Teilleistung
Inhalt

- Einführung
- Ende-zu-Ende Datentransport
- Routingprotokolle und -architekturen
- Medienzuteilung
- Brücken
- Datenübertragung
- ISDN
- Weitere ausgewählte Beispiele
- Netzmanagement

Empfehlungen
Siehe Teilleistung

Arbeitsaufwand
Vorlesung mit 3 SWS plus Nachbereitung/Prüfungsvorbereitung, 6 LP.
6 LP entspricht ca. 180 Arbeitsstunden, davon
ca. 60 Std. Vorlesungsbesuch
ca. 60 Std. Vor-/Nachbereitung
ca. 60 Std. Prüfungsvorbereitung
4.125 Modul: Theoretische Grundlagen der Informatik [M-INFO-101172]

Verantwortung: Prof. Dr. Jörn Müller-Quade
Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Theoretische Informatik

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-INFO-103235 | Theoretische Grundlagen der Informatik | 6 LP | Müller-Quade, Sanders, Wagner |

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende besitzt einen vertieften Einblick in die Grundlagen der Theoretischen Informatik und hat grundlegende Kenntnisse in den Bereichen Berechenbarkeitstheorie, Komplexitätstheorie, formale Sprachen und Informationstheorie. Er/sie kann die Beziehungen dieser Gebiete erörtern und in einem Gesamtzusammenhang bringen. Außerdem kennt er/sie die fundamentalen Definitionen und Aussagen aus diesen Bereichen und ist in der Lage geführte Beweise zu verstehen sowie Wissen über erlangte Beispielen techniken auf ähnliche Probleme anwenden.

Er/sie versteht die Grenzen und Möglichkeiten der Informatik in Bezug auf die Lösung von definierbaren aber nur bedingt berechenbaren Probleme. Hierzu beherrscht er/sie verschiedene Berechnungsmodelle, wie die der Turingmaschine, des Kellerautomaten und des endlichen Automaten. Er/sie kann deterministische von nicht-deterministischen Modellen unterscheiden und deren Mächtigkeit gegeneinander abschätzen. Der/die Studierende kann die Äquivalenz aller hinreichend mächtigen Berechnungsmodelle (Churshese Diese), Nichtberechenbarkeit wichtiger Funktionen (z.B. Halteproblem) und Gödels Unvollständigkeitssatz erläutern.

Im Bereich der formalen Sprachen ist es ihm/ihr möglich Sprachen als Grammatiken zu formulieren und diese in die Chomsky-Hierarchie einzuordnen. Zudem kann er/sie die ihm/ihr bekannten Berechnungsmodelle den einzelnen Typen der Chomsky-Hierarchie zuordnen, sodass er/sie die Zusammenhänge zwischen formalen Sprachen und Berechnungstheorie identifizieren kann.

Der/die Studierende besitzt einen grundlegenden Überblick über die Informationstheorie und kennt damit Entropie, Kodierungsschemata sowie eine formale Definition für Information. Er/sie besitzt zudem die Fähigkeit dieses Wissens anzuwenden.

Voraussetzungen
Siehe Teilleistung
Inhalt

Das Modul gibt einen vertieften Einblick in die Grundlagen und Methoden der Theoretischen Informatik. Insbesondere wird dabei eingegangen auf grundlegende Eigenschaften Formaler Sprachen als Grundlagen von Programmiersprachen und Kommunikationsprotokollen (regulär, kontextfrei, Chomsky-Hierarchie), Maschinenmodelle (endliche Automaten, Kellerautomaten, Turingmaschinen, Nichtdeterminismus, Bezug zu Familien formaler Sprachen), Äquivalenz aller hinreichend mächtigen Berechnungsmodelle (Churchsche These), Nichtberechenbarkeit wichtiger Funktionen (Halteproblem,...), Godels Unvollständigkeitssatz und Einführung in die Komplexitätstheorie (NP-vollständige Probleme und polynomialen Reduktionen).

Anmerkungen
Siehe Teilleistung.

Arbeitsaufwand
Vorlesung mit 3 SWS + 1 SWS Übung.
6 LP entspricht ca. 180 Stunden
ca. 45 Std. Vorlesungsbesuch,
ca. 15 Std. Übungsbesuch,
ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter
ca. 30 Std. Prüfungsvorbereitung
4.26 Modul: Topics in Finance I [M-WIWI-101465]

Verantwortung:
Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
Ergänzungsfach / Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102643</td>
<td>Derivate</td>
<td>4,5 LP</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-107505</td>
<td>Financial Accounting for Global Firms</td>
<td>4,5 LP</td>
<td>Weinhardt</td>
</tr>
<tr>
<td>T-WIWI-102623</td>
<td>Finanzintermediation</td>
<td>4,5 LP</td>
<td>Luedecke</td>
</tr>
<tr>
<td>T-WIWI-102626</td>
<td>Geschäftspolitik der Kreditinstitute</td>
<td>3 LP</td>
<td>Müller</td>
</tr>
<tr>
<td>T-WIWI-108711</td>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>4,5 LP</td>
<td>Gutekunst, Wigger</td>
</tr>
<tr>
<td>T-WIWI-102646</td>
<td>Internationale Finanzierung</td>
<td>3 LP</td>
<td>Uhrig-Homburg</td>
</tr>
<tr>
<td>T-WIWI-110511</td>
<td>Strategic Finance and Technology Change</td>
<td>1,5 LP</td>
<td>Ruckes</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende

- besitzt weiterführende Kenntnisse in moderner Finanzwirtschaft
- wendet diese Kenntnisse in den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken in der beruflichen Praxis an.

Voraussetzungen
Nur in Verbindung mit dem Modul Grundlagen der BWL prüfbar.

Inhalt
Das Modul Topics in Finance I baut inhaltlich auf dem Modul Essentials of Finance auf. In den Veranstaltungen werden weiterführende Fragestellungen aus den Bereichen Finanz- und Rechnungswesen, Finanzmärkte und Banken aus theoretischer und praktischer Sicht behandelt.

Anmerkungen

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Leistungspunkte). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls. Dabei beträgt der Arbeitsaufwand für Lehrveranstaltungen mit 4,5 Leistungspunkten ca. 135 Stunden, für Lehrveranstaltungen mit 3 Leistungspunkten ca. 90 Stunden und für Lehrveranstaltungen mit 1,5 Leistungspunkten 45 Stunden.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
Verantwortung: Prof. Dr. Nikolaus Marsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Recht

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-110300 | Öffentliches Recht I & II | 6 LP | Marsch |

Erfolgskontrolle(n)

Siehe Teilleistung.

Qualifikationsziele

Der/die Studierende

- ordnet Probleme im öffentlichen Recht ein und löst einfache Fälle mit Bezug zum öffentlichen Recht,
- bearbeitet einen aktuellen Fall aufbautechnisch,
- zieht Vergleiche zwischen verschiedenen Rechtsproblemen im Öffentlichen Recht,
- kennt die methodischen Grundlagen des Öffentlichen Rechts,
- kennt den Unterschied zwischen Privatrecht und dem öffentlichem Recht,
- kennt die Rechtsschutzmöglichkeiten mit Blick auf das behördliche Handeln,
- kann mit verfassungsrechtlichen und spezialgesetzlichen Rechtsnormen umgehen.

Voraussetzungen

Siehe Teilleistung.

Inhalt

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfungszeit und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.128 Modul: Wahrscheinlichkeitstheorie [M-MATH-101322]

Verantwortung: Prof. Dr. Nicole Bäuerle
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Ergänzungsfach / Mathematik (Wahlpflichtmodule)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-102257</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Qualifikationsziele
Absolventinnen und Absolventen können

- grundlegende wahrscheinlichkeitstheoretische Methoden nennen, erörtern und anwenden,
- einfache Vorgänge stochastisch modellieren,
- selbstorganisiert und reflexiv arbeiten.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Inhalt

- Maß-Integral
- Monotone und majorisierte Konvergenz
- Lemma von Fatou
- Nullmengen u. Maße mit Dichten
- Satz von Radon-Nikodym
- Produkt-sigma-Algebra
- Familien von unabhängigen Zufallsvariablen
- Transformationssatz für Dichten
- Schwache Konvergenz
- Charakteristische Funktion
- Zentraler Grenzwertsatz
- Bedingte Erwartungswerte
- Zeitdiskrete Martingale und Stoppzeiten

Empfehlungen
Das Modul "Wahrscheinlichkeitstheorie" ist Grundlage aller weiterführenden Module in der Stochastik. Die Module "Analysis 3" und "Einführung in die Stochastik" sollten bereits absolviert sein.
Arbeitsaufwand
Gesamter Arbeitsaufwand: 180 Stunden
Präsenzzeit: 60 Stunden
 • Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 120 Stunden
 • Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
 • Bearbeitung von Übungsaufgaben
 • Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherch
 • Vorbereitung auf die studienbegleitende Modulprüfung
4.129 Modul: Web-Anwendungen und Serviceorientierte Architekturen (I) [M-INFO-101636]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Wahlbereich Informatik (Wahlmodule)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-103122 | Web-Anwendungen und Serviceorientierte Architekturen (I) | 4 LP | Abecck |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele

- Die Studierenden können die Inhalte der wichtigsten Konzepte und Technologien, die zur Entwicklung von traditionellen Web-Anwendungen erforderlich sind, wiedergeben (Wissen und Verstehen).
- Die Studierenden können die Softwarearchitektur einer traditionellen Web-Anwendung modellieren (Anwenden).
- Die Studierenden können die Qualität gewisser Eigenschaften einer Web-Anwendung durch den Einsatz von Metriken bestimmen (Beurteilen).

Voraussetzungen
Siehe Teilleistung.

Inhalt

Arbeitsaufwand
120h
Präsenzzeit Vorlesung 22,5 (15 x 1,5)
Vor- und Nachbereitung Vorlesung: 60 (15 x 4)
Vorbereitung Prüfung: 37,5
4.130 Modul: Wirtschaftsprivatrecht [M-INFO-101191]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Ergänzungsfach / Recht

Leistungspunkte 9
Turnus Jedes Semester
Dauer 3 Semester
Sprache Deutsch
Level 3
Version 3

Pflichtbestandteile

| T-INFO-102013 | Privatrechtliche Übung | 9 LP | Dreier, Matz |

Erfolgskontrolle(n)
Siehe Teilleistung.

Qualifikationsziele
Der/die Studierende

- besitzt vertiefte Kenntnisse des allgemeinen und des besonderen Schuldrechts sowie des Sachenrechts,
- ist in der Lage, das Zusammenwirken der gesetzlichen Regelungen im BGB (betreffend die verschiedenen Vertragstypen und die dazugehörigen Haftungsfragen, Leistungsabwicklung, Leistungsstörungen, verschiedene Übereignungsarten sowie die dinglichen Sicherungsrechte) und im Handels- und Gesellschaftsrecht (hier insbesondere betreffend die Besonderheiten der Handelsgeschäfte, die handelsrechtliche Stellvertretung und das Kaufmannsrecht sowie die Organisationsformen, die das deutsche Gesellschaftsrecht für unternehmerische Aktivität zur Verfügung stellt) zu durchschauen,
- erworben in der Privatrechtlichen Übung die Fähigkeit, juristische Problemfälle mit juristischen Mitteln methodisch sauber zu lösen.

Voraussetzungen
Erfolgreicher Abschluss des Moduls Einführung in das Privatrecht [IN1JURA1].

Inhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 270 Stunden (9 Credits). Die Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.

Die Gesamtstundenzahl je Lehrveranstaltung ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie der Prüfungszeit und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.131 Modul: Wirtschaftstheorie [M-WIWI-101501]

Verantwortung: Prof. Dr. Clemens Puppe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Ergänzungsfach / Volkswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtangebot (9 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102609</td>
<td>Advanced Topics in Economic Theory</td>
<td>4,5 LP</td>
<td>Mitusch</td>
</tr>
<tr>
<td>T-WIWI-102876</td>
<td>Auction & Mechanism Design</td>
<td>4,5 LP</td>
<td>Szech</td>
</tr>
<tr>
<td>T-WIWI-102892</td>
<td>Economics and Behavior</td>
<td>4,5 LP</td>
<td>Szech</td>
</tr>
<tr>
<td>T-WIWI-102850</td>
<td>Einführung in die Spieltheorie</td>
<td>4,5 LP</td>
<td>Puppe, Reiß</td>
</tr>
<tr>
<td>T-WIWI-102844</td>
<td>Industrieökonomie</td>
<td>4,5 LP</td>
<td>Reiß</td>
</tr>
<tr>
<td>T-WIWI-109121</td>
<td>Macroeconomic Theory</td>
<td>4,5 LP</td>
<td>Brumm</td>
</tr>
<tr>
<td>T-WIWI-102610</td>
<td>Wohlfahrtstheorie</td>
<td>4,5 LP</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele

Der/die Studierende

- beherrscht den Umgang mit fortgeschrittenen Konzepten der mikroökonomischen Theorie - beispielsweise der allgemeinen Gleichgewichtstheorie oder der Preistheorie - und kann diese auf reale Probleme, z. B. der Allokation auf Faktor- und Gütermärkten, anwenden. (Lehrveranstaltung "Fortgeschrittene mikroökonomische Theorie"),
- versteht Konzepte und Methoden der Wohlfahrtstheorie und kann sie auf Probleme der Verteilungsgerechtigkeit, Chancengleichheit und gesellschaftliche Fairness anwenden, (Lehrveranstaltung "Wohlfahrtstheorie")
- erlangt fundierte Kenntnisse in der Theorie strategischer Entscheidungen. Ein Hörer der Vorlesung "Einführung in die Spieltheorie" soll in der Lage sein, allgemeine strategische Fragestellungen systematisch zu analysieren und gegebenenfalls Handlungsempfehlungen für konkrete volkswirtschaftliche Entscheidungssituationen (wie kooperatives vs. egoistisches Verhalten) zu geben. (Lehrveranstaltung "Einführung in die Spieltheorie").

Voraussetzungen

Keine

Inhalt

Empfehlungen
Keine

Anmerkungen
Bitte beachten Sie, dass die Teilleistung T-WIWI-102609 - Advanced Topics in Economic Theory derzeit nicht angeboten wird.
5.1 Teilleistung: Advanced Topics in Economic Theory [T-WIWI-102609]

Verantwortung: Prof. Dr. Kay Mitusch

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

Teilleistungsart: Prüfungsleistung schriftlich

Leistungspunkte: 4,5

Turnus: Unregelmäßig

Version: 1

Lehrveranstaltungen

| SS 2020 | 2520527 | Advanced Topics in Economic Theory | 2 SWS | Vorlesung (V) | Mitusch, Scheffel |
| SS 2020 | 2520528 | Übung zu Advanced Topics in Economic Theory | 1 SWS | Übung (Ü) | Pegorari |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Erfolgskontrolle erfolgt an zwei Terminen am Ende der Vorlesungszeit bzw. zu Beginn des Folgesemesters.

Voraussetzungen

Keine

Empfehlungen

This course is designed for advanced Master students with a strong interest in economic theory and mathematical models. Bachelor students who would like to participate are free to do so, but should be aware that the level is much more advanced than in other courses of their curriculum.

Verantwortung: Dr.-Ing. Roland Kläger
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2122300 | Agiles Produkt-Innovations-Management - MEHRWERT-getriebene Planung neuer Produkte | SWS | Vorlesung (V) | Kläger |

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Min.

Voraussetzungen
Keine
5.3 Teilleistung: Algebra [T-MATH-102253]

Verantwortung: Prof. Dr. Frank Herrlich
Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101315 - Algebra

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 19/20</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
<th>Betreuer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0102200</td>
<td>Algebra</td>
<td>4</td>
<td>Herrlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0102210</td>
<td>Übungen zu 0102200 (Algebra)</td>
<td>2</td>
<td>Herrlich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.4 Teilleistung: Algorithmen für planare Graphen [T-INFO-101986]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101220 - Algorithmen für planare Graphen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 24614 | Algorithmen für planare Graphen (mit Übungen) | 2 SWS | Vorlesung / Übung (VÜ) | Ueckerdt, Gottesbüren |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten gemäß § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse zu Grundlagen der Graphentheorie und Algorithmentechnik sind hilfreich.
5.5 Teilleistung: Algorithmen I [T-INFO-100001]

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100030 - Algorithmen I

Lehrveranstaltungen

| SS 2020 | 24500 | Algorithmen I | 4 SWS | Vorlesung / Übung (VÜ) | Dachsbacher, Schüßler, Jung, Opitz |

Erfolgskontrolle(n)
Die Erfolgskontrolle besteht aus einer schriftlichen Abschlussprüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von 120 Minuten. Der Dozent kann für gute Leistungen in der Übung zur Lehrveranstaltung Algorithmen I einen Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben.

Dieser Notenbonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.
5.6 Teilleistung: Algorithmen II [T-INFO-102020]

| Verantwortung: | Prof. Dr. Hartmut Prautzsch
| | Prof. Dr. Peter Sanders
| | Prof. Dr. Dorothea Wagner
| Einrichtung: | KIT-Fakultät für Informatik
| Bestandteil von: | M-INFO-101173 - Algorithmen II

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Wintersemester
Version: 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 24079</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n):
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen:
Keine.
5.7 Teilleistung: Algorithmische Methoden für schwere Optimierungsprobleme [T-INFO-103334]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Dorothea Wagner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Informatik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-INFO-101237 - Algorithmische Methoden für schwere Optimierungsprobleme</td>
</tr>
<tr>
<td>Teilleistungart</td>
<td>Prüfungsleistung mündlich</td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td>5</td>
</tr>
<tr>
<td>Turnus</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten gemäß § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse aus der Vorlesung Algorithmen II werden empfohlen.
5.8 Teilleistung: Analysis 1 - Klausur [T-MATH-106335]

Verantwortung: Prof. Dr. Dorothee Frey
PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 0100100 | Analysis I | 4 SWS | Vorlesung (V) | Lamm |

Voraussetzungen

Der Übungsschein aus Analysis 1 muss bestanden sein.
5.9 Teilleistung: Analysis 1 Übungsschein [T-MATH-102235]

Verantwortung: Prof. Dr. Dorothee Frey
 PD Dr. Gerd Herzog
 Prof. Dr. Dirk Hundertmark
 Prof. Dr. Tobias Lamm
 Prof. Dr. Michael Plum
 Prof. Dr. Wolfgang Reichel
 Dr. Christoph Schmoeger
 Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Übungsschein/ Tutorium</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0100200</td>
<td>Übungen zu 0100100</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Lamm</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0190010</td>
<td>Tutorium Analysis I</td>
<td>2</td>
<td>Tutorium (Tu)</td>
<td>Lamm</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.10 Teilleistung: Analysis 2 - Klausur [T-MATH-106336]

Verantwortung: Prof. Dr. Dorothee Frey
PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 0150100 Analysis 2 4 SWS Vorlesung (V) Lamm</td>
</tr>
</tbody>
</table>

Voraussetzungen

Der Übungsschein aus Analysis 2 muss bestanden sein.
5.11 Teilleistung: Analysis 2 Übungsschein [T-MATH-102236]

Verantwortung: Prof. Dr. Dorothee Frey
PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101306 - Analysis 1 und 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 0150200 | Übungen zu 0150100 | 2 SWS | Übung (Ü) | Lamm |

Voraussetzungen

keine
5.12 Teilleistung: Analysis 3 - Klausur [T-MATH-102245]

Verantwortung: Prof. Dr. Dorothee Frey
PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101318 - Analysis 3

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0100400</td>
<td>Analysis III</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Hundertmark</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0100500</td>
<td>Übungen zu 0100400</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hundertmark</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.13 Teilleistung: Analysis 4 - Prüfung [T-MATH-106286]

Verantwortung:
- Prof. Dr. Dorothee Frey
- PD Dr. Gerd Herzog
- Prof. Dr. Dirk Hundertmark
- Prof. Dr. Tobias Lamm
- Prof. Dr. Michael Plum
- Prof. Dr. Wolfgang Reichel
- Dr. Christoph Schmoeger
- Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103164 - Analysis 4

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0163900 Analysis 4</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Hundertmark</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0164000 Übungen zu 0163900</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hundertmark</td>
</tr>
</tbody>
</table>

Voraussetzungen

Keine
5.14 Teilleistung: Analytisches CRM [T-WIWI-102596]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101460 - CRM und Servicemanagement

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

| SS 2020 | 2540522 | Analytisches CRM | 2 SWS | Vorlesung (V) | Geyer-Schulz |
| SS 2020 | 2540523 | Übungen zu Analytisches CRM | 2 SWS | Übung (Ü) | Schweizer |

Erfolgskontrolle(n)

Die Prüfung wird für Erstschreiber letztmals im Sommersemester 2020 angeboten.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Der maximale Bonus beträgt fünf Punkte (maximal eine Notenstufe (0,3 oder 0,4)). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse über Datenmodelle und Modellierungssprachen (UML) aus dem Bereich der Informationssysteme werden vorausgesetzt.
5.15 Teilleistung: Antennen und Mehrantennensysteme [T-ETIT-106491]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100565 - Antennen und Mehrantennensysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsstunden</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>3 SWS</td>
<td>Zwick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>1 SWS</td>
<td>Kowalewski</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (2 Stunden) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen
T-ETIT-100638 - Antennen und Mehrantennensysteme wurde weder begonnen, noch abgeschlossen.
Das Modul "Antennen und Antennensysteme" darf nicht begonnen oder abgeschlossen sein.
5.16 Teilleistung: Auction & Mechanism Design [T-WIWI-102876]

Verantwortung: Prof. Dr. Nora Szech
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2560550 | Auction and Mechanism Design | 2 SWS | Vorlesung (V) | Szech |
| SS 2020 | 2560551 | Übung zu Auction and Mechanism Design | 1 SWS | Übung (Ü) | Szech, Huber |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Die Note ist die Note der schriftlichen Prüfung.
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Grundkenntnisse in Mikroökonomie und Statistik sind wünschenswert. Ein Hintergrund in Spieltheorie ist hilfreich, aber nicht zwingend notwendig.

Anmerkungen
Die Lehrveranstaltung wird in englischer Sprache gehalten.
5.17 Teilleistung: Bachelorarbeit [T-INFO-103336]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101721 - Modul Bachelorarbeit

Erfolgskontrolle(n)
Die Bachelorarbeit ist in § 11 der SPO geregelt.
Die Präsentation soll spätestens vier Wochen nach Abgabe der schriftlichen Ausarbeitung stattfinden.
Die schriftliche Ausarbeitung soll die Herangehensweise an das Thema dokumentieren.

Voraussetzungen
Voraussetzung für die Zulassung zur Bachelorarbeit ist, dass die/des Studierende Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt hat und nicht mehr als eine Modulprüfung aus den Pflichtfächern gemäß § 20 Abs. 2 Ziff. 1-4 der SPO noch nicht bestanden hat. Über Ausnahmen entscheidet der Prüfungsausschuss auf Antrag der/des Studierenden.

Wenn die Voraussetzungen erfüllt sind, ist ein Antrag auf Zulassung nicht notwendig.

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

- **Bearbeitungszeit**: 4 Monate
- **Maximale Verlängerungsfrist**: 1 Monate
- **Korrekturfrist**: 6 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.

Anmerkungen
Die schriftliche Ausarbeitung soll die Herangehensweise an das Thema dokumentieren.
5.18 Teilleistung: Basispraktikum Mobile Roboter [T-INFO-101992]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101184 - Basispraktikum Mobile Roboter

Teilleistungsart Studienleistung

Leistungspunkte 4

Turnus Jedes Sommersemester

Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>24624</th>
<th>Basispraktikum Mobile Roboter</th>
<th>4 SWS</th>
<th>Praktikum (P)</th>
<th>Asfour, Beil</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO und besteht aus mehreren Teilaufgaben. Die Bewertung erfolgt mit den Noten “bestanden” / “nicht bestanden”.

Voraussetzungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.

Empfehlungen

Kenntnisse in der Programmiersprache C und in der Technischen Informatik werden vorausgesetzt.
5.19 Teilleistung: Basispraktikum Protocol Engineering [T-INFO-102066]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101247 - Basispraktikum Protocol Engineering

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnr</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2400107</td>
<td>Basispraktikum Protocol Engineering</td>
<td>4 SWS</td>
<td>Praktikum (P)</td>
<td>Bauer, Zitterbart</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt benotet nach § 4 Abs. 2 Nr. 3 SPO als Prüfungsleistung anderer Art.

Voraussetzungen

Die Belegung dieses Moduls schließt die Belegung des Moduls *Praktikum Praxis der Telematik* aus.

Empfehlungen

Das Praktikum sollte semesterbegleitend zur LV *Telematik* [24128] belegt werden.
5.20 Teilleistung: Basispraktikum Technische Informatik: Hardwarenaher Systementwurf Übung [T-INFO-105983]

Verantwortung: Prof. Dr. Wolfgang Karl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101219 – Basispraktikum TI: Hardwarenaher Systementwurf

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Es muss außerdem einen Übungsschein in Form einer Studienleistung nach § 4 Abs. 3 SPO erbracht werden. Hierfür wird die Abgabe zweier Übungsblätter bewertet.

Voraussetzungen
Keine.
5.21 Teilleistung: Basispraktikum TI: Hardwarenaher Systementwurf [T-INFO-102011]

Verantwortung: Prof. Dr. Wolfgang Karl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101219 – Basispraktikum TI: Hardwarenaher Systementwurf

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2424309</td>
<td>Basispraktikum TI: Hardwarenaher Systementwurf (findet nicht statt aktuell)</td>
<td>4 SWS Praktikum (P) Karl, Bromberger</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2424309</td>
<td>Basispraktikum TI: Hardwarenaher Systementwurf - findet nur noch im WS statt</td>
<td>4 SWS Praktikum (P) Karl, Bromberger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO. Es müssen eine schriftliche Ausarbeitung erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Voraussetzungen
Keine.

Empfehlungen
Besuch der Veranstaltungen:
- Rechnerorganisation und/oder
- Digitaltechnik und Entwurfsverfahren
5.22 Teilleistung: Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) [T-INFO-103119]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101633 - Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 24312 | Basispraktikum Web-Anwendungen und Serviceorientierte Architekturen (I) | 2 SWS | Praktikum (P) | Abeck, Schneider |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Ergebnisdokumentation sowie der Präsentation derselben als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO

Voraussetzungen
Das Modul Web-Anwendungen und Service-Orientierte Architekturen (I) muss angefangen sein.
5.23 Teilleistung: Basispraktikum zum ICPC Programmierwettbewerb [T-INFO-101991]

Verantwortung: Prof. Dr. Dorothea Wagner
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101230 - Basispraktikum zum ICPC-Programmierwettbewerb

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 24872 | Basispraktikum zum ICPC Programmierwettbewerb | 2 SWS | Praktikum (P) | Jungeblut, Zeitz, Ueckerdt, Sanders, Tillmann |

Erfolgskontrolle(n)

Für den erfolgreichen Abschluss des Moduls ist das Bestehen einer Studienleistung anderer Art nach § 4 Abs. 3 SPO notwendig. Diese erfolgt kontinuierlich in Form von Programmieraufgaben sowie einem Abschlussvortrag im Umfang von ca. 20 Minuten.

Voraussetzungen

Keine.

Empfehlungen

Programmierkenntnisse in C++ oder Java, algorithmische Grundkenntnisse sind wünschenswert.
5.24 Teilleistung: Basispraktikum: Arbeiten mit Datenbanksystemen [T-INFO-103552]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101865 - Basispraktikum Arbeiten mit Datenbanksystemen

Lehrveranstaltungen

| WS 19/20 | 24317 | Arbeiten mit Datenbanksystemen | 2 SWS | Praktikum (P) | Böhm |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO. Es müssen eine schriftliche Ausarbeitung über die praktische Arbeit erstellt und Präsentationen gehalten werden. Ein Rücktritt ist innerhalb von einer Woche nach Beginn der Veranstaltung möglich.

Voraussetzungen
Die Prüfung Datenbanksysteme muss erfolgreich abgeschlossen sein.
5.25 Teilleistung: Batteriemodellierung mit MATLAB [T-ETIT-106507]

Verantwortung: Dr.-Ing. Andre Weber
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-103271 - Batteriemodellierung mit MATLAB

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Typ</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Batteriemodellierung mit MATLAB</td>
<td>1</td>
<td>Vorlesung (V)</td>
<td>Weber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Übungen zu 2304228 Batteriemodellierung mit MATLAB</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Weber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von ca. 20 Minuten.

Voraussetzungen
keine
5.26 Teilleistung: Bauökologie I [T-WIWI-102742]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101467 - Bauökologie

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2586404</td>
<td>Bauökologie I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Lützkendorf</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2586405</td>
<td>Übung zu Bauökologie I</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Worschech, Jungmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Wintersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Eine Kombination mit dem Modul Real Estate Management und mit einem ingenieurwissenschaftlichem Modul aus den Bereichen Bauphysik oder Baukonstruktion wird empfohlen.
5.27 Teilleistung: Bauökologie II [T-WIWI-102743]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101467 - Bauökologie

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Übung (U)</th>
<th>Vorlesung (V)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Übung zu Bauökologie II</td>
<td>1</td>
<td></td>
<td></td>
<td>Jungmann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Bauökologie II</td>
<td>2</td>
<td></td>
<td>Vorlesung (V)</td>
<td>Lützkendorf</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Sommersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Es wird eine Kombination mit dem Modul Real Estate Management und mit einem ingenieurwissenschaftlichem Modul aus den Bereichen Bauphysik oder Baukonstruktion empfohlen.
5.28 Teilleistung: Betriebssysteme [T-INFO-101969]

Verantwortung: Prof. Dr.-Ing. Frank Bellosa
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101177 - Betriebssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 180 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.

Anmerkungen
Studierende, die das Modul bis inkl. SS 2019 angefangen haben (bereits die Haupt- oder Scheinklasur angetreten haben) und noch nicht abgeschlossen haben, haben die Möglichkeit die zwei Prüfungen aus dem Modul im WS 2019 / 2020 erneut abzulegen oder auf die neue Version des Moduls mit der neuen Erfolgskontrolle umzusteigen. Dafür müssen Studierende eine E-Mail an beratung-informatik@informatik.kit.edu.

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Vorlesung (V)</th>
<th>Lecture (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 24009</td>
<td>4</td>
<td>Betriebssysteme</td>
<td>Bellosa, Rittinghaus</td>
<td></td>
</tr>
</tbody>
</table>
5.29 Teilleistung: Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen [T-WIWI-102819]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg
Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101493 - Grundlagen der BWL

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Titel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2610026</td>
<td>Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ruckes, Wouters</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2610027</td>
<td>Tutorien zu Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>2</td>
<td>Tutorium (Tu)</td>
<td>Strych</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2610029</td>
<td>Tutorien zu Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>2</td>
<td>Tutorium (Tu)</td>
<td>Strych</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO).
Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine
5.30 Teilleistung: Betriebswirtschaftslehre: Produktionswirtschaft und Marketing [T-WIWI-102818]

Verantwortung: Prof. Dr. Wolf Fichtner
Prof. Dr. Martin Klarmann
Prof. Dr.-Ing. Thomas Lützkendorf
Prof. Dr. Martin Ruckes
Prof. Dr. Frank Schultmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101493 - Grundlagen der BWL

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Stundentyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2500025 Tutorien zu BWL PM</td>
<td>SWS</td>
<td>Tutorium (Tu)</td>
<td>Klarmann, Strych, Assistenten</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2500027 Tutorien zu BWL PM</td>
<td>2 SWS</td>
<td>Tutorium (Tu)</td>
<td>Klarmann, Strych, Assistenten</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2600024 Betriebswirtschaftslehre: Produktionswirtschaft und Marketing</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Klarmann, Schultmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine
5.31 Teilleistung: BGB für Anfänger [T-INFO-103339]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101190 - Einführung in das Privatrecht

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen
Wintersemester	Veranstaltungs-ID	Veranstaltung	SWS	Form	Dozierender
WS 19/20	24012	BGB für Anfänger	4	Vorlesung (V)	Matz

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.
5.32 Teilleistung: Bildgebende Verfahren in der Medizin I [T-ETIT-101930]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100384 - Bildgebende Verfahren in der Medizin I

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
3
Turnus
Jedes Wintersemester
Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2305261</td>
<td>Bildgebende Verfahren in der Medizin I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Dössel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine
5.33 Teilleistung: Bildverarbeitung [T-ETIT-105566]

Verantwortung: Prof. Dr.-Ing. Fernando Puente León
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102651 - Bildverarbeitung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2302114</td>
<td>Bildverarbeitung</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Puente León</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Empfehlungen
5.34 Teilleistung: CAD-Praktikum NX [T-MACH-102187]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studienleistung praktisch</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Edition</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2123357</td>
<td>CAD-Praktikum NX</td>
<td>2 SWS</td>
<td>Praktikum (P)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2123357</td>
<td>CAD-Praktikum NX</td>
<td>3 SWS</td>
<td>Praktikum (P)</td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Praktische Prüfung am CAD Rechner, Dauer 60 min.

Voraussetzungen

Keine

Empfehlungen

Umgang mit technischen Zeichnungen wird vorausgesetzt.

Anmerkungen

Für das Praktikum besteht Anwesenheitspflicht.
5.35 Teilleistung: Computergrafik [T-INFO-101393]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100856 - Computergrafik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.
5.36 Teilleistung: Customer Relationship Management [T-WIWI-102595]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101460 - CRM und Servicemanagement

Relevante Leistungspunkte: 4,5

Voraussetzungen
Keine

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Terminat</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2540508</td>
<td>Customer Relations Management</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540509</td>
<td>Übung zu Customer Relations Management</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Schweigert</td>
</tr>
</tbody>
</table>

Informatik (Bachelor of Science (B.Sc.))
Modulhandbuch mit Stand vom 20.02.2020
5.37 Teilleistung: Datenbanksysteme [T-INFO-101497]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101178 - Kommunikation und Datenhaltung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 24516 Datenbanksysteme 2 SWS Vorlesung (V) Böhm, Mülle</td>
</tr>
<tr>
<td>SS 2020 24522 Übungen zu Datenbanksysteme 1 SWS Übung (Ü) Böhm, Mülle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO. Durch die erfolgreiche Teilnahme am Übungsbetrieb als Erfolgskontrolle anderer Art (§4(2), 3 SPO 2007) bzw. Studienleistung (§4(3) SPO 2015) kann ein Bonus erworben werden. Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekannt gegeben. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Der Bonus gilt nur für die Haupt- und Nachklausur des Semesters, in dem er erworben wurde. Danach verfällt der Notenbonus.

Voraussetzungen
Keine.

Empfehlungen
Der Besuch von Vorlesungen zu Rechnernetzen, Systemarchitektur und Softwaretechnik wird empfohlen, aber nicht vorausgesetzt.
5.38 Teilleistung: Datenschutz durch Technik [T/INFO-108405]

Verantwortung: PD Dr. Oliver Raabe
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M/INFO-101242 - Governance, Risk & Compliance

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Typ</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Datenschutz durch Technik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Raabe, Werner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach §4, Abs. 2, 1 SPO.

Voraussetzungen

Keine.
5.39 Teilleistung: Derivate [T-WIWI-102643]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101402 - eFinance
M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2530550</td>
<td>Derivate</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Uhrig-Homburg, Thimme</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2530551</td>
<td>Übung zu Derivate</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Uhrig-Homburg, Eska</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75 Minuten) nach §4(2), 1 SPO. Die Prüfung findet in der vorlesungsfreien Zeit des Semesters statt. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine

Empfehlungen

Keine

Verantwortung: Prof. Dr. Martin Klarmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101424 - Grundlagen des Marketing

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltung</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Dienstleistungs- und B2B-Marketing</td>
<td>Klarmann</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Anmerkungen
Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).
5.41 Teilleistung: Digital Services [T-WIWI-109938]

Verantwortung: Prof. Dr. Gerhard Satzger
Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101434 - eBusiness und Service Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Digital Services</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Satzger, Sure-Vetter, Weinhardt, Kühl</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Übungen zu Digital Services</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Kühl, Schöffer, Badewitz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studierende, die sich im Erstversuch für die Prüfung im Sommersemester 2019 anmelden möchten, wählen bitte die Prüfung "Foundations of Digital Services A" (siehe Anmerkung).

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min) (§4(2), 1 SPOs).

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

siehe "Modellierte Voraussetzungen"

Voraussetzung für WINF angepasst (Wiesner, 20.09.2019)

Anmerkungen

Studierende, die sich im Erstversuch für die Prüfung im Sommersemester 2019 anmelden möchten, wählen bitte die Prüfung "Foundations of Digital Services A".
5.42 Teilleistung: Dosimetrie ionisierender Strahlung [T-ETIT-104505]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-101847 - Dosimetrie ionisierender Strahlung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Vorlesungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2305294</td>
<td>Dosimetrie ionisierender Strahlung</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Breustedt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten).

Voraussetzungen
keine
5.43 Teilleistung: Echtzeitsysteme [T-INFO-101340]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
 Prof. Dr.-Ing. Thomas Längle

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100803 - Echtzeitsysteme

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 6

Turnus Jedes Sommersemester

Version 1

Lehrveranstaltungen

| SS 2020 | 24576 | Echtzeitsysteme | 4 SWS | Vorlesung / Übung (VÜ) | Längle, Ledermann |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten gemäß § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen
Keine.

Empfehlungen
Der vorherige Abschluss der Module Grundbegriffe der Informatik und Programmieren wird empfohlen.
5.44 Teilleistung: Economics and Behavior [T-WIWI-102892]

Verantwortung: Prof. Dr. Nora Szech
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2560137</td>
<td>Economics and Behavior</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ehrlich, Puppe</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2560138</td>
<td>Übung zu Economics and Behavior</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Ehrlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Die Note ist die Note der schriftlichen Prüfung.
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen
Keine

Empfehlungen
Grundkenntnisse in Mikroökonomie und Statistik sind wünschenswert. Ein Hintergrund in Spieltheorie ist hilfreich, aber nicht zwingend notwendig.

Anmerkungen
Die Veranstaltung wird auf Englisch stattfinden.
5.45 Teilleistung: eFinance: Informationssysteme für den Wertpapierhandel [T-WIWI-110797]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101402 - eFinance
M-WIWI-101434 - eBusiness und Service Management
M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2540454</td>
<td>eFinance: Wirtschaftsinformatik für den Wertpapierhandel</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Weinhardt, Notheisen</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540455</td>
<td>Übungen zu eFinance: Wirtschaftsinformatik für den Wertpapierhandel</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Jaquart, Soufi</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch laufende Ausarbeitungen und Präsentationen von Aufgaben und eine Klausur (60 Minuten) am Ende der Vorlesungszeit. Das Punkteschema für die Gesamtbewertung wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen
siehe "Modellierte Voraussetzungen"
5.46 Teilleistung: Eine Einführung zum Informatikstudium am KIT (eezi) [T-INFO-109862]

Verantwortung: Prof. Dr. Bernhard Beckert
Christine Glaubitz
Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Thomas Worsch

Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>Leistungspunkt</th>
<th>Turnus</th>
<th>Vorlesungslehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2400037</td>
<td>Eine Einführung zum Informatikstudium am KIT (eezi)</td>
<td>SWS</td>
<td>Sonstige (sonst.)</td>
<td>Glaubitz, Griesbaum</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2411809</td>
<td>Tutorien zu "Eine Einführung zum Informatikstudium am KIT (eezi)"</td>
<td>SWS</td>
<td>Tutorium (Tu)</td>
<td>Glaubitz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO.

- 3 Vorlesungen
- 5 Tutorien (Anwesenheit mind. 3 von 5)
- 5 Übungsblätter
- 1 Beratungstermin

Voraussetzungen

Keine.

Anmerkungen

Die neue Lehrveranstaltung eezi am KIT (Eine Einführung zum Informatikstudium am KIT) wird für Erstsemester angeboten und empfohlen. Sie besteht aus einer Reihe von 3 Vorlesungen und 5 Tutorien, die den Einstieg in das Informatikstudium / Informationswirtschaftsstudium / Lehramt Fach Informatikstudium erleichtern soll.

Nach dem Abschluss von eezi am KIT erhält man 1 ECTS als Überfachliche Qualifikation (Schlüsselqualifikation) bzw Zusatzleistungen.

Für Erstsemester Studierende (Bachelor): Informatik / Informationswirtschaft / Lehramt Fach Informatik
5.47 Teilleistung: Einführung in Algebra und Zahlentheorie [T-MATH-102251]

Verantwortung: Prof. Dr. Frank Herrlich
Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101314 - Einführung in die Algebra und Zahlentheorie

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 9
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>0153100</th>
<th>Einführung in Algebra und Zahlentheorie</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Kühnlein</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0153200</td>
<td>Übungen zu 0153100 (Einführung in Algebra und Zahlentheorie)</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Kühnlein</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0195310</td>
<td>Tutorium zu Einführung in Algebra und Zahlentheorie</td>
<td>2 SWS</td>
<td>Tutorium (Tu)</td>
<td>Kühnlein</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.48 Teileistung: Einführung in das Operations Research I und II [T-WIWI-102758]

Verantwortung: Prof. Dr. Stefan Nickel
Prof. Dr. Steffen Rebennack
Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101418 - Einführung in das Operations Research

<table>
<thead>
<tr>
<th>Teileistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>12</td>
<td>siehe Anmerkungen</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 2019/2020</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Einführung in das Operations Research II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Tutorien zu Einführung in das Operations Research II</td>
<td>SWS</td>
<td>Tutorium (Tu)</td>
<td>Assistenten, Stein</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Tutorien zu Einführung in das Operations Research II</td>
<td>2</td>
<td>Tutorium (Tu)</td>
<td>Assistenten, Stein</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Einführung in das Operations Research I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Rebennack</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtklausur (120 min.) (nach §4(2), 1 SPO).
Die Klausur wird in jedem Semester (in der Regel im März und Juli) angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Die Moduleinteilung entspricht der Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Es werden die Kenntnisse aus Mathematik I und II, sowie Programmierkenntnisse für die Rechnerübungen vorausgesetzt.

Anmerkungen
5.49 Teilleistung: Einführung in die Energiewirtschaft [T-WIWI-102746]

Verantwortung: Prof. Dr. Wolf Fichtner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101464 - Energiewirtschaft

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte
5,5
Turnus
Jedes Sommersemester
Version
3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2581010</td>
<td>Einführung in die Energiewirtschaft</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Fichtner</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2581011</td>
<td>Übungen zu Einführung in die Energiewirtschaft</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Lehmann, Sandmeier, Ardone</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.
5.50 Teilleistung: Einführung in die Finanzwissenschaft [T-WIWI-102877]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101403 - Finanzwissenschaft

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| WS 19/20 | 2560131 | Einführung in die Finanzwissenschaft | 3 SWS | Vorlesung (V) | Wigger |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.).

Voraussetzungen
Keine
5.51 Teilleistung: Einführung in die Spieltheorie [T-WIWI-102850]

Verantwortung: Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

<table>
<thead>
<tr>
<th>Leistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2520526</td>
</tr>
<tr>
<td>Einführung in die Spieltheorie 2 SWS Vorlesung (V) Puppe</td>
</tr>
<tr>
<td>SS 2020 2520526</td>
</tr>
<tr>
<td>Übungen zu Einführung in die Spieltheorie 1 SWS Übung (Ü) Puppe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederruhlt werden.

Voraussetzungen
Keine

Empfehlungen
Es werden Grundkenntnisse in Mathematik und Statistik vorausgesetzt.
5.52 Teilleistung: Einführung in die Stochastik [T-MATH-102256]

Verantwortung:
Prof. Dr. Nicole Bäuerle
Prof. Dr. Vicky Fasen-Hartmann
Prof. Dr. Norbert Henze
Prof. Dr. Daniel Hug
Dr. Bernhard Klar
Prof. Dr. Günter Last

Einrichtung:
KIT-Fakultät für Mathematik

Bestandteil von:
M-MATH-101321 - Einführung in die Stochastik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.53 Teilleistung: Einführung in die Stochastische Optimierung [T-WIWI-106546]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von:
- M-WIWI-101414 - Methodische Grundlagen des OR
- M-WIWI-103278 - Optimierung unter Unsicherheit

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2550470</td>
<td>Einführung in die Stochastische Optimierung</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Rebennack</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2550471</td>
<td>Übung zur Einführung in die Stochastische Optimierung</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Rebennack, Sinske</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2550474</td>
<td>Rechnerübung zur Einführung in die Stochastische Optimierung</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Rebennack, Sinske</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO). Die Prüfung wird jedes Semester angeboten.

Voraussetzungen

Keine.
5.54 Teilleistung: Einführung in Rechnernetze [T-INFO-102015]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101178 - Kommunikation und Datenhaltung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>24519</th>
<th>Einführung in Rechnernetze</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Friebe, Jung, Schneider, Zitterbart</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>24521</td>
<td>Übung zu Einführung in Rechnernetze</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Friebe, Jung, Schneider, Zitterbart</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Kenntnisse aus den Vorlesungen Betriebssysteme und Softwaretechnik I werden empfohlen.
5.55 Teilleistung: Elektrische Maschinen und Stromrichter [T-ETIT-101954]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr.-Ing. Klaus-Peter Becker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Elektrotechnik und Informationstechnik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-ETIT-102124 - Elektrische Maschinen und Stromrichter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>6</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
Keine
5.56 Teilleistung: Elektroenergiesysteme [T-ETIT-101923]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102156 - Elektroenergiesysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltnamen</th>
<th>SWS</th>
<th>Form</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2307391</td>
<td>Elektroenergiesysteme</td>
<td>2</td>
<td>V (V)</td>
<td>Leibfried</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2307393</td>
<td>Übungen zu 2307391 Elektroenergiesysteme</td>
<td>1</td>
<td>Ü (Ü)</td>
<td>Vivekananthan</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine
5.57 Teilleistung: Elektromagnetische Felder [T-ETIT-109078]

Verantwortung: Prof. Dr. Martin Doppelbauer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104428 - Elektromagnetische Felder

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung / Übung / Tutorium</th>
<th>SWS</th>
<th>Lehrer / Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Elektromagnetische Felder</td>
<td>2</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Übung zu 2306004 Elektromagnetische Felder</td>
<td>2</td>
<td>Foitzik</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Tutorium zu 2306004 Elektromagnetische Felder</td>
<td>SWS</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine
5.58 Teilleistung: Elektromagnetische Wellen [T-ETIT-109245]

Verantwortung: Prof. Dr.-Ing. Sebastian Randel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104515 - Elektromagnetische Wellen

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Empfehlungen
Allgemeine physikalische und mathematische Grundlagen aus den Basiskursen des ersten Semesters werden vorausgesetzt.
5.59 Teilleistung: Elektronische Schaltungen [T-ETIT-101919]

Verantwortung: Prof. Dr. Michael Siegel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102164 - Elektronische Schaltungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2020	2312655	Elektronische Schaltungen	3 SWS	Vorlesung (V)	Ulusoy
SS 2020	2312657	Übungen zu 2312655 Elektronische Schaltungen	1 SWS	Übung (Ü)	Ulusoy
SS 2020	2312658	Tutorien zu 2312655 Elektronische Schaltungen	SWS	Zusatzübung (ZÜ)	Ulusoy

Erfolgskontrolle(n)
Die Erfolgskontrolle findet im Rahmen einer schriftlichen Gesamtprüfung von 2 Stunden statt.
Die Modulnote setzt sich zusammen aus der Note der schriftlichen Prüfung (90 %) und der Lösung von Tutoriumsaufgaben (10 %).

Voraussetzungen
Keine

Empfehlungen
Der erfolgreiche Abschluss von LV „Lineare elektrische Netze“ ist erforderlich, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.

Anmerkungen
Die Modulnote setzt sich zusammen aus der Note der schriftlichen Prüfung (90 %) und der Lösung von Tutoriumsaufgaben (10 %).
5.60 Teilleistung: Elektrotechnisches Grundlagenpraktikum [T-ETIT-101943]

Verantwortung:
Dr.-Ing. Armin Teltschik
Prof. Dr. Gert Franz Trommer

Einrichtung:
KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von:
M-ETIT-102113 - Elektrotechnisches Grundlagenpraktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung mündlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2301084 | Elektrotechnisches Grundlagenpraktikum | 4 SWS | Praktikum (P) | Teltschik |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines mündlichen Abschlusskolloquiums von 20min Dauer sowie während des Praktikums durch Überprüfung der absolvierten Versuchs-Aufgaben.

Für die Teilnahme am Abschlusskolloquium müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschlusskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Die Veranstaltung ist nicht benotet.

Voraussetzungen

Keine

Empfehlungen

Die LV „Digitaltechnik“ (23615) und „Elektronische Schaltungen“ (23655) müssen zuvor gehört worden sein bzw. anderweitig die Kenntnisse zum Inhalt der o.g. LV müssen erworben worden sein.

Anmerkungen

Für die Teilnahme am Abschlusskolloquium müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschlusskolloquium eine Prüfungseinheit.

Bei nicht bestehen ist das Praktikum komplett zu wiederholen.
5.61 Teilleistung: Elementare Geometrie - Prüfung [T-MATH-103464]

Verantwortung: Dr. Sebastian Grensing
Prof. Dr. Tobias Hartnick
Prof. Dr. Frank Herrlich
Dr. Stefan Kühllein
Prof. Dr. Enrico Leuzinger
Dr. Gabriele Link
Prof. Dr Roman Sauer
Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-103152 - Elementare Geometrie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>Tutorium</th>
<th>Voraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Elementare Geometrie</td>
<td>4 SWS</td>
<td></td>
<td>Tuschmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Übungen zu 0103000 (Elementare Geometrie)</td>
<td>2 SWS</td>
<td></td>
<td>Tuschmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Tutorium Elementare Geometrie</td>
<td>2 SWS</td>
<td></td>
<td>Tuschmann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Elementargeometrie</td>
<td>4 SWS</td>
<td></td>
<td>Weitze-Schmithüsen</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Übungen zu 0152400 (Elementargeometrie)</td>
<td>2 SWS</td>
<td></td>
<td>Weitze-Schmithüsen</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
5.62 Teilleistung: Empirical Finance [T-WIWI-110216]

Verantwortung: Prof. Dr Maxim Ulrich
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-105035 - Empirical Finance

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2500001 | Empirical Finance | 4 SWS | Vorlesung (V) | Ulrich |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Minuten) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine.
Teilleistung: Energiepolitik [T-WIWI-102607]

Verantwortung: Prof. Dr. Martin Wietschel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101464 - Energiewirtschaft

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3,5
Turnus: Jedes Sommersemester
Version: 3

Lehrveranstaltungen
| SS 2020 | 2581959 | Energiepolitik | 2 SWS | Vorlesung (V) | Wietschel |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach §4(2), 1 SPO.

Voraussetzungen
Keine.
5.64 Teilleistung: Enterprise Risk Management [T-WIWI-102608]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Ute Werner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-WIWI-101436 - Risk and Insurance Management</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Note setzt sich zu je 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und der mündlichen Prüfung zusammen.

Voraussetzungen

Keine

Empfehlungen

Keine
5.65 Teilleistung: Erzeugung elektrischer Energie [T-ETIT-101924]

Verantwortung: Dr.-Ing. Bernd Hoferer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100407 - Erzeugung elektrischer Energie

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 3
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen
| WS 19/20 | 2307356 | Erzeugung elektrischer Energie | 2 SWS | Vorlesung (V) | Hoferer |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen
keine
5.66 Teilleistung: Fertigungsmesstechnik [T-ETIT-106057]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-103043 - Fertigungsmesstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2302116 | Fertigungsmesstechnik | 2 SWS | Vorlesung (V) | Heizmann |

Erfolgskontrolle(n)

Voraussetzungen
keine

Empfehlungen
Kenntnisse der Stochastik und von Grundlagen der Messtechnik sind hilfreich.
5.67 Teilleistung: Financial Accounting for Global Firms [T-WIWI-107505]

Verantwortung: Dr. Torsten Luedecke
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101465 - Topics in Finance I

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2530242</td>
<td>Financial Accounting for Global Firms</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Luedecke</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2530243</td>
<td>Übung zu Financial Accounting for Global Firms</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Luedecke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Die Note ist das Ergebnis der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Grundkenntnisse in Finanzwirtschaft und Rechnungswesen.

Anmerkungen
Die Teilleistung wird zum Wintersemester 2017/18 neu angeboten.
5.68 Teilleistung: Financial Management [T-WIWI-102605]

Verantwortung: Prof. Dr. Martin Ruckes
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101435 - Essentials of Finance

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>Financial Management</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ruckes</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Übung zu Financial Management</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Ruckes, Schubert</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
5.69 Teilleistung: Finanzintermediation [T-WIWI-102623]

Verantwortung: Prof. Dr. Martin Ruckes
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen					
WS 19/20	2530232	Finanzintermediation	2 SWS	Vorlesung (V)	Ruckes
WS 19/20	2530233	Übung zu Finanzintermediation	1 SWS	Übung (Ü)	Ruckes, Hoang, Benz

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine
5.70 Teilleistung: Flächen im CAD [T-INFO-102073]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101254 - Flächen im CAD

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 - 30 Minuten und durch einen benoteten Übungsschein nach § 4 Abs. 2 Nr. 2 und 3 SPO.
Modulnote = 0.8 x Note der mündlichen Prüfung + 0.2 x Note des Übungsscheins, wobei nur die erste Nachkommastelle ohne Rundung berücksichtigt wird.

Voraussetzungen
Es wird empfohlen die Vorlesung Kurven im CAD vor Besuch der Vorlesung Flächen im CAD zu hören.
5.71 Teilleistung: Formale Systeme [T-INFO-101336]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100799 - Formale Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 24086 | Formale Systeme | 4 SWS | Vorlesung / Übung (VU) | Beckert, Ulbrich |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 der SPO.
Zusätzlich werden Zwischentests und Praxisaufgaben angeboten, für die ein Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben werden. Der erlangte Notenbonus wird auf eine bestandene Klausur im gleichen Semester angerechnet. Danach verfällt der Notenbonus.

Voraussetzungen
Keine.

Empfehlungen
Der erfolgreiche Abschluss des Moduls Theoretische Grundlagen der Informatik wird empfohlen.
5.72 Teilleistung: Foundations of Interactive Systems [T-WIWI-109816]

Verantwortung:
Prof. Dr. Alexander Mädche

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-101434 - eBusiness und Service Management

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
4,5

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Funktion</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2540560</td>
<td>Foundations of Interactive Systems</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Mädche, Loewe</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Sie besteht aus einer einständigen Klausur und der Durchführung eines Capstone Projektes.

Details zur Ausgestaltung der Erfolgskontrolle werden im Rahmen der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Keine
5.73 Teilleistung: Funktionalanalysis [T-MATH-102255]

Verantwortung: Prof. Dr. Dorothee Frey
PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101320 - Funktionalanalysis

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 0104800 | Funktionalanalysis | 4 SWS | Vorlesung (V) | Frey |
| WS 19/20 | 0104810 | Übungen zu 0104800 (Funktionalanalysis) | 2 SWS | Übung (Ü) | Frey |

Voraussetzungen

keine
5.74 Teilleistung: Geistiges Eigentum und Datenschutz [T-INFO-109840]

Verantwortung: Dr. Yvonne Matz
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101253 - Geistiges Eigentum und Datenschutz

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24018</td>
<td>Datenschutzrecht</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Barczak</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>24070</td>
<td>Gewerblicher Rechtsschutz und Urheberrecht</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Dreier</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.
5.75 Teilleistung: Geometrische Grundlagen der Geometriereinigung [T-INFO-101293]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100756 - Geometrische Grundlagen der Geometriereinigung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 24175 | Geometrische Grundlagen der Geometriereinigung | 2+1 SWS | Vorlesung / Übung (VÜ) | Prautzsch, Elfried |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 - 30 Minuten und durch einen benoteten Übungsschein nach § 4 Abs. 2 Nr. 2 und 3 SPO.
Note = 0.8 x Note der mündlichen Prüfung + 0.2 x Note des Übungsscheins, wobei nur die erste Nachkommastelle ohne Rundung berücksichtigt wird.

Voraussetzungen
Keine.
5.76 Teilleistung: Geometrische Optimierung [T-INFO-101267]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100730 - Geometrische Optimierung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2400029 | Geometrische Optimierung | 2 SWS | Vorlesung (V) | Prautzsch |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (im Umfang von i.d.R. 20-30 Minuten) nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.
5.77 Teilleistung: Geschäftspolitik der Kreditinstitute [T-WIWI-102626]

Verantwortung: Prof. Dr. Wolfgang Müller
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101465 - Topics in Finance I

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 3
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| WS 19/20 | 2530299 | Geschäftspolitik der Kreditinstitute | 2 SWS | Vorlesung (V) | Müller |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO)
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Keine
5.78 Teilleistung: Globale Optimierung I [T-WIWI-102726]

- **Verantwortung:** Prof. Dr. Oliver Stein
- **Einrichtung:** KIT-Fakultät für Wirtschaftswissenschaften
- **Bestandteil von:**
 - M-WIWI-101413 - Anwendungen des Operations Research
 - M-WIWI-101414 - Methodische Grundlagen des OR

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs).
Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.
Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu "Globale Optimierung II" erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
5.79 Teilleistung: Globale Optimierung I und II [T-WIWI-103638]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPOs).
Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
5.80 Teilleistung: Globale Optimierung II [T-WIWI-102727]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Oliver Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-WIWI-101414 - Methodische Grundlagen des OR</td>
</tr>
</tbody>
</table>

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Turnus
Jedes Sommersemester

Version
2

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs).
Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.
Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu "Globale Optimierung I" erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine

Anmerkungen
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
5.81 Teilleistung: Graphentheorie [T-MATH-102273]

Verantwortung: Prof. Dr. Maria Aksenovich
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101336 - Graphentheorie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 2019/2020</th>
<th>Vorlesungscode</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0104500</td>
<td>Graph Theory</td>
<td>4</td>
<td>Aksenovich</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0104510</td>
<td>Tutorial for 0104500 (Graph Theory)</td>
<td>2</td>
<td>Aksenovich</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
5.82 Teilleistung: Grundbegriffe der Informatik [T-INFO-101964]

Verantwortung: Dr. Sebastian Stüker
Thomas Worsch

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von:
M-INFO-101170 - Grundbegriffe der Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>24001</th>
<th>Grundbegriffe der Informatik</th>
<th>3 SWS</th>
<th>Vorlesung (V)</th>
<th>Worsch</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von i.d.R. zwei Stunden.

Anmerkungen

5.83 Teilleistung: Grundbegriffe der Informatik Übungsschein [T-INFO-101965]

Verantwortung: Dr. Sebastian Stüker
Thomas Worsch

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101170 - Grundbegriffe der Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 24002 | Übungen zu Grundbegriffe der Informatik | 1 SWS | Übung (Ü) | Worsch |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO.

Anmerkungen

Der Übungsschein ist für die Studiengänge Geodäsie, Physik und Mathematik nicht verpflichtend.
5.84 Teilleistung: Grundlagen der Hochfrequenztechnik [T-ETIT-101955]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102129 - Grundlagen der Hochfrequenztechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>6</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

- **WS 19/20 2308406 Grundlagen der Hochfrequenztechnik**
 2 SWS Vorlesung (V) Zwick
- **WS 19/20 2308408 Übungen zu 2308406 Grundlagen der Hochfrequenztechnik**
 2 SWS Übung (Ü) Bhutani, Boes
- **SS 2020 2308080 Tutorien zu 2308406 Grundlagen der Hochfrequenztechnik**
 SWS Tutorium (Tu) Bohn
- **SS 2020 2308406 Grundlagen der Hochfrequenztechnik**
 2 SWS Vorlesung (V) Zwick
- **SS 2020 2308408 Übungen zu 2308406 Grundlagen der Hochfrequenztechnik**
 2 SWS Übung (Ü) Bhutani, Boes

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird sowie durch die Bewertung von Hausübungen. Die Hausübungen können während des Semesters von den Studierenden bearbeitet und zur Korrektur abgegeben werden. Die Abgabe erfolgt in handschriftlicher Form.
Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.
Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

Anmerkungen
Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.
Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.
5.85 Teilleistung: Grundlagen der Produktionswirtschaft [T-WIWI-102606]

Verantwortung: Prof. Dr. Frank Schultmann
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101437 - Industrielle Produktion I

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
5,5

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2581950</th>
<th>Grundlagen der Produktionswirtschaft</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Schultmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2581951</td>
<td>Übungen Grundlagen der Produktionswirtschaft</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Stallkamp, Steins</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine
5.86 Teilleistung: Grundlagen der Unternehmensbesteuerung [T-WIWI-108711]

Verantwortung: Gerd Gutekunst
Prof. Dr. Berthold Wigger

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101403 - Finanzwissenschaft
M-WIWI-101465 - Topics in Finance I

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Turnus
Jedes Wintersemester

Version
2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2560134</td>
</tr>
<tr>
<td>Grundlagen der Unternehmensbesteuerung</td>
<td>3 SWS</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen (90 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Es werden Kenntnisse über die Erhebung staatlicher Einnahmen vorausgesetzt. Daher empfiehlt es sich, die Lehrveranstaltungen “Öffentliche Einnahmen” im Vorfeld zu besuchen.
5.87 Teilleistung: Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik [T-MATH-102244]

Verantwortung: Prof. Dr. Norbert Henze
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101308 - Praktische Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0133500</td>
<td>Grundlagen der Wahrscheinlichkeitstheorie und Statistik für Studierende der Informatik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Lerch</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0133600</td>
<td>Übungen zu 0133500</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Lerch</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.88 Teilleistung: Grundlagen und Technologie supraleitender Magnete [T-ETIT-104470]

Verantwortung: Prof. Dr. Bernhard Holzapfel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-101970 - Grundlagen und Technologie supraleitender Magnete

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2312676 | Grundlagen und Technologie supraleitender Magnete | 2 SWS | Vorlesung (V) | Arndt |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (30 Minuten).

Voraussetzungen
Keine
5.89 Teilleistung: Höhere Mathematik I Übungsschein [T-MATH-102232]

Verantwortung: Dr. Christoph Schmoeger

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101305 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 0133100 | Übungen zu 0133000 | 2 SWS | Übung (Ü) | Herzog |

Voraussetzungen
keine
5.90 Teilleistung: Höhere Mathematik I und II [T-MATH-102234]

Verantwortung: Dr. Christoph Schmoeger
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101305 - Höhere Mathematik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 15
Turnus Jedes Semester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungskennzahl</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Vorlesungslehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0133000</td>
<td>Höhere Mathematik I (Analysis) für die Fachrichtung Informatik</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Herzog</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0186800</td>
<td>Höhere Mathematik II (Analysis) für die Fachrichtung Informatik</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Herzog</td>
</tr>
</tbody>
</table>

Voraussetzungen
Der Übungsschein aus HM I oder HM II muß bestanden sein.
5.91 Teilleistung: Höhere Mathematik II Übungsschein [T-MATH-102233]

Verantwortung: Dr. Christoph Schmoeger
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101305 - Höhere Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 0186900 | Übungen zu 0186800 | 1 SWS | Übung (Ü) | Herzog |

Voraussetzungen

keine
5.92 Teilleistung: Hybride und elektrische Fahrzeuge [T-ETIT-100784]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100514 - Hybride und elektrische Fahrzeuge

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Empfehlungen
Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").
Teillistung: Industrieökonomie [T-WIWI-102844]

Verantwortung: Prof. Dr. Johannes Philipp Reiß
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101501 - Wirtschaftstheorie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2560238</th>
<th>Industrieökonomie</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Reiß, Peters</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2560239</td>
<td>Übung zu Industrieökonomie</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Peters, Reiß</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Die Note ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Der vorherige Besuch des Moduls Volkswirtschaftslehre [WW1VWL] wird vorausgesetzt.

Anmerkungen
Diese Lehrveranstaltung wird im Sommersemester 2018 voraussichtlich nicht angeboten werden.
5.94 Teilleistung: Information Engineering [T-MACH-102209]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2122014 | Information Engineering | 2 SWS | Seminar (S) | Ovtcharova, Mitarbeiter |

Erfolgskontrolle(n)

Erfolgskontrolle anderer Art (schriftl. Ausarbeitung und Vortrag)

Voraussetzungen

Keine
5.95 Teilleistung: Informationstechnik I [T-ETIT-109300]

Verantwortung: Prof. Dr.-Ing. Eric Sax
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104539 - Informationstechnik I

Lehrveranstaltungen

| SS 2020 | 2311651 | Informationstechnik I | 2 SWS | Vorlesung (V) | Sax |
| SS 2020 | 2311652 | Übungen zu 2311651 Informationstechnik I | 1 SWS | Übung (Ü) | Grimm |

Voraussetzungen
keine

Empfehlungen
Grundlagen der Programmierung sind hilfreich (MINT-Kurs).
Die Inhalte des Moduls Digitaltechnik sind hilfreich.
5.96 Teilleistung: Informationstechnik I - Praktikum [T-ETIT-109301]

Verantwortung: Prof. Dr.-Ing. Eric Sax
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104539 - Informationstechnik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2311653 | Informationstechnik I – Praktikum | 1 SWS | Praktikum (P) | Sax |

Voraussetzungen
keine
5.97 Teilleistung: Informationstechnik II und Automatisierungstechnik [T-ETIT-109319]

Verantwortung: Prof. Dr.-Ing. Eric Sax
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104547 - Informationstechnik II und Automatisierungstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2311654 Informationstechnik II und Automatisierungstechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Sax</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2311655 Übungen zu 2311654 Informationstechnik II und Automatisierungstechnik</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Brenner</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen
keine

Empfehlungen
Grundlagen der Programmierung sind hilfreich (MINT-Kurs).
Die Inhalte des Moduls "Informationstechnik I" sind hilfreich.
5.98 Teilleistung: International Marketing [T-WIWI-102807]

Verantwortung: Dr. Sven Feurer
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101424 - Grundlagen des Marketing

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>1,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2572155 | International Marketing | 1 SWS | Vorlesung (V) | Feurer |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Anmerkungen
Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).
5.99 Teilleistung: Internationale Finanzierung [T-WIWI-102646]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101402 - eFinance
M-WIWI-101465 - Topics in Finance I

Lehrveranstaltungen
SS 2020 2530570 Internationale Finanzierung 2 SWS Vorlesung (V) Walter, Uhrig-Homburg

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Bei einer geringen Anzahl an zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung stattfinden zu lassen.

Voraussetzungen
Keine

Empfehlungen
Keine

Anmerkungen
Die Veranstaltung wird 14-tägig oder als Blockveranstaltung angeboten.
5.100 Teilleistung: Investments [T-WIWI-102604]

Verantwortung: Prof. Dr. Marliese Uhrig-Homburg
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101435 - Essentials of Finance

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4,5

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsblock</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2530575</td>
<td>Investments</td>
<td>2 SWS</td>
<td>Uhrig-Homburg, Thimme</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2530576</td>
<td>Übung zu Investments</td>
<td>1 SWS</td>
<td>Uhrig-Homburg, Eberbach</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (75min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedes Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
5.101 Teilleistung: IT-Sicherheitsrecht [T-INFO-109910]

Verantwortung: PD Dr. Oliver Raabe
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101242 - Governance, Risk & Compliance

| Teilleistungsart | Prüfungsleistung schriftlich | Leistungspunkte | 3 | Turnus | Jedes Sommersemester | Version | 1 |

Lehrveranstaltungen

| SS 2020 | 2400007 | IT-Sicherheitsrecht | 2 SWS | Vorlesung (V) | Raabe |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine.
5.102 Teilleistung: IT-Systemplattform I4.0 [T-MACH-106457]

Verantwortung: Dipl.-Ing. Thomas Maier
 Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
4

Turnus
Jedes Semester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Dozent*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2123900</td>
<td>IT-Systemplattform I4.0</td>
<td>4 SWS</td>
<td>Projekt / Seminar (PJ/S)</td>
<td>Ovtcharova, Maier</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2123900</td>
<td>IT-Systemplattform I4.0</td>
<td>4 SWS</td>
<td>Projekt (PRO)</td>
<td>Ovtcharova, Maier</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (Projektarbeit)

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt.
5.103 Teilleistung: Kognitive Systeme [T-INFO-101356]

Verantwortung: Prof. Dr. Gerhard Neumann
 Prof. Dr. Alexander Waibel

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100819 - Kognitive Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 24572 | Kognitive Systeme | 4 SWS | Vorlesung / Übung (VU) | Waibel, Stüker, Meißner, Neumann |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 der SPO. Durch die Bearbeitung von Übungsblättern kann zusätzlich ein Notenbonus von max. 0,4 Punkte (entspricht einem Notenschritt) erreicht werden. Dieser Bonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.

Voraussetzungen

Keine.
5.104 Teilleistung: Kombinatorik [T-MATH-105916]

Verantwortung: Prof. Dr. Maria Aksenovich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-102950 - Kombinatorik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0150300</td>
<td>Combinatorics</td>
<td>4</td>
<td>V</td>
<td>Aksenovich</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0150310</td>
<td>Tutorial for 0150300 (Combinatorics)</td>
<td>2</td>
<td>Ü</td>
<td>Aksenovich</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
5.105 Teilleistung: Kurven im CAD [T-INFO-102067]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Hartmut Prautzsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Informatik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-INFO-101248 - Kurven im CAD</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 - 30 Minuten und durch einen benoteten Übungsschein nach § 4 Abs. 2 Nr. 2 und 3 SPO. Modulnote = 0.8 x Note der mündlichen Prüfung + 0.2 x Note des Übungsscheins, wobei nur die erste Nachkommastelle ohne Rundung berücksichtigt wird.

Voraussetzungen
Keine
5.106 Teilleistung: Labor für angewandte Machine Learning Algorithmen [T-ETIT-109839]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Jürgen Becker
Prof. Dr.-Ing. Eric Sax
Prof. Dr. Wilhelm Stork

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104823 - Labor für angewandte Machine Learning Algorithmen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2311650</td>
<td>Labor für angewandte Machine Learning Algorithmen</td>
<td>4 SWS</td>
<td>Praktikum (P)</td>
<td>Sax, Stork, Becker</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form von Prüfungsleistungen anderer Art.

- Protokolle (Labordokumentation) und kontinuierliche Bewertung der Teamarbeit während der Präsenzzeit
- Vortrag in Form einer Präsentation

Abfrage nach Ende der Veranstaltung zu den Inhalten des Labors.

Voraussetzungen
keine

Empfehlungen
Vorausgesetzt werden Kenntnisse in den Grundlagen der Informationstechnik (z.B. M-ETIT-102098), Signal- und Systemtheorie (z.B. M-ETIT-102123) sowie Wahrscheinlichkeitstheorie (z.B. M-ETIT-102104)
Außerdem: Programmierkenntnisse (z.B. C++ oder Python) sind zwingend erforderlich

Anmerkungen
5.107 Teilleistung: Labor Schaltungsdesign [T-ETIT-100788]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker
Dr.-Ing. Oliver Sander

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100518 - Labor Schaltungsdesign

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2311638 | Labor Schaltungsdesign | 4 SWS | Praktikum (P) | Becker |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung, sowie einer mündlichen Gesamtprüfung (30 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen

keine

Empfehlungen

Grundlegende Kenntnisse von elektronischen Basisschaltungen z.B. Lineare Elektrische Netze, Elektronische Schaltungen und Elektrische Maschinen und Stromrichter

Anmerkungen

Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung, sowie einer mündlichen Gesamtprüfung (30 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.
Verantwortung: Prof. Dr. Tobias Hartnick
Prof. Dr. Frank Herrlich
Prof. Dr. Enrico Leuzinger
Prof. Dr. Roman Sauer
Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 0100700 | Lineare Algebra 1 | 4 SWS | Vorlesung (V) | Hartnick |

Voraussetzungen
Der Übungsschein zur Linearen Algebra 1 muss bestanden sein.
5.109 Teilleistung: Lineare Algebra 1 - Übungsschein [T-MATH-102249]

Verantwortung: Prof. Dr. Tobias Hartnick
Prof. Dr. Frank Herrlich
Prof. Dr. Enrico Leuzinger
Prof. Dr Roman Sauer
Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Übungen zu 0100700 (Lineare Algebra 1)</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hartnick</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Tutorium Lineare Algebra 1</td>
<td>2</td>
<td>Tutorium (Tu)</td>
<td>Sauer, Kühnlein, Hartnick</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.110 Teilleistung: Lineare Algebra 2 - Klausur [T-MATH-106339]

Verantwortung: Prof. Dr. Tobias Hartnick
Prof. Dr. Frank Herrlich
Prof. Dr. Enrico Leuzinger
Prof. Dr Roman Sauer
Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 0150500 | Lineare Algebra 2 | 4 SWS | Vorlesung (V) | Hartnick |

Voraussetzungen

Der Übungsschein in Lineare Algebra 2 muss bestanden sein.
5.111 Teilleistung: Lineare Algebra 2 - Übungsschein [T-MATH-102259]

Verantwortung: Prof. Dr. Tobias Hartnick
 Prof. Dr. Frank Herrlich
 Prof. Dr. Enrico Leuzinger
 Prof. Dr Roman Sauer
 Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101309 - Lineare Algebra 1 und 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 0150600 | Übungen zu 0150500 (Lineare Algebra 2) | 2 SWS | Übung (Ü) | Hartnick |

Voraussetzungen

keine
5.112 Teilleistung: Lineare Algebra I für die Fachrichtung Informatik [T-MATH-103215]

Verantwortung: Dr. Sebastian Grensing
Dr. Stefan Kühnlein
Dr. Gabriele Link

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101307 - Lineare Algebra für die Fachrichtung Informatik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 9
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>ID</th>
<th>Veranstaltungsgeschichte</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0133200</td>
<td>Lineare Algebra I für die Fachrichtung Informatik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Kühnlein</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0133300</td>
<td>Übungen zu 0133200</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Kühnlein</td>
</tr>
</tbody>
</table>

Voraussetzungen
Der Übungsschein aus LA I oder LA II muß bestanden sein.
5.113 Teilleistung: Lineare Algebra I für die Fachrichtung Informatik - Übungsschein [T-MATH-102238]

Verantwortung: Dr. Sebastian Grensing
Dr. Stefan Kühnlein
Dr. Gabriele Link

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101307 - Lineare Algebra für die Fachrichtung Informatik

Teilleistungsart Studienleistung
Leistungspunkte 0
Version 1

Voraussetzungen
keine
5.114 Teilleistung: Lineare Algebra II für die Fachrichtung Informatik [T-MATH-102241]

Verantwortung: Dr. Sebastian Grensing
Dr. Stefan Kühnlein
Dr. Gabriele Link

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101307 - Lineare Algebra für die Fachrichtung Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0187000</td>
<td>Lineare Algebra 2 für die Fachrichtung Informatik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 SWS</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0187100</td>
<td>Übungen zu 0187000 (Lineare Algebra 2 für die Fachrichtung Informatik)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 SWS</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.115 Teilleistung: Lineare Algebra II für die Fachrichtung Informatik - Übungsschein [T-MATH-102240]

Verantwortung: Dr. Sebastian Grensing
Dr. Stefan Kühnlein
Dr. Gabriele Link

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101307 - Lineare Algebra für die Fachrichtung Informatik

Voraussetzungen
keine
5.116 Teilleistung: Lineare Elektrische Netze [T-ETIT-101917]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-101845 - Lineare Elektrische Netze

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>7</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2305256</td>
<td>Lineare elektrische Netze</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Dössel, Pilia</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2305258</td>
<td>Übungen zu 2305256 Lineare elektrische Netze</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Pilia</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2305581</td>
<td>Tutorien zu 2305256 Lineare elektrische Netze</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Pilia</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten).
Die Modulnote ist die Note der schriftlichen Prüfung und der Projektarbeit.

Voraussetzungen
keine
5.17 Teilleistung: Logistics and Supply Chain Management [T-WIWI-102870]

Verantwortung: Prof. Dr. Frank Schultmann
Dr. Marcus Wiens

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101437 - Industrielle Produktion I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2581996</td>
<td>Logistics and Supply Chain Management</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Wiens, Schultmann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2581997</td>
<td>Übung zu Logistics and Supply Chain Management</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Diehlmann, Lüttenberg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen (30min.) oder schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine
5.118 Teilleistung: Macroeconomic Theory [T-WIWI-109121]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Johannes Brumm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-WIWI-101501 - Wirtschaftstheorie</td>
</tr>
</tbody>
</table>

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 4,5

Turnus
- Jedes Wintersemester

Version
- 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2560404</td>
<td>Macroeconomic Theory</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Scheffel</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2560405</td>
<td>Übung zu Macroeconomic Theory</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Pegorari</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.
Teileistung: Marketing Mix [T-WIWI-102805]

Verantwortung: Prof. Dr. Martin Klarmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101424 - Grundlagen des Marketing

Teilleistungsart

<table>
<thead>
<tr>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marketing Mix</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2571152</th>
<th>Marketing Mix</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Klarmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2571153</td>
<td>Übung zu Marketing Mix (Bachelor)</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Moosbrugger, Halbauer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch die Ausarbeitung und Präsentation einer Case Study (max. 30 Punkte) sowie eine schriftliche Klausur (max. 60 Punkte). Insgesamt können in der Veranstaltung maximal 90 Punkte erzielt werden.

Voraussetzungen

Keine

Anmerkungen

Die Teilleistung ist Pflicht im Modul „Grundlagen des Marketing“.

Nähere Informationen erhalten Sie direkt bei der Forschergruppe Marketing & Vertrieb (marketing.iism.kit.edu).
5.120 Teilleistung: Markovsche Ketten [T-MATH-102258]

Verantwortung: Prof. Dr. Nicole Bäuerle
 Prof. Dr. Vicky Fasen-Hartmann
 Prof. Dr. Norbert Henze
 Prof. Dr. Daniel Hug
 Dr. Bernhard Klar
 Prof. Dr. Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101323 - Markovsche Ketten

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Typ</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS20</td>
<td>0159600</td>
<td>Markovsche Ketten</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Bäuerle</td>
</tr>
</tbody>
</table>
5.121 Teilleistung: MARS-Basispraktikum [T-INFO-102053]

Verantwortung: Prof. Dr. Hartmut Prautzsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101245 - MARS-Basispraktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 2019/20</th>
<th>Sommersemester 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400025</td>
<td>2400036</td>
</tr>
<tr>
<td>MARS-Basispraktikum</td>
<td>MARS-Basispraktikum</td>
</tr>
<tr>
<td>2 SWS</td>
<td>4 SWS</td>
</tr>
<tr>
<td>Praktikum (P) Xu, Prautzsch</td>
<td>Praktikum (P) Prautzsch, Xu</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt nach § 4 Abs. 3 der SPO als Erfolgskontrolle anderer Art und besteht aus mehreren Teilaufgaben und einem Abschlussgespräch.

Voraussetzungen
Keine

Empfehlungen
5.122 Teilleistung: Mechano-Informatik in der Robotik [T-INFO-101294]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100757 - Mechano-Informatik in der Robotik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2400077 | Mechano-Informatik in der Robotik | 2 SWS | Vorlesung (V) | Asfour |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung in englischer Sprache im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Abhängig von der Teilnehmerzahl wird sechs Wochen vor der Prüfungsleistung angekündigt (§ 6 Abs. 3 SPO Informatik), ob die Erfolgskontrolle

- in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO Informatik oder
- in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO Informatik

stattfindet.

Voraussetzungen
Keine.

Empfehlungen
Basispraktikum Mobile Roboter
5.123 Teilleistung: Mensch-Maschine-Interaktion [T-INFO-101266]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

SS 2020 24659 Mensch-Maschine-Interaktion 2 SWS Vorlesung (V) Exler, Beigl

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (im Umfang von i.d.R. 60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.
5.124 Teilleistung: Microwave Laboratory I [T-ETIT-100734]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100425 - Microwave Laboratory I

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 6
Turnus: Jedes Sommersemester
Version: 1

Erfolgskontrolle(n)

Voraussetzungen
keine

Empfehlungen
Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

Anmerkungen
Die Note für die Versuchsdurchführung setzt sich aus der Vorbereitung (20%), aus dem Protokoll (40%) und der schriftlichen oder mündlichen Lernzielkontrolle (40%) zum jeweiligen Versuch zusammen. Die Endnote für das gesamte Labor ergibt sich aus dem arithmetischen Mittelwert aller vier Laborversuche. Studierende, die unvorbereitet zum jeweiligen Versuch erscheinen, dürfen an der Versuchsdurchführung nicht teilnehmen. Der Versuch muss zu einem anderen Zeitpunkt wiederholt werden.
5 TEILLEISTUNGEN

5.125 Teilleistung: Mikroprozessoren I [T-INFO-101972]

Verantwortung: Prof. Dr. Wolfgang Karl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101183 - Mikroprozessoren I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2020 2424688 Mikroprozessoren I 2 SWS Vorlesung (V) Karl

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. etwa 30 Minuten gemäß § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
Keine.
5.126 Teilleistung: Mobile Computing und Internet der Dinge [T-INFO-102061]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101249 - Mobile Computing und Internet der Dinge

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2400051 | Mobile Computing und Internet der Dinge | 2+1 SWS | Vorlesung / Übung (VÜ) | Beigl, Exler |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO, in der auch Übungsresultate bewertet werden.

Voraussetzungen
Keine
5.127 Teilleistung: Modellieren und OR-Software: Einführung [T-WIWI-106199]

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2550490 | Modellieren und OR-Software: Einführung | 3 SWS | Praktikum (P) | Nickel, Pomes |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfung mit schriftlichem und praktischem Teil (nach §4(2), 1 SPO).
Die Prüfung wird im Semester des Software-Praktikums und dem darauf folgenden Semester angeboten.

Voraussetzungen
Keine

Empfehlungen

Anmerkungen
Aufgrund der begrenzten Teilnehmerzahl wird um eine Voranmeldung gebeten. Weitere Informationen entnehmen Sie der Internetseite des Software-Praktikums.
Die Lehrveranstaltung wird regelmäßig angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
Frühere Bezeichnung bis Sommersemester 2016: Software-Praktikum - OR-Modelle 1
5.128 Teilleistung: Moderne Physik für Informatiker [T-PHYS-102323]

Verantwortung: Dr. Stefan Gieseke
Prof. Dr. Milada Margarete Mühlleitner

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101340 - Moderne Physik für Informatiker

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Kurs-Nr.</th>
<th>Kursname</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>4040451</td>
<td>Moderne Physik für Informatiker</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Gieseke</td>
</tr>
<tr>
<td>SS 2020</td>
<td>4040452</td>
<td>Übungen zu Moderne Physik für Informatiker</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Glaus, Gieseke</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.129 Teilleistung: Nachrichtentechnik I [T-ETIT-101936]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-102103 - Nachrichtentechnik I

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Turnus
Jedes Sommersemester

Version
1

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 180 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Empfehlungen
Inhalte der Höheren Mathematik I und II, Wahrscheinlichkeitstheorie und Signale und Systeme werden benötigt.
5.130 Teilleistung: Nachrichtentechnik II [T-ETIT-100745]

Verantwortung: Dr.-Ing. Holger Jäkel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100440 - Nachrichtentechnik II

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2310511 Nachrichtentechnik II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Jäkel</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2310513 Übungen zu 2310511 Nachrichtentechnik II</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Wunsch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2310511 Nachrichtentechnik II</td>
<td>SWS</td>
<td>Vorlesung (V)</td>
<td>Jäkel</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2310513 Übungen zu 2310511 Nachrichtentechnik II</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Sturm</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Empfehlungen
Vorheriger Besuch der Vorlesung „Nachrichtentechnik I“ wird empfohlen.
5.131 Teilleistung: Nachrichtentechnik II / Communications Engineering II [T-ETIT-110697]

Verantwortung: Dr.-Ing. Holger Jäkel
Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105274 - Nachrichtentechnik II / Communications Engineering II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2310511 | Nachrichtentechnik II | SWS | Vorlesung (V) | Jäkel |
| SS 2020 | 2310513 | Übungen zu 2310511 Nachrichtentechnik II | 1 SWS | Übung (Ü) | Sturm |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Kenntnis der grundlegenden Ingenieurmathematik inklusive Integraltransformationen und Wahrscheinlichkeitstheorie sowie Grundlagenwissen über die Nachrichtentechnik.

Empfehlungen
Vorheriger Besuch der Vorlesung "Nachrichtentechnik I", "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" wird empfohlen.
5.132 Teilleistung: Nichtlineare Optimierung I [T-WIWI-102724]

Verantwortung: Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
- M-WIWI-101414 - Methodische Grundlagen des OR
- M-WIWI-103278 - Optimierung unter Unsicherheit

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Version: 4
Turnus: Jedes Wintersemester

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Teilleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550111</td>
<td>Nichtlineare Optimierung I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550112</td>
<td>Übungen zu Nichtlineare Optimierung I + II</td>
<td>SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPOs). Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten. Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Nichtlineare Optimierung II [2550113] erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen

Die Teilleistung T-WIWI-103637 "Nichtlineare Optimierung I und II" darf nicht begonnen worden sein.

Anmerkungen

Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
5.133 Teilleistung: Nichtlineare Optimierung I und II [T-WWI-103637]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WWI-101414 - Methodische Grundlagen des OR

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>6</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550111</td>
<td>Nichtlineare Optimierung I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550112</td>
<td>Übungen zu Nichtlineare Optimierung I + II</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550113</td>
<td>Nichtlineare Optimierung II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120min.) (nach §4(2), 1 SPO).

Voraussetzungen
Keine.

Anmerkungen
Teil I und II der Vorlesung werden nacheinander im selben Semester gelesen.
5.134 Teilleistung: Nichtlineare Optimierung II [T-WIWI-102725]

Verantwortung: Prof. Dr. Oliver Stein
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101414 - Methodische Grundlagen des OR

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SWS 19/20</th>
<th>2550112</th>
<th>Übungen zu Nichtlineare Optimierung I + II</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550113</td>
<td>Nichtlineare Optimierung II</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPOs).
Die Prüfung wird im Vorlesungssemester und dem darauf folgenden Semester angeboten.
Die Erfolgskontrolle kann auch zusammen mit der Erfolgskontrolle zu Nichtlineare Optimierung I erfolgen. In diesem Fall beträgt die Dauer der schriftlichen Prüfung 120 min.

Voraussetzungen
Keine.

Anmerkungen
Teil I und II der Vorlesung werden nacheinander im gleichen Semester gelesen.
5.135 Teilleistung: Numerische Mathematik für die Fachrichtung Informatik [T-MATH-102242]

Verantwortung: Prof. Dr. Andreas Rieder
Dr. Daniel Weiß
Prof. Dr. Christian Wieners
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101308 - Praktische Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Semester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Id</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0187400</td>
<td>Numerische Mathematik für die Fachrichtungen Informatik und Ingenieurwesen</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Weiß</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0187500</td>
<td>Übungen zu 0187400</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Weiß</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
5.136 Teilleistung: Numerische Mathematik für die Fachrichtung Informatik, Übungsschein [T-MATH-102243]

Verantwortung:
Prof. Dr. Andreas Rieder
Dr. Daniel Weiß
Prof. Dr. Christian Wieners

Einrichtung:
KIT-Fakultät für Mathematik

Bestandteil von:
M-MATH-101308 - Praktische Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.137 Teilleistung: Öffentliche Einnahmen [T-WIWI-102739]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101403 - Finanzwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td></td>
<td>Öffentliche Einnahmen</td>
</tr>
<tr>
<td>SS 2020</td>
<td></td>
<td>Übung zu Öffentliche Einnahmen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 1h nach § 4, Abs. 2, 1 SPO. Die Note entspricht der Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Empfehlungen

Es wird Kenntnis der Grundlagen der Finanzwissenschaft vorausgesetzt.
5.138 Teilleistung: Öffentliches Finanzwesen [T-WIWI-109590]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101403 - Finanzwissenschaft

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4,5
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistung</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2560136</td>
<td>Öffentliches Finanzwesen</td>
<td>3</td>
<td>schriftlich</td>
<td>Wigger, Groh</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.).

Voraussetzungen
T-WIWI-107763 "Kommunales Finanzwesen" darf nicht begonnen sein.

Anmerkungen
Frühere Bezeichnung bis einschließlich Wintersemester 2018/19 "Kommunales Finanzwesen".
5.139 Teilleistung: Öffentliches Recht I & II [T-INFO-110300]

Verantwortung: Prof. Dr. Nikolaus Marsch
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101192 - Verfassungs- und Verwaltungsrecht

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Vorlesungsstunden</th>
<th>Vorlesungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Öffentliches Recht I - Grundlagen</td>
<td>2 SWS</td>
<td>Barczak</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Öffentliches Recht II - Öffentliches Wirtschaftsrecht</td>
<td>2 SWS</td>
<td>Eichenhofer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Modulprüfung in Form einer schriftlichen Gesamtklausur im Umfang von i.d.R. 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine.

Empfehlungen
Details dazu auf der Homepage des ZAR (www.kit.edu/zar).
5 TEILLEISTUNGEN

5.140 Teilleistung: Operatives CRM [T-WIWI-102597]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101460 - CRM und Servicemanagement

Teilleistung: Operatives CRM [T-WIWI-102597]

Verantwortung: Prof. Dr. Andreas Geyer-Schulz
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101460 - CRM und Servicemanagement

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 4,5
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Vorlesende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2540522</td>
<td>Operatives CRM</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Geyer-Schulz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540523</td>
<td>Übung Operatives CRM</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Schweigert</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) im Umfang von 60 Minuten nach §4(2), 1 SPO. Die Klausur gilt als bestanden (Note 4,0), wenn mindestens 50 von maximal 100 möglichen Punkten erreicht werden. Die Abstufung der Noten erfolgt jeweils in fünf Punkte Schritten (Bestnote 1,0 ab 95 Punkten). Details zur Notenbildung und Notenskala werden in der Lehrveranstaltung bekanntgegeben.

Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben.

Voraussetzungen
Keine

Empfehlungen
Der Besuch der Vorlesungen Customer Relationship Management und Analytisches CRM wird als sinnvoll erachtet.
5.141 Teilleistung: Optik und Festkörperelektronik [T-ETIT-110275]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105005 - Optik und Festkörperelektronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.142 Teilleistung: Optimierungsansätze unter Unsicherheit [T-WIWI-106545]

Verantwortung: Prof. Dr. Steffen Rebennack
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research
M-WIWI-103278 - Optimierung unter Unsicherheit

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Stadium</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2550464</td>
<td>Optimierungsansätze unter Unsicherheit</td>
<td></td>
<td>Vorlesung (V)</td>
<td>Rebennack</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550465</td>
<td>Übungen zu Optimierungsansätze unter Unsicherheit</td>
<td></td>
<td>Übung (Ü)</td>
<td>Rebennack, Füllner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2550466</td>
<td>Rechnerübungen zu Optimierungsansätze unter Unsicherheit</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Rebennack, Füllner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO). Die Prüfung wird jedes Semester angeboten.

Voraussetzungen
Keine.
5.143 Teilleistung: Optoelectronic Components [T-ETIT-101907]

Verantwortung: Prof. Dr. Wolfgang Freude
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100509 - Optoelectronic Components

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2309486</td>
<td>Optoelectronic Components</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Freude</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2309487</td>
<td>Optoelectronic Components (Tutorial)</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Freude</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten). Die individuellen Termine für die mündliche Prüfung werden regelmäßig angeboten.

Voraussetzungen
keine

Empfehlungen
Kenntnisse in folgenden Bereichen: Elemente der Wellenausbreitung, Physik des pn-Übergangs.
5.144 Teilleistung: Organisationsmanagement [T-WIWI-102630]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101425 - Strategie und Organisation

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3,5</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>2577902</td>
<td>Organisationsmanagement</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Lindstädt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Durch die erfolgreiche Teilnahme am Übungsbetrieb kann ein Bonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Voraussetzungen

Keine
5.145 Teilleistung: Photovoltaische Systemtechnik [T-ETIT-100724]

Verantwortung: Robin Grab
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100411 - Photovoltaische Systemtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
| SS 2020 | 2307380 | Photovoltaische Systemtechnik | 2 SWS | Vorlesung (V) | Grab |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen
keine
Teilleistung: Physik für Informatiker I und II [T-PHYS-102303]

Verantwortung: PD Dr. Roger Wolf
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101339 - Grundlagen der Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnr.</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4040211</td>
<td>Physik II für Informatiker</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Engel, Kang</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4040212</td>
<td>Übungen zur Physik II für Informatiker</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Engel, Kang</td>
</tr>
<tr>
<td>SS 2020</td>
<td>4040211</td>
<td>Physik I für Informatiker</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Drexlin, Schlösser</td>
</tr>
<tr>
<td>SS 2020</td>
<td>4040212</td>
<td>Übungen zur Physik I für Informatiker</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Drexlin, Hiller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel 180 min)

Voraussetzungen
keine
5.147 Teilleistung: Physiologie und Anatomie I [T-ETIT-101932]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100390 - Physiologie und Anatomie I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>2305281</th>
<th>Physiologie und Anatomie I</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Breustedt</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine
5.148 Teilleistung: Platform Economy [T-WIWI-109936]

Verantwortung: Dr. Verena Dorner
Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-101421 - Supply Chain Management
M-WIWI-101434 - eBusiness und Service Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp (V/U)</th>
<th>Dozent (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2540468</td>
<td>Platform Economy</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Weinhardt, Dann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540469</td>
<td>Übung zur Platform Economy</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Dann, Richter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Details zur Notenbildung werden zu Beginn der Veranstaltung bekannt gegeben.

Voraussetzungen

siehe "Modellierte Voraussetzungen"

Empfehlungen

Keine
5.149 Teilleistung: Platzhalter Überfachliche Qualifikation 2 LP - unbenotet [T-INFO-105805]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: Universität gesamt
Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Voraussetzungen
keine
5.150 Teilleistung: Platzhalter Überfachliche Qualifikation 2 LP - unbenotet [T/INFO-105804]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: Universität gesamt
Bestandteil von: M/INFO-101723 - Schlüsselqualifikationen

Voraussetzungen
keine
5.151 Teilleistung: Platzhalter Überfachliche Qualifikation 3 LP - unbenotet [T-INFO-105803]

<table>
<thead>
<tr>
<th>Einrichtung</th>
<th>Universität gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von</td>
<td>M-INFO-101723 - Schlüsselqualifikationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: Universität gesamt
Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Voraussetzungen
keine
5.153 Teilleistung: PLM für mechatronische Produktentwicklung [T-MACH-102181]

Verantwortung: Prof. Dr.-Ing. Martin Eigner
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnr.</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2122376</td>
<td>PLM für mechatronische Produktentwicklung</td>
<td>SWS</td>
<td>Vorlesung (V)</td>
<td>Eigner</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2122376</td>
<td>PLM für mechatronische Produktentwicklung</td>
<td>SWS</td>
<td>Vorlesung (V)</td>
<td>Eigner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung 20 Min.

Voraussetzungen

keine
5.154 Teilleistung: PLM-CAD Workshop [T-MACH-102153]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2121357</td>
<td>PLM-CAD Workshop</td>
</tr>
<tr>
<td>SS 2020 2121357</td>
<td>PLM-CAD Workshop</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet)

Voraussetzungen
Keine

Anmerkungen
Anwesenheitspflicht und Teilnehmerzahl begrenzt
5.155 Teilleistung: Praktikum Adaptive Sensorelektronik [T-ETIT-100758]

Verantwortung: Prof. Dr. Michael Siegel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100469 - Praktikum Adaptive Sensorelektronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienjahr</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Dozierend</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2312672</td>
<td>Praktikum Adaptive Sensorelektronik</td>
<td>4 SWS</td>
<td>Praktikum (P)</td>
<td>Siegel, Wünsch</td>
<td></td>
</tr>
<tr>
<td>SS 2020</td>
<td>2312672</td>
<td>Praktikum Adaptive Sensorelektronik</td>
<td>4 SWS</td>
<td>Praktikum (P)</td>
<td>Wünsch</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Das Praktikum schlüsselt sich in 6 eigenständige Versuche auf. Vor jedem Versuch geben die Studierenden ein ausgefülltes Übungsblatt ab und werden nach erfolgreichem Versuchsende zum Versuch abgefragt. Die Endnote ergibt sich aus diesen absolvierten 6 Versuchen.

Voraussetzungen
keine

Anmerkungen
Die Modulnote ergibt sich aus den 6 zu bearbeitenden Projekten. Dabei wird für jedes Projekt zu Beginn ein Vorbereitungsblatt abgegeben (schriftliche Teilnote) und am Ende des Projektes eine mündliche Abfrage durchgeführt.
5.156 Teilleistung: Praktikum Hard- und Software in leistungselektronischen Systemen [T-ETIT-106498]

Verantwortung: Prof. Dr.-Ing. Marc Hiller

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103263 - Praktikum Hard- und Software in leistungselektronischen Systemen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrsitzungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Praktikum Hard- und Software in leistungselektronischen Systemen</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Praktikum Hard- und Software in leistungselektronischen Systemen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer praktikumsbegleitenden Bewertung.

Voraussetzungen
5.157 Teilleistung: Praktikum: Lego Mindstorms [T-INFO-107502]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-102557 - Lego Mindstorms - Basispraktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 24306 | Basispraktikum Lego Mindstorms | 3 SWS | Praktikum (P) | Asfour, Weiner, Starke, Pohl, Klas |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung anderer Art nach § 4 Abs. 3 SPO.

Voraussetzungen
Keine.

Empfehlungen
Grundlegende Kenntnisse in Java sind zur erfolgreichen Teilnahme erforderlich.
5.158 Teilleistung: Praktischer Entwurf Regelungstechnischer Systeme [T-ETIT-107702]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-103814 - Praktischer Entwurf Regelungstechnischer Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>2303163</th>
<th>Praktischer Entwurf Regelungstechnischer Systeme</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Flad</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2303164</td>
<td>Übungen zu 2303163 Praktischer Entwurf Regelungstechnischer Systeme</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Stark</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.
- Bei weniger als 30 Studierenden erfolgt die Erfolgskontrolle in Form einer mündlichen Prüfung (ca. 20 Minuten). Die Modulnote ist die Note der mündlichen Prüfung.
- **Achtung:** Die erfolgreiche Teilnahme am Workshop ist Voraussetzung für die Zulassung zur Prüfung. Die Teilnahme am Workshop verpflichtet nicht zur Teilnahme an der Prüfung.
 Der Workshop ist aus Kapazitätsgründen auf eine Teilnehmerzahl von 60 Studierende begrenzt. Sofern erforderlich wird ein Auswahlverfahren durchgeführt dessen Details in der ersten Vorlesung und auf der Homepage der Veranstaltung bekanntgegeben werden.

Voraussetzungen

Die erfolgreiche Teilnahme am Workshop der Vorlesung ist Voraussetzung für die Zulassung zur Prüfung.

Empfehlungen

Anmerkungen

- **Achtung:** Die erfolgreiche Teilnahme am Workshop ist Voraussetzung für die Zulassung zur Prüfung.
 Die Teilnahme am Workshop verpflichtet nicht zur Teilnahme an der Prüfung.
 Der Workshop ist aus Kapazitätsgründen auf eine Teilnehmerzahl von 60 Studierende begrenzt. Sofern erforderlich wird ein Auswahlverfahren durchgeführt dessen Details in der ersten Vorlesung und auf der Homepage der Veranstaltung bekanntgegeben werden.
5.159 Teilleistung: Praxis der Software-Entwicklung [T-INFO-102031]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101176 - Praxis der Software-Entwicklung

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
7

Turnus
Jedes Semester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2400150</th>
<th>Praxis der Softwareentwicklung (PSE)</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Snelting, Bechberger, Fried</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt nach § 4 Abs. 2 Nr. 3 SPO als benotete Erfolgskontrolle anderer Art.

Die in den Anmerkungen genannten Artefakte werden separat benotet und gehen mit folgendem Prozentsatz in die Gesamtnote ein:
- Pflichtenheft 10%
- Entwurf 30%
- Implementierung 30%
- Qualitätssicherung 20%
- Abschlusspräsentation 10%.

Voraussetzungen
Für SPO 2015 gilt:
Das Modul muss zusammen mit dem Modul Teamarbeit in der Software-Entwicklung belegt werden.
Der erfolgreiche Abschluss der Orientierungsprüfung - der Module Lineare Algebra I, Grundbegriffe der Informatik und Programmieren - und des Moduls Softwaretechnik 1 werden vorausgesetzt.
Für SPO 2008 gilt:
Das Modul muss zusammen mit dem Modul Teamarbeit in der Software-Entwicklung belegt werden.
Der erfolgreiche Abschluss der Orientierungsprüfung und des Moduls Softwaretechnik 1 werden vorausgesetzt.
Die Orientierungsprüfung besteht aus einer der Module Lineare Algebra oder Höhere Mathematik und die Module Grundbegriffe der Informatik und Programmieren.

Empfehlungen
Die Veranstaltung sollte erst belegt werden, wenn alle Module aus den ersten beiden Semestern abgeschlossen sind.

Anmerkungen
Für SPO 208 gilt: es müssen einer der beiden Module, die für die Orientierungsprüfung beanstanden werden müssen auch bestanden werden.

5.160 Teilleistung: Praxis der Unternehmensberatung [T-INFO-101975]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1,5</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>24664</th>
<th>Praxis der Unternehmensberatung</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Böhm, Lang</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO und besteht aus mehreren Teilaufgaben. Dazu gehören Vorträge, Projektarbeiten, schriftliche Arbeiten und Seminararbeiten.
Zum Bestehen der Prüfung müssen alle Teilaufgaben erfolgreich bestanden werden.

Voraussetzungen
Keine.
5.161 Teilleistung: Praxis des Lösungsvertriebs [T-INFO-101977]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Studienleistung nach § 4 Abs. 3 SPO und besteht aus mehreren Teilaufgaben. Dazu gehören Vorträge, Marktstudien, Projekte, Fallstudien und Berichte.
Zum Bestehen der Prüfung müssen alle Teilaufgaben erfolgreich bestanden werden.

Voraussetzungen
Keine.

Anmerkungen
Praxis der Lösungsvertriebs findet zur Zeit nicht statt
5.162 Teilleistung: Principles of Insurance Management [T-WIWI-102603]

Verantwortung: Prof. Dr. Ute Werner
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101436 - Risk and Insurance Management

| Teilleistungsart | Prüfungsleistung mündlich | Leistungspunkte | 4,5 | Turnus | Jedes Sommersemester | Version | 1 |

Erfolgskontrolle(n)
Die Note setzt sich zu je 50% aus den Vortragsleistungen (inkl. Ausarbeitungen) und der mündlichen Prüfung zusammen.
Die Prüfung wird für Erstschreiber letztmalig im Sommersemester 2017 angeboten.

Voraussetzungen
Keine

Empfehlungen
Keine
5 TEILLEISTUNGEN

5.163 Teilleistung: Privatrechtliche Übung [T-INFO-102013]

Verantwortung: Prof. Dr. Thomas Dreier
Dr. Yvonne Matz

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101191 - Wirtschaftsprivatrecht

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24011</td>
<td>Handels- und Gesellschaftsrecht</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Wiele</td>
</tr>
<tr>
<td>SS 2020</td>
<td>24504</td>
<td>BGB für Fortgeschrittene</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Matz</td>
</tr>
<tr>
<td>SS 2020</td>
<td>24506</td>
<td>Privatrechtliche Übung</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Dreier</td>
</tr>
<tr>
<td>SS 2020</td>
<td>24926</td>
<td>Übung zur Privatrechtlichen Übung</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Käde, Hägle</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO. Es müssen mindestens 2 der 5 angebotenen Falllösungen im Rahmen der Privatrechtlichen Übung bestanden werden, und zwar mindestens eine der drei BGB-Falllösungen sowie mindestens eine der beiden HGB-Falllösungen. Die Zuordnung der Falllösungen wird in der ersten Vorlesungswoche vom Prüfer bekanntgegeben.

Die Gesamtnote setzt sich aus den Noten der besten bestandenen BGB-Falllösung und der besten bestandenen HGB-Falllösung zusammen.

Voraussetzungen

Erfolgreicher Abschluss des Moduls *Einführung in das Privatrecht.*
5.164 Teilleistung: Problemlösung, Kommunikation und Leadership [T-WIWI-102871]

Verantwortung: Prof. Dr. Hagen Lindstädt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101425 - Strategie und Organisation

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>2</th>
<th>Turnus</th>
<th>Jedes Sommersemester</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (30min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters.
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine
5.165 Teilleistung: Product Lifecycle Management [T-MACH-105147]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2121350 | Product Lifecycle Management | 2 SWS | Vorlesung (V) | Ovtcharova |

Erfolgskontrolle(n)

Schriftliche Prüfung 90 Min.

Voraussetzungen

Keine
5.166 Teilleistung: Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung [T-MACH-102155]

Verantwortung: Dr.-Ing. Sama Mbang
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2123364</th>
<th>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR)</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Mbang</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt.
5.167 Teilleistung: Produktion und Nachhaltigkeit [T-WIWI-102820]

Verantwortung: Prof. Dr. Frank Schultmann
Dr.-Ing. Rebekka Volk

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101437 - Industrielle Produktion I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsfestliche</td>
<td>3,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Lehreinstellung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2581960</td>
<td>Produktion und Nachhaltigkeit</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Volk</td>
</tr>
</tbody>
</table>
5.168 Teilleistung: Programmieren [T-INFO-101531]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101174 - Programmieren

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 24004 | Programmieren | 4 SWS | Vorlesung / Übung (VÜ) | Koziolek |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO Informatik und besteht aus zwei Abschlussaufgaben, die zeitlich getrennt voneinander abgegeben werden.

Eine Abmeldung ist nur innerhalb von zwei Wochen nach Bekanntgabe der ersten Aufgabe möglich.

Voraussetzungen

Der Übungsschein muss bestanden sein.

Empfehlungen

Vorkenntnisse in Java-Programmierung können hilfreich sein, werden aber nicht vorausgesetzt.

Anmerkungen

Im Falle einer Wiederholung der Prüfung müssen beide Aufgaben erneut abgegeben werden.

Achtung: Diese Teilleistung ist Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO Informatik.

Informatik (Bachelor of Science (B.Sc.))
Modulhandbuch mit Stand vom 20.02.2020
5.169 Teilleistung: Programmieren Übungsschein [T-INFO-101967]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek
 Prof. Dr. Ralf Reussner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101174 - Programmieren

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24004</td>
<td>Programmieren</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Koziolek</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Voraussetzungen

keine

Anmerkungen

- Der Übungsschein ist Voraussetzung für die Teilnahme an der Prüfung Programmieren.
- Mit der Anmeldung zum Übungsschein erfolgt automatisch auch die Anmeldung zu der Präsenzübung. Nimmt der Studierende nicht an der Präsenzübung teil oder besteht er diese nicht, gilt der Übungsschein als nicht bestanden. In diesem Fall müssen im kommenden Semester sowohl die Ausarbeitung der Übungsbänder, als auch die Präsenzübung erfolgreich wiederholt werden.
- Wer die Ausarbeitung der Übungsbänder erfolgreich besteht, jedoch aus nicht zu vertretendem Grund an der Präsenzübung nicht teilnimmt, kann im nächsten Semester nur an der Präsenzübung teilnehmen. Wenn die Präsenzübung im nächsten Semester nicht bestanden wird, gilt der Übungsschein als nicht bestanden.
- Studierende, die an den Übungsschein bereits vor WS 16/17 ohne Erfolg teilgenommen haben, müssen an der Präsenzübung nicht teilnehmen.
- Achtung: Diese Teilleistung ist Bestandteil der Orientierungsprüfung gemäß § 8 Abs. 1 SPO Informatik.
5.170 Teilleistung: Programmierparadigmen [T-INFO-101530]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101179 - Programmierparadigmen

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Vorlesende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24030</td>
<td>Programmierparadigmen</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Snelting, Reussner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>24043</td>
<td>Übung zu Programmierparadigmen</td>
<td>1</td>
<td>Vorlesung (V)</td>
<td>Snelting, Wagner, Graf</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Das Modul Theoretische Grundlagen der Informatik muss abgeschlossen sein.

Empfehlungen
Keine.
5.171 Teilleistung: Projektmanagement aus der Praxis [T-INFO-101976]

Verantwortung: Prof. Dr.-Ing. Klemens Böhm
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1,5</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2400019 | Projektmanagement aus der Praxis | 2 SWS | Vorlesung (V) | Böhm, Schnober |

Erfolgskontrolle(n)

Voraussetzungen
Keine.

Empfehlungen
Kenntnisse zu Grundlagen des Projektmanagements.
5.172 Teilleistung: Projektmanagement in der Produktentwicklung [T-INFO-100795]

Verantwortung: Dr. Michael Kaiser
Prof. Dr.-Ing. Torsten Kröger

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Teilleistungsart: Studienleistung
Leistungspunkte: 3
Turnus: Unregelmäßiger
Version: 1

Lehrveranstaltungen

| WS 19/20 | 2400097 | Projektmanagement im Zeitalter der Digitalisierung | 2 SWS | Vorlesung (V) | Kaiser |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Studienleistung nach § 4 Abs. 3 SPO.

Voraussetzungen
keine
5.173 Teilleistung: Proseminar [T-INFO-101971]

Verantwortung: Prof. Dr. Bernhard Beckert
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101181 - Proseminar

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>WS 19/20</th>
<th>SS 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilleistungsart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leistungspunkte</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Turnus</td>
<td></td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Version</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>SS 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400035</td>
<td>2400020</td>
</tr>
<tr>
<td>Proseminar Angewandte Geometrie</td>
<td>Windows Internals (Proseminar Operating System Internals)</td>
</tr>
<tr>
<td>SWS</td>
<td>SWS</td>
</tr>
<tr>
<td>Proseminar (PS)</td>
<td>Proseminar (PS)</td>
</tr>
<tr>
<td>Eifried, Prautzsch</td>
<td>Bellosa, Rittinghaus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>SS 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400041</td>
<td>2400027</td>
</tr>
<tr>
<td>Proseminar Algorithmen für Computerspiele</td>
<td>Proseminar Unter teilungs alg orithmen</td>
</tr>
<tr>
<td>2 SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Proseminar / Seminar (PS)</td>
<td>Proseminar (PS)</td>
</tr>
<tr>
<td>Jung, Opitz, Schüßler, Dachs bacher</td>
<td>Prautzsch, Eiffried</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>SS 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400085</td>
<td>2400070</td>
</tr>
<tr>
<td>Proseminar Mobile Computing</td>
<td>Proseminar "Formale Methoden und Maschinelles Lernen" findet im SS 2020 nicht statt!</td>
</tr>
<tr>
<td>2 SWS</td>
<td>SWS</td>
</tr>
<tr>
<td>Proseminar / Seminar (PS/S)</td>
<td>Proseminar (PS)</td>
</tr>
<tr>
<td>Beigl, Pescara, Exler</td>
<td>Beckert, Sinz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>SS 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400088</td>
<td>2400076</td>
</tr>
<tr>
<td>Proseminar Werkzeuge und Methoden der Software-Analyse</td>
<td>Proseminar Software-Anforderungen und -Entwurf</td>
</tr>
<tr>
<td>2 SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Proseminar (PS)</td>
<td>Proseminar (PS)</td>
</tr>
<tr>
<td>Sinz</td>
<td>Koziolek</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>SS 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>240100</td>
<td>2400079</td>
</tr>
<tr>
<td>Ausgewählte Kapitel der Rechnerarchitektur</td>
<td>Proseminar: Designing and Conducting Experimental Studies</td>
</tr>
<tr>
<td>2 SWS</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Proseminar (PS)</td>
<td>Proseminar (PS)</td>
</tr>
<tr>
<td>Karl, Bromberger, Hoffmann, Becker</td>
<td>Schankin, Beigl, Exler, Pescara</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SS 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400086</td>
</tr>
<tr>
<td>Proseminar Algorithmen für NP-schwere Probleme</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td>Proseminar (PS)</td>
</tr>
<tr>
<td>Uecker dt, Gottesbüren, Hamann, Wolf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SS 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>240108</td>
</tr>
<tr>
<td>Proseminar: Structuring, processing, and analysing temporal data</td>
</tr>
<tr>
<td>SWS</td>
</tr>
<tr>
<td>Proseminar (PS)</td>
</tr>
<tr>
<td>Böhm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SS 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400121</td>
</tr>
<tr>
<td>Interactive Analytics Seminar</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td>Proseminar / Seminar (PS/S)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Informatik (Bachelor of Science (B.Sc.))
Modulhandbuch mit Stand vom 20.02.2020
Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Studierende müssen eine schriftliche Ausarbeitung im Umfang von ca. 10 Seiten abgeben und eine Präsentation im Umfang von ca. 30 Minuten mit anschließender Diskussion halten.

Bei der Benotung werden sowohl die schriftliche Arbeit als auch die Präsentation berücksichtigt.

Voraussetzungen
Keine.

Anmerkungen
Es können nur Proseminare der KIT-Fakultät für Informatik belegt werden. Eine vollständige Auflistung ist dem Vorlesungsverzeichnis zu entnehmen.

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2400151</th>
<th>Proseminar: Grundlagen des maschinellen Lernens</th>
<th>2 SWS</th>
<th>Proseminar (PS)</th>
<th>Friederich</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2424815</td>
<td>Ausgewählte Kapitel der Rechnerarchitektur</td>
<td>3 SWS</td>
<td>Proseminar (PS)</td>
<td>Karl, Becker, Bromberger, Hoffmann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>24544</td>
<td>Proseminar: Anthropomatik: Von der Theorie zur Anwendung</td>
<td>2 SWS</td>
<td>Proseminar (PS)</td>
<td>Hanebeck, Beyerer, Radtke</td>
</tr>
</tbody>
</table>
5.174 Teilleistung: Proseminar Mathematik [T-MATH-103404]

Verantwortung: Dr. Stefan Kühnlein

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101313 - Proseminar Mathematik

Teilleistungsart	**Leistungspunkte**	**Version**
Studienleistung | 3 | 1

Voraussetzungen
keine
5.175 Teilleistung: Python for Empirical Finance [T-WIWI-110217]

Verantwortung: Prof. Dr Maxim Ulrich

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-105035 - Empirical Finance

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2500014 | Python for Empirical Finance | 2 SWS | Praktikum (P) | Ulrich |

Erfolgskontrolle(n)

Die Prüfung erfolgt als Prüfungsleistung anderer Art in Form von sechs zweiwöchentlichen Python-Programmieraufgaben, die in jedem Wintersemester angeboten werden. Die Note der Prüfung ergibt sich aus der erreichten Punktezahl in den Programmieraufgaben.

Voraussetzungen

Keine.
5.176 Teilleistung: Radiation Protection [T-ETIT-100825]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100562 - Radiation Protection

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2305272 | Radiation Protection | 2 SWS | Vorlesung (V) | Breustedt |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten).

Voraussetzungen
keine
5.177 Teilleistung: Real Estate Management I [T-WIWI-102744]

Verantwortung: Prof. Dr.-Ing. Thomas Lützkendorf
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101466 - Real Estate Management

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2586400 Real Estate Management I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Lützkendorf, Worschech</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2586401 Übungen zu Real Estate Management I</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Worschech</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Wintersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Anmerkungen
Das Angebot wird durch Vorträge von Gästen aus verschiedenen Bereichen der Immobilienwirtschaft und durch Exkursionen ergänzt.
5.178 Teilleistung: Real Estate Management II [T-WIWI-102745]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr.-Ing. Thomas Lützkendorf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-WIWI-101466 - Real Estate Management</td>
</tr>
</tbody>
</table>

Teilleistungsart
Prüfung: Prüfungsleistung schriftlich

Leistungspunkte
4,5

Turnus
Jedes Sommersemester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
</tr>
<tr>
<td>2585400</td>
</tr>
<tr>
<td>Real Estate Management II</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>Lützkendorf, Worschech</td>
</tr>
<tr>
<td>SS 2020</td>
</tr>
<tr>
<td>2585401</td>
</tr>
<tr>
<td>Übung zu Real Estate Management II</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td>Übung (Ü)</td>
</tr>
<tr>
<td>Worschech</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) (nach §4(2), 1 SPO). Die Prüfung wird an zwei Terminen nur innerhalb des Semesters angeboten, in dem auch die Veranstaltung angeboten wird (Sommersemester). Die Prüfung kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Empfehlungen
Es wird eine Kombination mit dem Modul Bauökologie empfohlen. Weiterhin empfehlenswert ist die Kombination mit Lehrveranstaltungen aus den Bereichen

- Finanzwirtschaft und Banken
- Versicherungen
- Bauingenieurwesen und Architektur (Bauphysik, Baukonstruktion, Facility Management)

Anmerkungen
Das Angebot wird durch Vorträge von Gästen aus verschiedenen Bereichen der Wohnungswirtschaft und durch Exkursionen ergänzt.
5.179 Teilleistung: Rechnerstrukturen [T-INFO-101355]

Verantwortung: Prof. Dr.-Ing. Jörg Henkel
Prof. Dr. Wolfgang Karl

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100818 - Rechnerstrukturen

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2424570 | Rechnerstrukturen | 3 SWS | Vorlesung (V) | Karl |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine

Empfehlungen

Der vorherige Abschluss des Moduls *Technische Informatik* wird empfohlen.
5.180 Teilleistung: Rechnungswesen [T-WIWI-102816]

Verantwortung: Dr. Jan-Oliver Strych
Einrichtung: KIT-Fakultät für Informatik
KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101493 - Grundlagen der BWL

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

| Lehrveranstaltungen |
|---------------------|---|-----|-----|
| WS 19/20 2600002 | Rechnungswesen | 2 SWS | Vorlesung (V) | Strych |
| WS 19/20 2600003 | Übung zu Rechnungswesen | 2 SWS | Übung (Ü) | Strych |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung über 90 Minuten (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine
5.181 Teilleistung: Regelkonformes Verhalten im Unternehmensbereich [T-INFO-101288]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Thomas Dreier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Informatik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-INFO-101242 - Governance, Risk & Compliance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2400087 | Regelkonformes Verhalten im Unternehmensbereich | 2 SWS | Vorlesung (V) | Herzig |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. Nr. 1 SPO.

Voraussetzungen

keine
5.182 Teilleistung: Renewable Energy-Resources, Technologies and Economics
[T-WIWI-100806]

Verantwortung: PD Dr. Patrick Jochem
Prof. Dr. Russell McKenna

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101464 - Energiewirtschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3,5</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2581012 | Renewable Energy – Resources, Technologies and Economics | 2 SWS | Vorlesung (V) | McKenna, Jochem |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min., englisch, Antworten auf deutsch oder englisch möglich).

Voraussetzungen
Keine.
5.183 Teilleistung: Robotik I - Einführung in die Robotik [T-INFO-108014]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100893 - Robotik I - Einführung in die Robotik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2424152</td>
<td>Robotik I - Einführung in die Robotik</td>
<td>3/1</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von i.d.R. 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO Informatik.

Voraussetzungen

Keine.

Empfehlungen

Anmerkungen

Dieses Modul darf nicht gerprüft werden, wenn im Bachelor-Studiengang Informatik SPO 2008 die Lehrveranstaltung Robotik I mit 3 LP im Rahmen des Moduls Grundlagen der Robotik geprüft wurde.
5.184 Teilleistung: Selbstreflexion, Innen- und Außenkommunikation [T-INFO-102060]

Verantwortung: Prof. Dr. Walter Tichy
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt unbenotet als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 und wird mit "bestanden"/"nicht bestanden" bewertet.
Die regelmäßige Anwesenheit und aktive Mitgestaltung ist erforderlich.

Voraussetzungen
Keine.

Empfehlungen
Grundlegende Kenntnisse von Netzwerkgrundlagen und grundlegende Programmierkenntnisse sind gefordert.
Wichtiger als das aber ist der Wille, sich zu beteiligen und etwas über sich und andere lernen zu wollen.
5.185 Teilleistung: Seminar aus Rechtswissenschaften I [T-INFO-101997]

Verantwortung: Prof. Dr. Thomas Dreier

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101218 - Seminarmodul Recht

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24389</td>
<td>IT-Sicherheit und Recht</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Schallbruch</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2400041</td>
<td>Vertiefungs-Seminar Governance, Risk & Compliance</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Herzig</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2400061</td>
<td>Internet und Gesellschaft - gesellschaftliche Werte und technische Umsetzung</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Bless, Boehm, Hartenstein, Mädche, Sunyaev, Zitterbart</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2400153</td>
<td>Online Manipulation: Technologien und Grundrechtseingriffe</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Boehm</td>
</tr>
<tr>
<td>SS 2020</td>
<td>24820</td>
<td>Aktuelle Fragen des Patentrechts</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Melullis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Seminararbeit sowie ihrer Präsentation als Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen

Keine

Anmerkungen

Es können alle Seminare des Instituts für Informations- und Wirtschaftsrecht (IIWR) belegt werden.
5.186 Teilleistung: Seminar Batterien I [T-ETIT-110800]

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-105319 - Seminar Batterien I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2304226 | Seminar Batterien | 2 SWS | Seminar (S) | Weber |

Voraussetzungen

keine
5.187 Teilleistung: Seminar Betriebswirtschaftslehre (Bachelor) [T-WIWI-103486]

Verantwortung: Professorenschaft des Fachbereichs Betriebswirtschaftslehre
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101826 - Seminarmodul Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2500028</td>
<td>Seminar in Empirical Finance</td>
<td>2</td>
<td>Ulrich</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2530580</td>
<td>Seminar in Finance</td>
<td>2</td>
<td>Uhrig-Homburg, Mitarbeiter</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540473</td>
<td>Data Science in Service Management</td>
<td>2</td>
<td>Haubner, Frankenhauser, Gröschel</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540475</td>
<td>Electronic Markets & User behavior</td>
<td>2</td>
<td>Dorner, Knierim, Dann, Jaquart</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540477</td>
<td>Digital Experience and Participation</td>
<td>2</td>
<td>Straub, Peukert, Hoffmann, Kloker, Pusmaz, Willrich, Kloepper, Fegert, Greif-Winzieth</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540478</td>
<td>Smart Grids and Energy Markets</td>
<td>2</td>
<td>Dinther, Staudt, Richter, Huber, vom Scheidt, Golla, Schmidt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540524</td>
<td>Bachelor Seminar aus Data Science</td>
<td>2</td>
<td>Geyer-Schulz, Schweigert, Schweizer, Nazemi</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2540557</td>
<td>Literature Review Seminar: Information Systems and Service Design</td>
<td>3</td>
<td>Mädche</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2545010</td>
<td>Entrepreneurship Basics (Track 1)</td>
<td>2</td>
<td>Terzidis, Ziegler, González</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2545011</td>
<td>Entrepreneurship Basics (Track 2)</td>
<td>2</td>
<td>Böhrer, Terzidis</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2572173</td>
<td>Seminar in Marketing & Innovation (Bachelor)</td>
<td>SWS</td>
<td>Feurer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2573010</td>
<td>Seminar: Personal und Organisation (Bachelor)</td>
<td>2</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2573011</td>
<td>Seminar: Human Resource Management (Bachelor)</td>
<td>2</td>
<td>Nieken, Mitarbeiter</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2579919</td>
<td>Seminar Management Accounting - Special Topics</td>
<td>2</td>
<td>Riar</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2581976</td>
<td>Seminar Produktionswirtschaft und Logistik I</td>
<td>2</td>
<td>Glöser-Chahoud, Schultmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2581977</td>
<td>Seminar Produktionswirtschaft und Logistik II</td>
<td>2</td>
<td>Volk, Schultmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2581978</td>
<td>Seminar Produktionswirtschaft und Logistik III</td>
<td>2</td>
<td>Wiens, Schultmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2581980</td>
<td>Seminar Energiewirtschaft II: Energiespeicher und Märkte</td>
<td>2</td>
<td>Keles, Fett, Yilmaz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2581981</td>
<td>Seminar Energiewirtschaft III: Energieversorgung im Zeichen von Klimaschutz und Energiewende</td>
<td>2</td>
<td>Ardone, Ruppert, Sandmeier, Slednev</td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen

Keine.

Empfehlungen

Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen

In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

5.188 Teilleistung: Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung [T-ETIT-100714]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100397 - Seminar Leistungselektronik in Systemen der regenerativen Energieerzeugung

Lehrveranstaltungen

| SS 2020 | 2306318 | Leistungselektronik in Systemen der regenerativen Energieerzeugung | 3 SWS | Seminar (S) | Hiller |

Erfolgskontrolle(n)
Endvortrag, ca. 20-30 min mit anschließender Fragerunde.
Bewertet werden:
- Folienqualität (Form und Inhalt)
- Vortrag (Aufbau, Stil, Inhalt)
- Verhalten bei der Fragerunde

Voraussetzungen
keine

Anmerkungen
Teilnahme an insgesamt 7 vorbereitenden Treffen (ca. alle 14 Tage mit durchschnittlich 3 h Dauer) mit den Themen:
- Infoveranstaltung
- Besprechung und Verteilung der Themen
- Vortrags- und Präsentationstechniken
- Präsentation der Materialsammlungen
- Vorstellung von Struktur und Aufbau der Vorträge
- Vorstellung der fertigen Folienpräsentation
- Probevorträge
Teilleistung: Seminar Operations Research (Bachelor) [T-WIWI-103488]

Verantwortung: Prof. Dr. Stefan Nickel
 Prof. Dr. Steffen Rebennack
 Prof. Dr. Oliver Stein

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101826 - Seminarmodul Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkt</th>
<th>Dozent/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Seminar zu Methodischen Grundlagen des Operations Research</td>
<td>2 SWS</td>
<td>Stein</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Seminar on Power Systems Optimization (Bachelor)</td>
<td>2 SWS</td>
<td>Rebennack, Sinske</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>2 SWS</td>
<td>Nickel, Mitarbeiter</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Seminar on Power Systems Optimization (Bachelor)</td>
<td>2 SWS</td>
<td>Rebennack</td>
</tr>
<tr>
<td>SS 2020</td>
<td>Seminar: Modern OR and Innovative Logistics</td>
<td>2 SWS</td>
<td>Nickel, Mitarbeiter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

Verantwortung: Prof. Dr. Oliver Grothe
Prof. Dr. Melanie Schienle

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101826 - Seminarmodul Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2521310 | Topics in Econometrics | 2 SWS | Seminar (S) | Schienle, Chen, Görgen |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punktenschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.

5.191 Teilleistung: Seminar über ausgewählte Kapitel der Biomedizinischen Technik [T-ETIT-100710]

Verantwortung: Dr.-Ing. Axel Loewe
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100383 - Seminar über ausgewählte Kapitel der Biomedizinischen Technik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 2305254 | Seminar über ausgewählte Kapitel der Biomedizinischen Technik | 2 SWS | Seminar (S) | Loewe |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen eines Vortrages mit nachfolgender Diskussion.

Voraussetzungen
keine
5.192 Teilleistung: Seminar Volkswirtschaftslehre (Bachelor) [T-WIWI-103487]

Verantwortung: Professorenschaft des Fachbereichs Volkswirtschaftslehre
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101826 - Seminarmodul Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 2521310</td>
</tr>
<tr>
<td>WS 19/20 2560140</td>
</tr>
<tr>
<td>WS 19/20 2560141</td>
</tr>
<tr>
<td>WS 19/20 2560142</td>
</tr>
<tr>
<td>WS 19/20 2561208</td>
</tr>
<tr>
<td>SS 2020 2560241</td>
</tr>
<tr>
<td>SS 2020 2560555</td>
</tr>
<tr>
<td>SS 2020 2560556</td>
</tr>
<tr>
<td>SS 2020 2560557</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. In die Bewertung fließen folgende Aspekte ein:

- Regelmäßige Teilnahme an den Seminarterminen
- Anfertigung einer Seminararbeit zu einem Teilaspekt des Seminarthemas nach wissenschaftlichen Methoden
- Vortrag zum Thema der Seminararbeit.

Das Punkteschema für die Bewertung legt der/die Dozent/in der jeweiligen Lehrveranstaltung fest. Es wird zu Beginn der Lehrveranstaltung bekannt gegeben.

Voraussetzungen
Keine.

Empfehlungen
Siehe Lehrveranstaltungsbeschreibung im Vorlesungsverzeichnis unter https://campus.kit.edu/.

Anmerkungen
In der Regel werden die aktuellen Seminarthemen eines jeden Semesters bereits zum Ende des vorangehenden Semesters bekannt gegeben. Bei der Planung des Seminarmoduls sollte darauf geachtet werden, dass für manche Seminare eine Anmeldung bereits zum Ende des vorangehenden Semesters erforderlich ist.
5.193 Teilleistung: Seminar: Informatik TECO [T-INFO-110808]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-105328 - Seminar: Informatik TECO

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art nach § 4 Abs. 2 Nr. 3 SPO. Es müssen eine schriftliche Ausarbeitung erstellt und eine Präsentation gehalten werden. Ein Rücktritt ist innerhalb von zwei Wochen nach Vergabe des Themas möglich.

Voraussetzungen
Keine.
5.194 Teilleistung: Sicherheit [T-INFO-101371]

Verantwortung: Prof. Dr. Dennis Hofheinz
 Prof. Dr. Jörn Müller-Quade

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100834 - Sicherheit

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>24941</th>
<th>Sicherheit</th>
<th>3 SWS</th>
<th>Vorlesung (V)</th>
<th>Müller-Quade, Strufe</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von 90 Minuten.

Voraussetzungen
Keine.
5.195 Teilleistung: Signale und Systeme [T-ETIT-101922]

Verantwortung: Prof. Dr.-Ing. Fernando Puente León
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102123 - Signale und Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2302109</td>
<td>Signale und Systeme</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Puente León</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2302111</td>
<td>Übungen zu 2302109 Signale und Systeme</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Puente León, Jäschke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle des Moduls besteht aus einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Signale und Systeme.

Notenbildung
ergibt sich aus der schriftlichen Prüfung.

Voraussetzungen
Keine

Empfehlungen
Höhere Mathematik I + II
5.196 Teilleistung: Softwaretechnik I [T-INFO-101968]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek
 Prof. Dr. Ralf Reussner
 Prof. Dr. Walter Tichy

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101175 - Softwaretechnik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>24518</th>
<th>Softwaretechnik I</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VU)</th>
<th>Tichy, Weigelt, Hey</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle besteht aus einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO Informatik im Umfang von i.d.R. 60 Minuten.

Voraussetzungen
Keine.

Empfehlungen
Das Modul *Programmieren* sollte abgeschlossen sein.
5.197 Teilleistung: Softwaretechnik I Übungsschein [T-INFO-101995]

Verantwortung: Prof. Dr. Walter Tichy
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101175 - Softwaretechnik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2020 24518 Softwaretechnik I 4 SWS Vorlesung / Übung (VU) Tichy, Weigelt, Hey

Erfolgskontrolle(n)
Es muss ein unbenoteter Übungsschein als Erfolgskontrolle in Form einer Studienleistung nach § 4 Abs. 3 SPO Informatik erbracht werden.

Voraussetzungen
keine

Empfehlungen
Das Modul *Programmieren* sollte abgeschlossen sein.
5.198 Teilleistung: Softwaretechnik II [T-INFO-101370]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-100833 - Softwaretechnik II

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

| WS 19/20 | 24076 | Softwaretechnik II | 4 SWS | Vorlesung (V) | Reussner |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen
Keine

Empfehlungen
Die Lehrveranstaltung Softwaretechnik I sollte bereits gehört worden sein.
5.199 Teilleistung: Spezialveranstaltung Wirtschaftsinformatik [T-WIWI-109940]

Verantwortung: Prof. Dr. Christof Weinhardt
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101434 - eBusiness und Service Management

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte 4,5

Turnus Jedes Semester

Version 2

Erfolgskontrolle(n)

Bitte beachten Sie, dass auch eine praktische Komponente wie die Durchführung einer Umfrage, oder die Implementierung einer Applikation neben der schriftlichen Ausarbeitung zum regulären Leistungsumfang der Veranstaltung gehört. Die jeweilige Aufgabenstellung entnehmen Sie bitte der Veranstaltungsbeschreibung.

Voraussetzungen
siehe "Modellierte Voraussetzungen"

Empfehlungen
Keine

Anmerkungen
Alle angebotenen Seminarpraktika können als Spezialveranstaltung Wirtschaftsinformatik am Lehrstuhl von Prof. Dr. Weinhardt belegt werden. Das aktuelle Angebot der Seminarpraktikathemen wird auf der Webseite www.iism.kit.edu/im/lehre bekannt gegeben.

Die Spezialveranstaltung Wirtschaftsinformatik kann anstelle einer regulären Vorlesung (siehe Modulbeschreibung) gewählt werden. Sie kann aber nur einmal pro Modul angerechnet werden.
5.200 Teilleistung: Standortplanung und strategisches Supply Chain Management [T-WIWI-102704]

Verantwortung: Prof. Dr. Stefan Nickel
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research
M-WIWI-101414 - Methodische Grundlagen des OR
M-WIWI-101421 - Supply Chain Management

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO).
Die Prüfung wird jedes Semester angeboten.
Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Voraussetzungen
Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Empfehlungen
Keine

Anmerkungen
Die Lehrveranstaltung wird in jedem Wintersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
5.201 Teilleistung: Strategic Finance and Technology Change [T-WIWI-110511]

Verantwortung: Prof. Dr. Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101465 - Topics in Finance I

<table>
<thead>
<tr>
<th>Lehnveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden. Bei einer geringen Anzahl zur Klausur angemeldeten Teilnehmern behalten wir uns die Möglichkeit vor, eine mündliche Prüfung anstelle einer schriftlichen Prüfung abzuhalten.

Voraussetzungen
Keine

Empfehlungen
Der Besuch der Vorlesung "Financial Management" wird dringend empfohlen.
5 TEILLEISTUNGEN

5.202 Teilleistung: Systemdynamik und Regelungstechnik [T-ETIT-101921]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102181 - Systemdynamik und Regelungstechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Wintersemester
Version: 2

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Anmerkungen
wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten
5.203 Teilleistung: Taktisches und operatives Supply Chain Management [T-WIWI-102714]

Verantwortung: Prof. Dr. Stefan Nickel

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101413 - Anwendungen des Operations Research
M-WIWI-101421 - Supply Chain Management
M-WIWI-103278 - Optimierung unter Unsicherheit

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2550486</td>
<td>Taktisches und operatives SCM</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Nickel</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2550487</td>
<td>Übungen zu Taktisches und operatives SCM</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Dunke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer 60-minütigen schriftlichen Prüfung (nach §4(2), 1 SPO).
Die Prüfung wird jedes Semester angeboten.
Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Voraussetzungen
Zulassungsvoraussetzung zur Klausur ist die erfolgreiche Teilnahme an den Online-Übungen.

Empfehlungen
Keine

Anmerkungen
Die Lehrveranstaltung wird in jedem Sommersemester angeboten. Das für drei Studienjahre im Voraus geplante Lehrangebot kann im Internet nachgelesen werden.
5.204 Teilleistung: Teamarbeit im Bereich Serviceorientierte Architekturen [T-INFO-104385]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2400071 | Teamarbeit im Bereich Serviceorientierte Architekturen | 2 SWS | Seminar (S) | Abeck |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Ergebnisdokumentation sowie der Präsentation derselben als Studienleistung nach § 4 Abs. 3 SPO.

Voraussetzungen
Keine.

Anmerkungen
Details zu der Schlüsselqualifikation finden Sie unter: http://cm.tm.kit.edu/study.php.
5.205 Teilleistung: Teamarbeit im Bereich Web-Anwendungen [T-INFO-102068]

Verantwortung: Prof. Dr. Sebastian Abeck

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101723 - Schlüsselqualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 2400069 | Teamarbeit im Bereich Web-Anwendungen | 2 SWS | Seminar (S) | Abeck |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Ergebnisdokumentation sowie der Präsentation derselben als Studieleistung nach § 4 Abs. 3 SPO.

Voraussetzungen

Keine.

Anmerkungen

Details zu der Schlüsselqualifikation finden Sie unter: http://cm.tm.kit.edu/study.php.
5.206 Teilleistung: Teamarbeit und Präsentation in der Softwareentwicklung [T-INFO-102018]

Verantwortung: Prof. Dr.-Ing. Gregor Snelting
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101225 - Teamarbeit in der Softwareentwicklung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2020 | 24511 | Teamarbeit und Präsentation in der Software-Entwicklung (TSE) | 1 SWS | Vorlesung (V) | Snetting, Bechberger, Fried |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO.
Teilnehmer müssen als Team von ca. 5 Studierenden Präsentationen zu den Software-Entwicklungsphasen Pflichtenheft, Entwurf, Implementierung, Qualitätssicherung sowie eine Abschlusspräsentation von je 15 Minuten erarbeiten. Teilnehmer müssen Dokumente zur Projektplanung, insbesondere Qualitätssicherungsplan und Implementierungsplan vorlegen und umsetzen.

Voraussetzungen
Das Modul kann nur zusammen mit Praxis der Softwareentwicklung belegt werden.

Empfehlungen
Die Veranstaltung sollte erst belegt werden, wenn alle Scheine aus den ersten beiden Semestern erworben wurden.

Anmerkungen
Für SPO 208 gilt:
es müssen einer der beiden Module, die für die Orientierungsprüfung bestanden werden müssen auch bestanden werden.
5.207 Teilleistung: Technische Informatik [T-INFO-101970]

Verantwortung: Prof. Dr.-Ing. Tamim Asfour
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101180 - Technische Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>12</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Tutorium (Tu)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2411807</td>
<td>Tutorien zu Rechnerorganisation</td>
<td>SWS</td>
<td>Tutorium (Tu)</td>
<td>Bauer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>24502</td>
<td>Rechnerorganisation</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Henkel, Bauer, Lehmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>24505</td>
<td>Übungen zu Rechnerorganisation</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Henkel, Lehmann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>24007</td>
<td>Digitaltechnik und Entwurfsverfahren</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Hanebeck</td>
</tr>
<tr>
<td>SS 2020</td>
<td>24008</td>
<td>Übungen zu Digitaltechnik und Entwurfsverfahren</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Hanebeck</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2411809</td>
<td>Tutorien zu Digitaltechnik und Entwurfsverfahren</td>
<td>SWS</td>
<td>Tutorium (Tu)</td>
<td>Bromberger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 Minuten) gemäß § 4 Abs. 2 Nr. 1 SPO über die Lehrveranstaltungen "Rechnerorganisation" und "Digitaltechnik und Entwurfsverfahren".

Zusätzlich werden für die Bearbeitung von Übungsblätter ein Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben werden. Der erlangte Notenbonus wird auf eine bestandene Klausur angerechnet. Die Teilnahme ist freiwillig.

Voraussetzungen

Keine.

Empfehlungen

Es wird empfohlen, das Modul nach dem Modul *Grundbegriffe der Informatik* abzulegen.
5 TEILLEISTUNGEN

<table>
<thead>
<tr>
<th>Teilleistung: Technische Informationssysteme [T-MACH-102083]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova</td>
</tr>
<tr>
<td>Einrichtung: KIT-Fakultät für Maschinenbau</td>
</tr>
<tr>
<td>Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen</td>
</tr>
<tr>
<td>Teilleistungsart: Prüfungsleistung mündlich</td>
</tr>
<tr>
<td>Leistungspunkte: 4</td>
</tr>
<tr>
<td>Turnus: Jedes Sommersemester</td>
</tr>
<tr>
<td>Version: 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine
5.209 Teilleistung: Telematik [T-INFO-101338]

Verantwortung: Prof. Dr. Martina Zitterbart
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100801 - Telematik

Lehrveranstaltungen
| Wintersemester | 24128 | Telematik | 3 SWS | Vorlesung (V) | Bauer, Friebe, Heseding, Hock, Zitterbart |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von ca. 90 Minuten nach § 4 Abs. 2 Nr. 1 SPO. Bei unvertretbar hohem Prüfungsaufwand kann die Prüfungsmodalität geändert werden. Daher wird sechs Wochen im Voraus angekündigt (§ 6 Abs. 3 SPO), ob die Erfolgskontrolle
- in Form einer mündlichen Prüfung nach § 4 Abs. 2 Nr. 2 SPO oder
- in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO
stattfindet.

Voraussetzungen
Keine

Empfehlungen
- Inhalte der Vorlesung Einführung in Rechnernetze oder vergleichbarer Vorlesungen werden vorausgesetzt.
- Der Besuch des modulbegleitenden Basispraktikums Protokoll Engineering wird empfohlen.
5.210 Teilleistung: Theoretische Grundlagen der Informatik [T-INFO-103235]

Verantwortung: Prof. Dr. Jörn Müller-Quade
Prof. Dr. Peter Sanders
Prof. Dr. Dorothea Wagner

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101172 - Theoretische Grundlagen der Informatik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

| WS 19/20 | 24005 | Theoretische Grundlagen der Informatik | 3/1 SWS | Vorlesung (V) | Wagner, Brückner, Sauer |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO.

Durch die erfolgreiche Bearbeitung von Übungsaufgaben kann ein Notenbonus erworben werden. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um bis zu eine Notenstufe (0,3 oder 0,4). Details werden in der Vorlesung bekannt gegeben. Dieser Bonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.

Voraussetzungen
Keine.

Anmerkungen
5.211 Teilleistung: Übungen zu Computergrafik [T-INFO-104313]

Verantwortung: Prof. Dr.-Ing. Carsten Dachsbacher
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100856 - Computergrafik

Teilleistungsart: Studienleistung
Leistungspunkte: 0
Turnus: Jedes Wintersemester
Version: 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 24083</td>
<td>Übungen zu Computergrafik</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt als Studienleistung nach § 4 Abs. 3 SPO.

Voraussetzungen
Keine.
5.212 Teilleistung: Übungsschein Mensch-Maschine-Interaktion [T-INFO-106257]

Verantwortung: Prof. Dr.-Ing. Michael Beigl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100729 - Mensch-Maschine-Interaktion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Ort</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2400095 Mensch-Maschine-Interaktion</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Beigl, Exler</td>
</tr>
<tr>
<td>SS 2020</td>
<td>24659 Mensch-Maschine-Interaktion</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Exler, Beigl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung nach § 4 Abs. 3 SPO (unbenoteter Übungsschein).

Voraussetzungen
Keine.

Anmerkungen
Die Teilnahme an der Übung ist verpflichtend und die Inhalte der Übung sind relevant für die Prüfung.
5.213 Teilleistung: Unternehmensführung und Strategisches Management [T-WIWI-102629]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung
Prof. Dr. Hagen Lindstädt

Einrichtung
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von
M-WIWI-101425 - Strategie und Organisation

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2020</th>
<th>2577900</th>
<th>Unternehmensführung und Strategisches Management</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Lindstädt</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60min.) (nach §4(2), 1 SPO) zu Beginn der vorlesungsfreien Zeit des Semesters.
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine
5.214 Teilleistung: Vertiefungs-Seminar Governance, Risk & Compliance [T-INFO-102047]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101242 - Governance, Risk & Compliance

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020 2400041</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td>Herzig</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt durch Ausarbeiten einer schriftlichen Seminararbeit sowie ihrer Präsentation als Erfolgskontrolle anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Voraussetzungen
keine

Empfehlungen
Erfolgreicher Abschluss der Lehrveranstaltung Regelkonformes Verhalten im Unternehmensbereich.
5.215 Teilleistung: Vertragsgestaltung [T-INFO-101316]

Verantwortung: Prof. Dr. Thomas Dreier
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101242 - Governance, Risk & Compliance

| Teilleistungsart | Prüfungsleistung schriftlich | Leistungspunkte | 3 | Turnus | Jedes Semester | Version | 1 |

Lehrveranstaltungen
SS 2020 24671 Vertragsgestaltung 2 SWS Vorlesung (V) Hoff

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (Klausur) nach § 4, Abs. 2, 1 der SPO.

Voraussetzungen
keine

Empfehlungen
5 TEILLEISTUNGEN

Teilleistung: Virtual Reality Praktikum [T-MACH-102149]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102399 - Informationsmanagement im Ingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Projekt (PRO)</th>
<th>Mitarbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2123375</td>
<td>Virtual Reality Praktikum</td>
<td>3 SWS</td>
<td></td>
<td>Ovtcharova, Mitarbeiter</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet)

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt
5.217 Teilleistung: Volkswirtschaftslehre I: Mikroökonomie [T-WIWI-102708]

Verantwortung: Prof. Dr. Clemens Puppe
 Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101398 - Einführung in die Volkswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nummer</th>
<th>Vorlesungsbezeichnung</th>
<th>Übungsstunden</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2610012</td>
<td>Volkswirtschaftslehre I: Mikroökonomie</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Puppe</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2610014</td>
<td>Tutorien zu Volkswirtschaftslehre I</td>
<td>2 SWS</td>
<td>Tutorium (Tu)</td>
<td>Puppe, Müller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) (nach §4(2), 1 SPO).

In der Mitte des Semesters kann zusätzlich eine Übungsklausur stattfinden, deren Ergebnis zur Verbesserung der Note in der Hauptklausur eingesetzt werden kann. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note um eine Notenstufe (0,3 oder 0,4). Die Einzelheiten dazu werden vom jeweiligen Dozenten rechtzeitig mitgeteilt.

Voraussetzungen
Keine
5.218 Teilleistung: Volkswirtschaftslehre II: Makroökonomie [T-WIWI-102709]

Verantwortung: Prof. Dr. Berthold Wigger
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101398 - Einführung in die Volkswirtschaftslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Leistung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2600014</td>
<td>Volkswirtschaftslehre II: Makroökonomie</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Scheffel</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2600016</td>
<td>Tutorien zu Volkswirtschaftslehre II</td>
<td>2</td>
<td>Tutorium (Tu)</td>
<td>Scheffel, Krause</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2660015</td>
<td>Tutorien zu Volkswirtschaftslehre II</td>
<td>2</td>
<td>Tutorium (Tu)</td>
<td>Scheffel, Krause</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min.) nach § 4 Abs. 2 Nr. 1 SPO.

Voraussetzungen

Keine
5.219 Teilleistung: Wahrscheinlichkeitstheorie [T-MATH-102257]

Verantwortung: Prof. Dr. Nicole Bäuerle
 Prof. Dr. Vicky Fasen-Hartmann
 Prof. Dr. Norbert Henze
 Prof. Dr. Daniel Hug
 Dr. Bernhard Klar
 Prof. Dr. Günter Last

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101322 - Wahrscheinlichkeitstheorie

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsblock</th>
<th>Leistungspunkte</th>
<th>Leistungspunkte</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>0158400 Wahrscheinlichkeitstheorie</td>
<td>3 SWS</td>
<td>Prüfungsleistung</td>
<td>6</td>
</tr>
<tr>
<td>SS 2020</td>
<td>0158500 Übungen zu Wahrscheinlichkeitstheorie 0158400</td>
<td>1 SWS</td>
<td>Übung</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.220 Teilleistung: Web-Anwendungen und Serviceorientierte Architekturen (I) [T-INFO-103122]

Verantwortung: Prof. Dr. Sebastian Abeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-101636 - Web-Anwendungen und Serviceorientierte Architekturen (I)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 24153 | Web-Anwendungen und Serviceorientierte Architekturen (I) | 2 SWS | Vorlesung (V) | Abeck, Hippchen, Schneider |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung im Umfang von i.d.R. 20 Minuten nach § 4 Abs. 2 Nr. 2 SPO. Die Zulassung zur Prüfung erfolgt nur bei nachgewiesener Mitarbeit an den in der Vorlesung gestellten praktischen Aufgaben.

Voraussetzungen

Die Vorlesung kann nur in Kombination mit dem Basispraktikum "Web-Anwendungen und Serviceorientierte Architekturen (I)" (24312) und/oder dem Proseminar "Web-Anwendungen" (24782) im gleichen Semester gehört und geprüft werden.
5.221 Teilleistung: Wohlfahrtstheorie [T-WIWI-102610]

Verantwortung:
Prof. Dr. Clemens Puppe

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-101501 - Wirtschaftstheorie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4,5</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienjahr</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2020</td>
<td>2020</td>
<td>Wohlfahrtstheorie</td>
<td>SWS</td>
<td>Vorlesung (V)</td>
<td>Puppe, Rollmann</td>
</tr>
<tr>
<td>SS 2020</td>
<td>2020</td>
<td>Übung zur Wohlfahrtstheorie</td>
<td>SWS</td>
<td>Übung (Ü)</td>
<td>Puppe, Rollmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60min.) Prüfung (nach §4(2), 1 SPO) am Ende des Semesters sowie am Ende des auf die LV folgenden Semesters.

Voraussetzungen
Die Veranstaltungen *Volkswirtschaftslehre I (Mikroökonomie) [2610012]* und *Volkswirtschaftslehre II (Makroökonomie) [2600014]* müssen erfolgreich abgeschlossen sein.

Empfehlungen
Keine
5.222 Teilleistung: Workshop Praktischer Entwurf Regelungstechnischer Systeme [T-ETIT-108117]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-103814 - Praktischer Entwurf Regelungstechnischer Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine